University of New Hampshire

Motivation

- Distribution is more informative than a scalar value
- Bring the idea of explicitly estimating value uncertainty from RL to Heuristic Search

Contribution

AAAI-20: Data-Driven Nancy

- using data to estimate value uncertainty distribution
- using estimates to guide real-time heuristic search

IJCAI-21: Expected Effort Search (XES)

• using estimates to guide bounded-cost heuristic search

Improve Real-time Heuristic Search

How to Gather Information?

Given these search nodes, should agent at A move to B_1 or B_2

Which Node to Expand?

Should the agent expand nodes on the frontier under B_1 or B_2

Distributional Methods for Heuristic Search Tianyi Gu (advisor: Wheeler Ruml)

Searching use beliefs

Risk-based Expansion: given beliefs about top-level action values, expand nodes on the frontier under top-level action that minimizes risk, the expected regret

Where do beliefs come from?

Purpose of search is to gather information to inform decision-making process. Which information on the search frontier should be used to form beliefs about top-level actions?

- Assumption-based Nancy: Trucated Gaussian based on h and d
- Data-Driven Nancy: replace the assumptions with data

Improve Bounded-cost Search

tion within bound.

Previous Approaches:

- PTS: does not consider search effort

Our approach: Expected Effort Search

- p(n)
- ② estimate the search effort T(n)

Results:

Right: heavy sliding tile puzzle.

Left: the problem setting. Right: the probability of finding a solu-

• BEES: does not consider the uncertainty of its estimates

• estimate the probability of finding a solution within the bound

3 best-first search on the expected search effort $\frac{T(n)}{p(n)}$

CPU time (in seconds) as a function of the cost bound (factor of optimal). Error bars show 95% confidence intervals on the mean across the commonly solved instances. Left: heavy vacuum world.