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Abstract

Many planning problems are too hard to solve opti-
mally. In bounded-cost search, one attempts to find,
as quickly as possible, a plan that costs no more
than a user-provided absolute cost bound. Sev-
eral algorithms have been previously proposed for
this setting, including Potential Search (PTS) and
Bounded-cost Explicit Estimation Search (BEES).
BEES attempts to improve on PTS by predicting
whether nodes will lead to plans within the cost
bound or not. This paper introduces a relatively
simple algorithm, Expected Effort Search (XES),
which uses not just point estimates but belief dis-
tributions in order to estimate the probability that a
node will lead to a plan within the bound. XES’s
expansion order minimizes expected search time in
a simplified formal model. Experimental results
on standard planning and search benchmarks show
that it consistently exhibits strong performance,
outperforming both PTS and BEES. We also derive
improved variants of BEES that can exploit belief
distributions. These new methods advance the re-
cent trend of taking advantage of uncertainty esti-
mates in deterministic single-agent search.

1 Introduction
In many real world applications, an optimal solution can be
too hard to obtain within realistic constraints on CPU time
and memory. In the field of suboptimal search, two main di-
rections have been pursued. The first direction focuses on
producing bounded suboptimal solutions that are within a
given factor w of the optimal cost. The most famous algo-
rithm in this group is weighted A∗ [Pohl, 1970]. The sec-
ond direction, called bounded-cost search [Stern et al., 2011;
Haslum, 2013], considers an alternative setting by providing
an absolute cost bound C. The search algorithms are then
designed to find a plan with cost less than or equal to C as
quickly as possible. In this paper, we focus on the second
direction and design a new bounded-cost search algorithm
called Expected Effort Search (XES).

∗These authors contributed equally to this work.

For bounded-cost search, one can take advantage of the
problem setting and design heuristics that can guide the
search to find solutions within the given cost bound as quickly
as possible. For example, potential search (PTS) [Stern et al.,
2011] attempts to expand the node with the maximum prob-
ability of leading to a plan within the bound. However, PTS
does not consider the search effort that would be required to
find a goal under a search node. Bounded-cost Explicit Esti-
mation Search (BEES) [Thayer et al., 2012] attempts to im-
prove upon PTS by incorporating distance-estimating heuris-
tics. BEES attempts to expand the node, among those esti-
mated to be within the bound, that is closest to a goal. How-
ever, BEES does not take the uncertainty of its estimate into
account. A node with an expected cost estimate barely below
the cost bound is considered equally important as a node with
expected cost far less than the cost bound.

In this paper, we propose a new bounded-cost search al-
gorithm called Expected Effort Search (XES), which takes
both kinds of information into account. Like BEES, XES
uses distance-to-go and inadmissible cost estimates, but it
also uses belief distributions to model their uncertainty. XES
estimates two quantities of a node n: 1) Estimated search
effort T (n), and 2) the probability p(n) of finding a solu-
tion within the cost bound. It then performs best-first search
on T (n)/p(n). This idea was first proposed by Dobson
and Haslum [2017] and implemented as an internal objective
function for specific domain-independent planning heuristics.
In this paper, we extend it to the general heuristic search set-
ting, showing how such estimates can be obtained for arbi-
trary heuristics, and we prove its optimality in a simplified
formal model. Our experimental results show that XES con-
sistently outperforms previous bounded-cost search methods.
Furthermore, we devise new variants of BEES that make use
of the belief distributions used in XES, which improves per-
formance on our benchmark set. This work further advances
the trend of exploiting estimates of uncertainty, traditionally
used in planning under uncertainty [Dearden et al., 1998;
McMahan et al., 2005; Bellemare et al., 2017], in methods
for deterministic single-agent search.

2 Previous Work
A bounded-cost search problem can be defined as a six-tuple
〈S, sinit , succ(s), c(s, s′), G,C〉, where S is a set of states,
sinit ∈ S is the initial state, succ(s) is the transition func-



tion yielding the set of successor states of s, c(s, s′) is the
cost function of the transition from state s to its successor
s′ ∈ succ(s), G ⊆ S is the set of goal states, and C is a given
constant. The task is to find a path from sinit to a goal state (a
plan) whose sum of transition costs is less than or equal to C.
A node n represents a state in the search space with a corre-
sponding path to it from the initial state; the cost of the path is
denoted by g(n), and h(n) is a heuristic estimate of the path
cost from the state represented by n to a goal (i.e, cost-to-go).
Let h∗(n) be the cost of an optimal plan. If h(n) ≤ h∗(n)
holds on all states then h is called admissible. In that case,
f(n) = g(n) + h(n) is a lower bound on the minimum cost
of any optimal plan to a goal with prefix n. Let d(n) repre-
sent an estimate of the number of state transitions required to
reach a goal (i.e., distance-to-go). The estimate d is often as
easy to compute as h just by counting the number of actions
in the solution to a relaxation of the original problem.

One simple strategy for bounded-cost search is to prune all
the nodes with g(n) > C (or f(n) > C if h is admissible)
during a (weighted) A* or greedy search. However, this may
waste work as the heuristic that guides node selection is in-
sensitive to the bound. This has motivated the development of
several specialized algorithms for the bounded-cost setting.

2.1 Potential Search
Stern et al. [2011] define the potential of a node as the
probability that the node will be part of a solution whose
cost is within the user-provided cost bound C: PC(n) =
Pr(h∗(n) ≤ C − g(n)). PTS is a best-first search on PC(n)
and thus guides the search toward nodes which have high
probability of finding a solution within the cost bound. How-
ever, instead of explicitly calculating PC(n), which is not
trivial to do, PTS constructs a function flnr (n) = h(n)

C−g(n) .
Stern et al. [2011] show that flnr (n) yields the same order-
ing as PC(n) under the assumption that the error between the
true cost-to-go h∗(n) and its estimate h(n) is linear in the size
of h(n). Thayer et al. [2012] show that PTS can be enhanced
by an inadmissible heuristic ĥ(n) when one is available. Let
P̂TS denote a best-first search on f̂lnr (n) = ĥ(n)

C−g(n) .
The limitation of potential-based approaches is that they

only consider the probability that a node is on a path to a
goal under the bound and yet never take into account search
effort, i.e. the time needed to find that solution. Potential
on its own does not include a term encouraging the search to
reach a goal. Since the task of bounded-cost search is to find
a plan within the bound as quickly as possible, search effort
estimates ought to be useful for search guidance.

2.2 Bounded-cost Explicit Estimation Search
Building on Thayer and Ruml’s [2011] EES algorithm for
bounded suboptimal search, Thayer et al. [2012] intro-
duced Bounded-cost Explicit Estimation Search (BEES) and
Bounded-cost Explicit Estimation Potential Search (BEEPS).
BEES uses three sources of estimates to guide the search: an
admissible cost heuristic h, an inadmissible cost heuristic ĥ,
and an inadmissible distance-to-go heuristic d̂. In addition
to the standard open list, openC , which contains all nodes

with f(n) = g(n) + h(n) ≤ C sorted by f , BEES also
maintains a focal list, ôpenC , which contains all the nodes
whose inadmissible estimate is within the cost bound, i.e.,
f̂ = g(n) + ĥ(n) ≤ C, sorted by d̂. Nodes in ôpen

C are ex-
panded first, falling back on openC only if ôpenC is empty.
BEEPS is a variation of BEES, differing only in ordering the
standard open list, openC , on f̂lnr(n).

2.3 Combining Cost and Distance Estimates
Dobson and Haslum [2017] attempt to improve BEEPS by
merging cost and distance heuristics into a single combined
heuristic rather than alternating between them. They point
out that the probability that a node n will be part of a solution
whose cost is within the bound C, PC(n), indicates that we
might expect to expand a total of 1

PC(n)
many n-like nodes

whose subtrees are similar to n, before a solution is found.
Given this observation, they design an expected work heuris-
tic HC(n) = TC(n)/PC(n), where TC(n) is the prediction
of the size of the C-bounded subtree rooted at n. They de-
scribe how pattern database heuristics [Culberson and Scha-
effer, 1996] can be adapted to compute HC by modifying the
internal objective function for the abstract plans, and show
that it performs well on selected planning domains.

Dobson and Haslum [2017] approximate PC(n) with the
potential value used in PTS (i.e, flnr(n)) and estimate TC(n)
with distance-to-go. They point out the potential value could
be a poor approximation for the probability and they specu-
latively propose that one could perhaps approximate PC(n)
via online learning of heuristic errors. In this paper, we fur-
ther study this idea, show how it can be implemented for ar-
bitrary underlying heuristics, and compare it to the existing
state-of-the-art techniques for bounded-cost search.

2.4 Search Using Belief Distributions
Recently, it has been shown that a heuristic search can ben-
efit from being guided by belief distribution of cost esti-
mates [O’Ceallaigh and Ruml, 2015; Mitchell et al., 2019;
Fickert et al., 2020, inter alia]. For example, Nancy [Mitchell
et al., 2019] is a real-time search algorithm that uses distri-
butions of cost-to-go estimates to choose its next action. The
distributions are derived from online observations of the one-
step error of the heuristic and distance [Thayer et al., 2011]:
for a search node n, Nancy creates a Gaussian distribution
N(f̂(n), ( f̂(n)−f(n)2 )2) that is centered around the debiased
total cost estimate f̂(n) and estimates the standard deviation
as half of the difference between f̂(n) and f(n).

3 Expected Effort Search
Extending the line of work initiated by Dobson and
Haslum [2017], we propose a new bounded-cost search al-
gorithm called Expected Effort Search (XES). We design a
combined expected effort heuristic that accounts for both the
probability of finding a solution within the cost bound and the
effort required to do so. We first provide a simplified formal
model to give a theoretical justification for this heuristic and
then show how the probability estimate of finding a solution



within the bound can be instantiated based on the belief distri-
butions used by the Nancy algorithm [Mitchell et al., 2019].

3.1 A Simple Formal Model
Let p(n) be an estimate of a node n’s potential, i.e., the prob-
ability that there is a solution under n within the cost bound.
We will model expected search time using three assumptions.
First (A1), we assume that the search procedure works exclu-
sively in one subtree at a time. Let T (n) be an estimate of the
search effort to find a solution under n. Performing search
below a node n can have two possible outcomes: either (a) a
solution will be found under n with expected effort T (n), or
(b) the search does not find a solution under n. Second (A2),
we assume that the subtrees are independent: not finding a
solution in one subtree does not affect the probability of find-
ing a solution in any other subtree. Third (A3), for case (b),
we assume that the search abandons that subtree after having
spent T (n) time, the same as in case (a).

Now, let σ = 〈n0, n1, . . . , nm〉 be the ordering of the
search nodes that are currently in the open list. We first
have to consider the case where a solution is found below
n0, spending T (n0) time overall with a probability of p(n0).
Otherwise, we need to next explore the search tree below
n1, where we would find a solution with overall probabil-
ity (1 − p(n0))p(n1) (considering the remaining probabil-
ity of not finding a solution below n0) and expected over-
all search time (T (n0) + T (n1)) since we explore both the
search trees below n0 and n1, and so on. Abusing notation,
let T (n + m) = T (n) + T (m). Then, the expected overall
search time for this ordering is
E(σ) =p(n0)T (n0)+

(1− p(n0))p(n1)(T (n0 + n1))+

(1− p(n0))(1− p(n1))p(n2)(T (n0 + n1 + n2))+

. . .

We note that there will be a final term in this expression repre-
senting the time in the case in which there is no solution; this
quantity might be finite or infinite depending on the search
tree and search procedure.

If we want to know whether we should prefer a node
n over another node m, we can, without loss of general-
ity, compare the open list orderings σn = 〈n,m, . . .〉 and
σm = 〈m,n, . . .〉. Note that all but the first two terms of the
corresponding expected search times are identical. We will
use this to show that for ordering the open list, it is sufficient
to use this shortened expression for expected search effort:

xe(n) = T (n)/p(n)

Theorem 1. Given two open list orderings σn = 〈n,m, . . .〉
and σm = 〈m,n, . . .〉, E(σn) < E(σm)⇔ xe(n) < xe(m).
Proof. We start with E(σn) < E(σm). Removing equal
terms from both sides yields

p(n)T (n) + (1− p(n))p(m)(T (n+m)) <

p(m)T (m) + (1− p(m))p(n)(T (m+ n)).

Multiplying out, we get
p(n)T (n) + p(m)(T (n+m))− p(n)p(m)(T (n+m)) <

p(m)T (m) + p(n)(T (m+ n))− p(m)p(n)(T (m+ n)).

g(n) C f̂(n)

Figure 1: Estimating p(n).

Simplifying by removing equal terms yields

p(n)T (n) + p(m)(T (n+m)) <

p(m)T (m) + p(n)(T (m+ n)).

Then by multiplying out again we get

p(n)T (n) + p(m)T (n) + p(m)T (m) <

p(m)T (m) + p(n)T (m) + p(n)T (n)

and after removing equal terms again:

p(m)T (n) < p(n)T (m).

Finally, dividing by p(n) and p(m) yields

T (n)/p(n) < T (m)/p(m).

3.2 Estimating Expected Search Effort
XES is a best-first search on the expected search effort
xe(n) = T (n)/p(n). The key question is how to obtain the
estimates T (n) and p(n). In this work, we instantiate T (n)

with the debiased distance estimate d̂(n) = d(n)
1−εd , where εd

is the mean one-step error in d [Thayer et al., 2011], and we
derive p(n) from Nancy-style probability distributions.

For a search node n, we use the same Gaussian distribution
as Nancy, but truncated at a lower bound of g(n) (f(n) if h
is admissible). The probability of finding a solution under
n within the cost bound C is then just the area below the
distribution up to C, as illustrated in Figure 1. This can be
calculated directly using the cumulative density function for
truncated Gaussian distributions [Hald, 1952].

XES weighs the potential of a node against its estimated
search effort. If the cost bound is very generous, then p(n)
should be close to 1 for most nodes and XES converges to
a best-first search on d̂, effectively guiding the search to a
goal as quickly as possible. We prune nodes with h(n) = ∞
(dead ends) and nodes with g(n) > C, but not nodes with
T (n)/p(n) = ∞ as this case can occur when the heuris-
tic overestimates significantly (so p(n) is very low and may
round to zero). XES satisfies the usual completeness guaran-
tee from a best-first search, as all nodes that may satisfy the
cost bound are eventually expanded until a solution is found.

4 BEES with Explicit Probability Estimates
BEES and BEEPS predict whether a node will lead to a so-
lution within the cost bound using the criterion f̂(n) ≤ C,
in which case n is inserted into the prioritized focal list in-
stead of the standard open list. The explicit probability esti-
mates derived from the Nancy-style belief distributions allow
us to introduce new variants of these algorithms, BEES95 and
BEEPS95, where we instead check if the probability is suffi-
ciently high: p(n) ≥ 0.95.



5 Experimental Evaluation
Although XES would appear to be appealing when the sim-
plifying assumptions A1–A3 hold, it remains to be seen how
it performs in practice. We empirically evaluate XES and
the new BEES variants on both planning and heuristic search
benchmarks. We follow Thayer et al. [2012] and implement
PTS with pC(n) = h(n)

1−g(n)/C as opposed to h(n)
C−g(n) , which

not only makes it clearer that PTS and P̂TS converge to GBFS
for large cost bounds, but also avoids precision issues for
large C values. To compute the debiased heuristic ĥ(n) for
P̂TS, BEES, and XES, we use ĥ(n) = h(n)+ ε̄h · d̂(n) where
ε̄h is the mean one-step error in h [Thayer et al., 2011]. We
initialize εh with 100 virtual samples to avoid a large fluctu-
ation of ĥ values at the beginning of the search. The initial
value is set to make ĥ optimistic, using an initial one-step er-
ror of zero on the search domains (where the heuristics are
admissible), and −0.5 on the planning domains (where the
heuristic is inadmissible).

5.1 Planning Domains
We use the benchmark set from the bounded-cost track of the
2018 International Planning Competition (IPC), which con-
tains 180 instances from 9 domains, and the instances of the
satisficing tracks of all previous IPCs, where we use the up-
per bounds from Planning.Domains [Muise, 2016] as the cost
bounds, omitting instances where no bound is available, leav-
ing 2147 instances from 48 domains. These bounds corre-
spond to best found solutions for these instances and 1218 of
them are known to be optimal.

We implemented the bounded-cost search algorithms in
Fast Downward [Helmert, 2006].1 The experiments were run
using the lab framework [Seipp et al., 2017] on a cluster of
2.2 GHz Intel Xeon E5-2660 CPUs. The time and memory
limits were set to 30 minutes and 4 GB, respectively. We
use the popular FF heuristic [Hoffmann and Nebel, 2001] as
the heuristic h and use the length of the relaxed plans as the
search distance estimator d. All algorithms use a dual queue
for preferred operators.

IPC’18 Results
Table 1 compares XES, BEES95, and BEEPS95 to previous
bounded-cost search algorithms. We also include GBFS (with
pruning on g), which was used by most planners in the IPC.

XES performs best overall with a coverage of 66, followed
by BEES95 (64) and the other algorithms of the BEES family
(60). The potential-based algorithms PTS and P̂TS have sig-
nificantly lower coverage, and the statistics on the number of
expansions show that they are not as effective in guiding the
search to a goal. GBFS is not competitive with the specialized
bounded-cost search algorithms overall, though it can some-
times beat them if it quickly finds a cost-effective path to the
goal (e.g. in Agricola and Caldera-split). On five of the nine
domains, XES has the highest coverage of the considered al-
gorithms. Across the commonly solved instances, XES also
needs the fewest expansions on average, and its search time

1See https://github.com/fickert/fast-downward-xes.
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Agricola (20) 1 0 0 0 0 0 0 0
Caldera (20) 8 10 11 10 10 12 11 13
Caldera-split (20) 4 2 2 2 2 2 2 2
DataNetwork (20) 2 0 0 3 3 3 3 4
Nurikabe (20) 4 10 7 10 10 11 9 9
Settlers (20) 4 5 7 10 10 11 11 11
Snake (20) 4 5 5 4 5 4 5 5
Spider (20) 7 11 9 10 10 10 9 9
Termes (20) 11 9 6 11 10 11 10 13

Sum (180) 45 52 47 60 60 64 60 66

Exp. (∗103) 1.93 3.93 6.75 2.10 2.62 2.25 2.24 1.77
Search time (s) 1.69 4.11 7.20 2.14 2.79 2.32 2.39 1.91

Table 1: Coverage on the IPC’18 bounded-cost instances, and geo-
metric means of the expansions (multiply by 103) and search time
on commonly solved instances (last two rows).
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Figure 2: Normalized coverage as the cost bound is increased.

is only beaten by GBFS (which solves significantly fewer in-
stances, but those that it can solve are solved quickly).

Satisficing Results
Table 2 shows the results on the instances of the satisficing
tracks using the cost bounds from Planning.Domains. Con-
sistent with the results on the IPC’18 bounded-cost instances,
XES clearly outperforms the other considered algorithms: on
14 of the 48 domains it solves strictly more instances than
any other algorithm, and on further 14 domains XES has
the shared best coverage. Our new BEES variants BEES95
and BEEPS95 show small but relatively consistent improve-
ments over their respective base algorithms. While PTS and
P̂TS show good performance in some individual domains
(e.g., Floortile and Freecell), they again lag behind the other
bounded-cost search algorithms overall.

Figure 2 shows the normalized coverage (fraction of solved
instances averaged across all domains) as the cost bounds
are multiplied by increasing factors. The relative strength of
the algorithms remains mostly consistent across the different
bounds, with XES being the best performing algorithm for all
considered values, and the specialized bounded-cost search
algorithms still have a significant advantage over GBFS with
pruning even as the cost bound is relaxed.

http://planning.domains/
https://github.com/fickert/fast-downward-xes
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Airport (49) 26 24 24 31 31 32 32 31
Assembly (30) 17 18 18 25 24 30 29 30
Barman (40) 5 0 0 6 6 9 9 10
Blocks (35) 19 26 26 30 26 30 26 31
Cavediving (8) 7 7 7 7 7 7 7 7
Childsnack (6) 1 0 0 0 0 0 0 3
CityCar (13) 1 4 4 4 4 5 5 4
Depot (21) 6 13 13 14 13 12 13 13
DriverLog (20) 10 19 18 18 18 18 19 15
Elevators (39) 7 12 12 22 22 24 24 24
Floortile (27) 6 20 20 8 8 9 8 9
Freecell (80) 20 65 57 37 47 39 58 41
GED (20) 0 1 0 0 0 1 1 1
Grid (5) 1 3 3 3 3 3 3 4
Gripper (20) 7 8 8 7 8 7 8 12
Hiking (18) 8 18 16 15 17 14 17 16
Logistics (63) 33 46 38 51 50 52 53 52
Maintenance (17) 0 0 0 0 0 0 0 0
Miconic (439) 342 362 427 403 426 397 426 437
Movie (30) 30 30 30 30 30 30 30 30
Mprime (35) 29 34 33 33 33 34 33 33
Mystery (19) 17 19 19 19 19 19 19 19
Nomystery (18) 4 16 16 18 14 18 14 17
Openstacks (98) 33 31 41 53 54 56 56 58
Opt. Telegr. (4) 4 2 2 2 2 4 4 4
Parcprinter (40) 26 25 20 29 27 24 20 24
Parking (40) 4 21 10 11 12 16 13 15
Pathways (57) 13 20 27 22 22 25 22 24
Pegsol (35) 32 35 35 34 35 34 35 35
Philosophers (45) 45 11 5 11 11 11 11 14
Pipes-notank (46) 20 41 42 43 43 42 42 43
Pipes-tank (45) 15 29 28 28 32 26 31 33
PSR (116) 107 111 110 111 110 111 110 113
Rovers (40) 12 20 18 25 25 27 25 30
Satellite (36) 20 20 20 23 21 21 23 23
Scanalyzer (28) 20 16 17 20 18 22 17 21
Schedule (150) 36 51 47 62 73 60 75 89
Sokoban (30) 24 29 29 29 29 29 29 29
Storage (28) 14 19 20 20 20 16 18 22
Tetris (18) 7 4 3 4 4 2 2 3
Thoughtful (20) 6 10 10 8 10 9 9 12
Tidybot (17) 3 11 11 12 12 11 11 12
TPP (30) 10 16 13 20 19 15 18 24
Transport (53) 7 9 10 15 15 19 19 17
Trucks (31) 18 30 30 30 29 31 31 30
VisitAll (37) 0 0 0 0 0 0 0 0
Woodw. (31) 18 24 11 19 19 21 19 22
Zenotravel (20) 8 14 13 13 13 16 16 14

Sum (2147) 1098 1344 1361 1425 1461 1438 1490 1550
Normalized (%) 44.8 58.5 55.9 59.9 59.8 61.6 61.9 66.1

Expansions 1961 1135 1787 401 491 365 485 369
Search time (s) 0.53 0.40 0.57 0.19 0.23 0.18 0.24 0.18

Table 2: Coverage on the IPC satisficing instances. The normalized
overall coverage corrects for the different numbers of instances per
domain. The last two rows show the geometric means of the expan-
sions and search time on commonly solved instances.

5.2 Search Domains
We also empirically compare XES and BEES95 to PTS, P̂TS,
and BEES on four classic heuristic search benchmarks. We
do not include A*, GBFS, speedy search, or BEEPS because
Thayer et al. [2012] found them to be dominated by BEES
and P̂TS (we confirmed this in preliminary experiments).
Domain-specific solvers were implemented in C++2 and run
on 64-bit Linux systems with 3.16 GHz Intel E8500 Core2
duo processors and 8 GB of RAM. Algorithms were cut off
at 7 GB RAM use. Beforehand, we solve each problem in-
stance optimally, recording the cost. Then, in the tests, we
set the cost bound of each instance to a factor of the optimal
solution cost.
Sliding-Tile Puzzle. We consider four variants of the well-
known 15-puzzle: uniform cost, heavy cost (cost=tile#), in-
verse cost (cost=1/#), and square-root cost (cost=

√
#). We

use the Manhattan Distance as the heuristic h, weighting the
components as appropriate [Thayer and Ruml, 2011], using
the classic 100 start states published by Korf [1985].
Vacuum World. The vacuum world domain was intro-
duced by Thayer and Ruml [2011], following the first state
space presented in Russell and Norvig’s [1995] textbook. We
use 60 solvable instances of size 200× 200, each cell having
a 35% probability of being blocked. We again consider two
variants with uniform and heavy costs, using the minimum
spanning tree heuristic for h on the uniform-cost version and
an adaptation thereof for the heavy-cost variant [Thayer and
Ruml, 2011]. The robot and the dirt piles are randomly placed
in unblocked cells (10 piles for unit, 6 for heavy).
Pancake. The objective of the pancake problem [Kleitman
et al., 1975; Gates and Papadimitriou, 1979; Heydari and
Sudborough, 1997] is to sort a sequence of pancakes through
a minimal number of prefix reversals. We use the GAP
heuristic [Helmert, 2010] for all the algorithms. We also con-
sider Heavy Pancake, where the action cost is the sum of the
indices of all pancakes being flipped. We use 100 randomly
generated instances.
Racetrack. The Racetrack domain [Barto et al., 1995] is
similar to the grid pathfinding problem with inertia. We
use the track map that was created by Hansen and Zilber-
stein [2001]. Each action modifies the acceleration of the
agent by −1, 0, or 1 in both the horizontal and vertical direc-
tions, making for a total of 9 distinct actions. The admissible
heuristic function is the maximum, either horizontally or ver-
tically, of the distance to the goal divided by an estimate of
the maximum achievable velocity in that dimension. Both
a precomputed Dijkstra distance function and a weaker Eu-
clidean distance function are used. We created 25 instances
with starting positions chosen randomly among those cells
that were at least 90% of the maximum distance from a goal.

Results
Figure 3 shows the most important measure of performance,
CPU time. In the tile puzzle, we sort the variants by their
difficulty from left to right, with the easiest uniform-cost tile
on the left. As the problems get harder, XES BEES95 and

2See https://github.com/gtianyi/boundedCostSearch.

https://github.com/gtianyi/boundedCostSearch
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Figure 3: CPU time (in seconds) as a function of the cost bound (factor of optimal). Error bars show 95% confidence intervals on the mean
across the commonly solved instances (number shown in legend). The legends are sorted by the geometric mean across all cost bounds.

P̂TS start to outperform BEES and PTS. To have a reasonable
number of commonly solved instances, we exclude PTS in
the inverse cost plot due to its low coverage for tight bounds.

In the uniform vacuum problem, XES behaves competi-
tive to BEES, PTS and P̂TS. BEES95 performs poorly, espe-
cially when the bounds are tight. In heavy vacuum, XES and
BEES95 are very close to BEES and outperform P̂TS and
PTS by one and two orders of magnitude respectively.

For regular pancake, PTS performs well while P̂TS per-
forms poorly, with BEES, BEES95, and XES in between.
This is the worst domain for XES, but its performance is not
far from the best algorithm. For heavy pancake, XES per-
forms similarly to P̂TS and slightly worse than PTS, while
BEES and BEES95 are much worse.

On both the Barto and Hansen maps of the Racetrack do-
main, most algorithms scale similarly when using the accu-
rate Dijkstra heuristic, with PTS and P̂TS being slightly better
when the bound is very tight and P̂TS being worse when the
bound is loose. However, using the weaker Euclidean heuris-
tic, XES and BEES95 perform better than other algorithms.

5.3 Experiment Summary
The results on benchmarks from both planning and heuris-
tic search show that XES performs consistently well
across almost all tested domains. It is often better than
previous state-of-the-art bounded-cost search algorithms.

The distributionally-enhanced BEES variants BEES95 and
BEEPS95 improve over BEES and BEEPS in most domains.
One advantage of XES over these BEES variants is that it
is less reliant on the probability estimate being accurate: If
the probability estimate consistently over- or underestimates,
then the expected effort values are affected equally and the or-
dering of the open list does not change much, while the focal
list is either over- or underutilized in the BEES algorithms.
There are some domains where PTS and P̂TS work well, but
their performance is less robust to weaker heuristics.

6 Conclusions
XES optimizes search effort in a simple formal model and
empirically appears more robust than other state-of-the-
art bounded-cost algorithms in both classical planning and
heuristic search benchmarks. This work advances the re-
cent trend of taking advantage of distributional information in
heuristic search, showing that, even in single-agent determin-
istic domains, representing an algorithm’s uncertainty about
its estimates of properties of the unexplored portions of the
search space can be a valuable tool.
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