
When to Commit to an Action in Online Planning

Tianyi Gu,1 Wheeler Ruml,1 Shahaf Shperberg,2 Eyal Shlomo Shimony,2 Erez Karpas3

1University of New Hampshire, USA
2Ben-Gurion University, Israel

3Technion, Israel
gu@cs.unh.edu, ruml@cs.unh.edu, shperbsh@post.bgu.ac.il, shimony@cs.bgu.ac.il, karpase@technion.ac.il

Abstract

In online planning, planning happens concurrently with exe-
cution. Under the formulation of planning as heuristic search,
when the planner commits to an action, it re-roots its search
tree at the node representing the outcome of that action. For
the system to remain controlled, the planner must commit to
a new action (perhaps a no-op) before the previously chosen
action completes. This time pressure results in a real-time
search. In this time-bounded setting, it can be beneficial to
commit early, in order to perform more lookahead search fo-
cused below an upcoming state. In this paper, we propose a
principled method for making this commitment decision. Our
experimental evaluation shows that our scheme can outper-
form previously-proposed fixed strategies.

Introduction
Many applications of planning involve time pressure. Often,
we want to achieve the goal as soon as possible, minimizing
the so-called Goal Achievement Time (GAT) (Hernández
et al. 2012; Kiesel, Burns, and Ruml 2015). In situated tem-
poral planning, external time constraints, such as buses or
trains that depart at scheduled times, cause plans to become
infeasible if we take too long to plan (Cashmore et al. 2018;
Shperberg et al. 2021). One way to address time pressure
is to design faster planning algorithms. But many planning
problems are inherently intractable. The most direct way to
address planning under time pressure is to allow actions to
begin executing before a complete plan has been found. Fur-
ther planning can then overlap with action execution. The
fundamental question in such online planning settings is:
when should the planner commit to an action?

Existing methods offer simple fixed answers to this ques-
tion. Some methods use a fixed amount of lookahead for
every action selection decision and commit to exactly one
action given this lookahead. Others commit to multiple ac-
tions, even the entire sequence of actions leading all the way
to the search frontier. In this paper, we develop a principled
approach to action commitment that uses heuristic informa-
tion to assess the planner’s uncertainty about action values.
This uncertainty then drives the decision of whether to com-
mit to an action or whether to perform additional lookahead
before deciding. Although our investigation is at an early
stage, our preliminary results already indicate that the ap-
proach has promise, as it outperforms previous non-adaptive

strategies in three challenging scenarios.

Background
Problem Setting
Our problem setting requires the system to be controlled
at all times. That is, some action must be executing at any
given time, even if it is just a no-op that leaves the state un-
changed. (Some domains, such as fixed-wing aircraft con-
trol, do not have no-op actions.) We make the additional
simplifying assumptions that actions are serial and that the
world is fully observable and deterministic. Thus, we have
a planner searching for a sequence of actions under the con-
straint that at all times at least one action (beyond those that
have already completed) has been computed, committed to,
and has begun execution. The objective of the system is to
achieve a goal as soon as possible. Because we are address-
ing concurrent planning and execution, we used GAT as our
main evaluation metric. This is the total time taken from the
start of planning to the arrival of the agent at a goal.

We take a heuristic search perspective, in which planning
explores an incrementally-generated tree of feasible action
sequences, with the root of the tree representing the state
resulting from the execution of all actions that have been
committed to up to now. The planner is allowed to commit
to actions earlier than required, in order to allow it to re-
root the tree at a deeper node, thereby focusing the search
later on into the future. A commitment queue records all the
committed actions. How and when to make such additional
commitments, so as to reduce the expected time to reach
the goal, is the focus of this paper. Following Russell and
Wefald (1991), we aim to pose and solve this question as
a decision-theoretic metareasoning problem. However, even
this limited focus is too general to formalize, hence we make
additional metareasoning assumptions about the search pro-
cess:

1. The order of decision in the planner is a fixed search tree
structure, from early actions to later actions.

2. No replanning is permitted after action commitment, a de-
cision to commit to an action in the sequence means that
it will eventually be executed in the order specified.

3. We may re-start search at a new state if necessary, for ex-
ample, if the controlled system departs from our assump-
tion of determinism.

4. The only question we address is when to ‘reroot the tree’
at a successor of the root, that is, should we do this before
it is necessary?

5. We assume a given expansion strategy that is not mod-
ified by the commitment strategy, other than by pruning
the parts of the search tree inconsistent with the action
commitments.

Note that the metareasoning assumptions are meant to de-
fine the constraints on the decision-making at the metarea-
soning level, rather than representing assumptions about the
domain or the planner. They are used to define the distribu-
tions and utilities. Nevertheless, in an actual implementation
the planner may deliberately act in a way that does not con-
form to the assumptions, especially when it is obvious that
better performance can be achieved by violating the assump-
tions. For example, it is possible, due to several commitment
decisions, to get a commitment queue containing a sequence
of actions that makes the agent walk in a loop. In such cases,
if this is observed before beginning to execute these actions,
it may decide to remove such a loop from the action queue,
even though this may not be admitted by the metareasoning
assumptions.

Periodically during the search, perhaps after each expan-
sion or periodically after a set of expansions, a metareason-
ing process decides between two options:

• commit to the current seemingly-best top-level action now
and re-root the search tree accordingly, or

• postpone the commitment and continue the current
search.

Note that if we always decide to postpone, eventually action
execution will reach the current root node state and force us
to commit to a next action.

Previous Work
The seminal work of Korf (1990) defined the problem setting
of single-agent real-time search, in which a fixed number
of expansions (or equivalently, amount of time) is allowed
for lookahead node expansions, after which the search must
commit to the next action to take and re-root the search tree.
His RTA* and LRTA* algorithms back up h values from the
lookahead frontier to inform the action choice, caching the
backed up values at every node to allow the heuristic infor-
mation to become more accurate over time and provably pre-
vent the search from becoming stuck in infinite loops. (The
LRTA* variant converges to the optimal h values.) These al-
gorithms were designed to be simple and amenable to anal-
ysis. They commit only to a single action, which means that
the lookahead of one iteration can have significant overlap
with the nodes visited in the previous iteration, depending
on the state space connectivity and the heuristic function.

The widely popular LSS-LRTA* algorithm (Koenig and
Sun 2008) takes a different approach, committing to the en-
tire sequence of actions leading to the most promising fron-
tier node. This reduces the re-generation of nodes seen dur-
ing the previous lookahead and reduces the overall overhead
of the search per executed action, but note that it also com-
mits the agent to certain actions, such as those at or near

the frontier, for which little lookahead has been performed
and for which the heuristic value of their resulting successor
state is their only attractive attribute.

The Dynamic f̂ algorithm (Kiesel, Burns, and Ruml
2015) modifies LSS-LRTA* in two ways. First, rather than
idling the planner for k − 1 time steps after committing to
k actions, Dynamic f̂ uses the entire time until all the com-
mitted actions have finished executing to perform lookahead
search. The amount of lookahead is thus adjusted dynami-
cally, rather than being fixed from the start. This often re-
sults in the next iteration having a sequence of more than k
actions to the best node on the search frontier, leading to a
virtuous circle of larger and larger lookahead. Second, rather
than expanding the frontier node with the lowest f value,
the algorithm computes an inadmissible heuristic ĥ, which
when added to g yields the inadmissible (but possibly more
accurate) total plan cost estimate f̂ . By selecting the node
with lowest f̂ , Dynamic f̂ tries to avoid being tempted by
shallow nodes whose admissible f values are low merely
because they haven’t been explored as deeply as others.

The stark contrast between the two fixed commitment
strategies of LRTA* (one action) and LSS-LRTA* and Dy-
namic f̂ (all the way to the frontier) raises the question of
whether a principled adaptive strategy can be found to de-
cide when to commit to an action. The first approach in this
direction was Decision-Theoretic A* (DTA*) (Russell and
Wefald 1991), which attempts to optimize GAT by period-
ically deciding whether to continue the current lookahead
search or commit to an action and re-root the tree. This is
done by estimating whether the improvement in decision
quality, measured by reduction in plan length, that is likely
to result from further search would outweigh the time re-
quired to do the further search itself. In the implementation
used for their experiments, training data was used to gather
statistics on how often, and by how much, heuristic estimates
tend to change as a results of further search. DTA* is not a
real-time search algorithm, in that it does not respect or con-
sider a time bound on lookahead. There is no requirement
that the system constantly be executing an action and it is
always permissible to deliberate further. Thus DTA* is ca-
pable of emulating A* and planning all the way to a goal
before committing to its first action. DTA* is based on the
less-performant depth-based lookahead of RTA* rather than
the f -based lookahead of LSS-LRTA*, but it pioneered the
deliberative metareasoning approach to action commitment.

The Mo’RTS algorithm of O’Ceallaigh and Ruml (2015)
is basically a modification of DTA* into a true real-time
search algorithm based on LSS-LRTA*. We focus here on its
action commitment strategy, called f̂PMR. It assumes that a
no-op ‘identity’ action is available in every state, which al-
lows the planner to continue searching from the same root.
Once the path from the root to the most promising frontier
node has been identified, f̂PMR considers each node in turn,
asking whether additional search would be worthwhile, and
stopping at the first node for which this appears true. How-
ever, f̂PMR does not offer a principled way to evaluate this
decision at each node. It estimates the benefit of search as

the expected reduction in time-to-goal resulting from more
certain estimates of action cost, which seems reasonable.
However, it is much harder to asses the costs of stopping the
re-rooting process short of the frontier. The f̂PMR method
uses the time required to regenerate the path from the node
to the frontier, which, as the authors note, is not particularly
reasonable because this repeated work would likely happen
concurrently with execution, not affecting the goal achieve-
ment time directly at all. This leaves the approach funda-
mentally unsatisfying.

In this work, we propose what we believe to be a more
principled metareasoning scheme for action commitment,
which we call Flexible Action Commitment Search (FACS).
We integrate FACS into Dynamic f̂ and assess its behavior
using three challenging grid pathfinding scenarios specially
designed to stress real-time search in different ways.

Metareasoning for Action Commitment
Our objective is to minimize GAT. Thus g, h, and f values
in the state space will represent the duration of actions and
the total utility of a final outcome is exactly the sum of ac-
tion costs/durations taken to reach the achieved goal state.
So optimizing f directly optimizes total utility.

The metareasoning problem of heuristic search can be
conceptualized as a POMDP in which each state represents
an entire state space graph, complete with costs on every arc
and h values at every vertex. To avoid confusion in this dis-
cussion, we will use the term ‘vertex’ for a node in the state
space graph and the term ‘state’ for a state in the POMDP.
The search does not know which exact state space graph it is
dealing with, thus its situation is captured by a belief distri-
bution over states. Every node expansion action results in an
observation that rules out those state space graphs that are
inconsistent with the vertices, action costs, and h values that
are generated. The action of expanding a node is stochas-
tic in that the search does not know in advance which new
nodes, actions costs, and h values will be observed, so there
are many possible belief distributions resulting from every
expansion. The action of committing to an action and re-
rooting the search tree at a new vertex is deterministic, as
it does not yield new information. A goal in the POMDP is
a belief that has positive support only on state spaces that
all share the same path from the initial vertex to a goal ver-
tex, providing a solution to the original problem but poten-
tially harboring remaining uncertainty about the unseen por-
tions of the graph. A policy for the POMDP corresponds
to a search strategy, as it would prescribe an action for the
search to take at every reachable belief state. Solving the
POMDP for a policy that, for example, minimizes expected
solution length would give a heuristic search strategy that
finds a solution as quickly as possible by minimizing the ex-
pected number of expansions. Approaching such a problem
in practice depends crucially on exploiting structure in the h
values, the arc costs, and the distance to the nearest goal.

It is not feasible to solve this POMDP, or even to find a
reliable approximation of its solution using standard approx-
imation methods. Therefore, we propose a myopic metarea-
soning scheme that only considers the next action commit-

(a) (b)

Figure 1: Committing vs not committing.

ment decision. In this formulation, one of the following two
options need to be chosen:

• Commit to the action with the best (least) estimated f̂ -
value among all children of the current root node. We de-
note the node that corresponds to this action by α.

• Do not commit to α yet, and spend more time searching
before deciding which action to take next.

Prematurely committing to α might reduce the quality of
the solution. For example, if α leads to a dead-end and the
search algorithm has failed to figured that out before com-
mitting, then it would be forced to turn around eventually,
which would result in a solution with an increased cost.
On the other hand, by gaining additional search time before
making consequent decisions the search algorithm might be
able to avoid future dead-ends or pitfalls, which would not
have been possible to avoid otherwise. Thus, the utility of
committing to α or not committing to α should depend in
part on our certainty regarding the f̂ -value of α.

The Effect of Committing
Let P ds (x) be the predicted probability of having the belief
that f̂(s) = x given dmore node expansions of search under
node s. Denote byXd

s the random variable distributed as P ds .
We begin with several additional simplifying assump-

tions:
1. Each node has exactly two children (a branching factor

of 2), α and β, where α is the node with the highest ex-
pected utility (lowest expected f̂ -value); we will relax this
assumption in the next subsection.

2. The time df required to fully execute an action is identical
for all actions; this assumption will also be relaxed later.

3. When searching under a node s, the search time is evenly
divided among all of its children.

4. The Xd
s random variables are independent for all d and s.

Under the above assumptions, we can now estimate the
utility of committing to and of not committing to α. In Fig-
ure 1(a), we show the current search tree rooted at node s.

The available search time consists of the remaining time dr
induced by previous commitments and df , the time required
to execute a full action α or β (see the the top red time line
in Figure 1(b)). By committing to α, the agent would be able
to invest all of the available search time to search under the
children of α (the bottom red time line in Figure 1(b), start-
ing with the word “commit”). We denote the children of α
as αα and αβ (again, see the search tree in Figure 1(a)).
Since we assume that search time is evenly divided between
αα and αβ, each of them receives a search duration budget
of d =

dr+df
2 . Thus, the utility estimate of committing to

α (denoted as Ucommit) can be defined as the expectation of
the minimum f̂ -value of αα and αβ, after searching d time
units under each of them:

Ucommit = E
[
min(Xd

αα, X
d
αβ)
]

(1)

If the agent chooses not to commit yet (commit later), the
remaining time dr will be used to search under current root s
(see the middle red time line in Figure 1(b), starting with the
words “don’t commit”). Thus half of dr (dr2) will be used to
search under each child of the root. Even though α is initially
estimated to have the lowest f̂ -value among the children of
the root, this estimation can change after searching for dr

2

time under α and β. In essence, the new f̂ -value estimation
of α, induced by the additional search, can be greater than
the new f̂ -value estimation of β. Thus, the rest of the time
line (df) is used for searching under whichever child of the
root is judged most promising at that time (again, see the
middle red time line in Figure 1(b), starting with the words
“don’t commit”). As a result, the search duration under each
grandchild of the current most promising child (either α or

β) will be d′ =
dr
2 +df

2 . In our simplification, the branching
factor is 2, so:
Case 1: after dr2 time spent searching under α and β, we will
believe that f̂(α) ≤ f̂(β). In this case, the rest of the search
time would be invested under α:

Uα = E
[
min(Xd′

αα, X
d′

αβ)
]

(2)

Case 2: after dr2 time spent searching under α and β, we will
believe f̂(α) > f̂(β). Symmetrically to the previous case,
here the rest of the search time would be invested under β:

Uβ = E
[
min(Xd′

βα, X
d′

ββ)
]

(3)

Then, we can estimate the overall utility of committing later
by weighting the probability of α and β to become the most-
promising nodes after the initial search time with their corre-
sponding utilities. The probability of α becoming the most-
promising child (choosing to commit to α) can be defined as
follows:

Pchoose α = P ((X
dr
2
α −X

dr
2

β) < 0) (4)

The utility of not committing at t′ denoted U t
′

don’t commit can
be estimated as:

Udon’t commit = Pchoose α · Uα + (1− Pchoose α) · Uβ (5)

Using these equations, the metareasoning scheme simply
needs to compute the utility of committing to α (Equation 1)
and not committing toα (Equation 5), and to choose the met-
alevel action with the highest utility (lowest expected cost).

A Conceptual Example

In Figure 1, suppose that after the search, we obtain the ex-
pected cost under each leaf node, so we have f̂αα = 3,
f̂αβ = 5, f̂βα = 4, f̂ββ = 6. And we also have f̂α = 3,
f̂β = 4 simply by backing-up from their best child node αα
and βα respectively. We are at the root node s and want to
decide whether to commit to the current best action and re-
root the search at α or not commit and keep searching under
s. Suppose further that the expansion rate is 10 expansions
per action duration, and that the action c leading to s is cur-
rently 5 expansions from completing execution. In this case,
dr = 5 and df = 10.

If we choose to commit, the total 15 expansions will be
used to perform search under α, so αα and αβ both gain
7.5 expansions under our even division search time assump-
tion. Now we can obtain the belief distribution for the fu-
ture f̂ -value after search via Equation 10 (discussed below):
X7.5
αα ∼ N (3, 0.4), X7.5

αβ ∼ N (5, 2.0). Then by applying
Equation 1, we get the Ucommit = 3.2. This can be cal-
culated directly using the closed-form formula for the mini-
mum of two normally distributed random variables (Nadara-
jah and Kotz 2008).

If we choose not to commit, we have two search phases:
before and after c completes. In the first phase, we still
search sub-trees under both α and β, so both gain dr/2 =
2.5 expansions. Because the system can not be left uncon-
trolled, we are forced to commit when c completes. So in
the second phase, after c completes, the search will only
expand nodes either under α or β with df = 10 expan-
sions. Thus we have d′ = (2.5 + 10)/2 = 6.25 expansions
for each leaf node. To compute Uα, now we can again ob-
tain the belief distribution of future f̂ -value by Equation 10:
X6.25
αα ∼ N (3, 0.2), X6.25

αβ ∼ N (5, 1.5). Equation 2 can
give us Uα = 3.1. The same computation can be applied to
the β subtree to getX6.25

βα ∼ N (4, 0.1),X6.25
ββ ∼ N (6, 1.3),

and Uβ = 4.2. By Equation 4, say we get Pchooseα = 0.7,
then we can have Udon′tcommit = 0.7 × 3.1 + 0.3 × 4.2 =
3.43. In this case, the meta-level decision is to commit since
it results in the lowest expected cost of 3.2.

Relaxing the Assumptions

In order to relax the branching factor 2 and the identical ac-
tion duration assumptions, we make the following modifica-
tions. Let Children(x) be the set of children of node x, let
b = |Children(root)|, and let da be the duration of action
a. First, the search times d and d′ needs to be updated with

respect to b as follows: d = dr+dα
b , d′(a) =

dr
b +da
b . Note

that now d′ is a function of the action chosen to be taken
from the root. Then, the utility functions need to be updated.
The utility of committing (Equation 1) should be generalized

to:

Ucommit = E
[

min
c∈Children(α)

Xd
c

]
(6)

The utility of searching d′ time under node c (generalization
of equations 2 and 3):

Uc = E
[

min
c′∈Childrenc

X
d′(c)
c′

]
(7)

The probability of choosing node c after searching d′ time
under each child of the root is:

Pchoose c = P (argmin
c′∈Children(root)

X
dr
b

c′ = X
dr
b
c) (8)

Thus, the utility of not committing (generalization of Equa-
tion 5) becomes:

Udon’t commit =
∏

c∈Children(root)

Pchoose c · U t
′

c (9)

Defining the P d
s (x) Distributions

The P ds (x) distributions should reflect the effect of search
effort under nodes given d more node expansions. Specifi-
cally, the more we search under a node, the more likely that
our estimation of its f̂ value will change and get closer to its
true value. In addition, we assume that the closer a node is
to a goal, the more accurate the original estimation of its f̂
value. Finally, the average heuristic error on the path which
leads to s from the root, ε̄s, can be used as an indicator of
the quality of the f̂ value estimation of s. Thus, the variance
of P ds (x) should grow proportionally to d and ε̄s, and the
distance-to-go estimation of s. Let dtg(s) be the distance-
to-go estimation of node s, ed be the average expansion de-
lay which measures the number of node expansions from the
moment a node is generated until it is expanded (Cashmore
et al. 2018). We model P ds (x) as a normal distribution in the
following way:

P ds = N (f̂(s), (ε̄s · dtg(s))2 ·min(1,
d
ed

dtg(s)
)) (10)

The mean of the distribution is the current cost-to-goal esti-
mation, f̂(s). For an initial estimate of the variance we use
the square of the heuristic error multiplied by the distance-
to-goal of s. This uncertainty value is modeled as being re-
duced according to the fraction of the distance to the goal
that we expect to explore using d node expansions (d di-
vided by the expansion delay gives the distance explored).
If the expected exploration depth surpasses the estimated
distance-to-go, we clamp the fraction at 1.

To summarize, our Flexible Action Commitment Search
(FACS) approach uses the P ds estimates about how the plan-
ner’s beliefs about α and β will change after search in or-
der to estimate Ucommit and Udon’t commit and hence decide
whether to commit to α or continue searching.

@
Start

Goal

Figure 2: Schematics of grid benchmarks with tar pits.

Empirical Evaluation
Although our approach seems to be a more principled com-
mitment strategy when all of its assumptions hold, given
the fixed approaches in previous work, it remains to be
seen how it performs in practice. In this section, we in-
tegrate FACS into Dynamic f̂ and empirically evaluate it
against three baselines: original LSS-LRTA* (i.e., commit-
all), LSS-LRTA* with commit-one, and Dynamic f̂ (i.e.,
commit-all with dynamic lookahead).

Synthetic Grid Pathfinding Domain
We implemented all real-time search agents in a synthetic
grid pathfinding domain using the Euclidean distance heuris-
tic. Figure 2 shows a schematic view of a tricky instance of
our novel variant of the classic grid pathfinding problem,
specially contrived to challenge real-time search. The black
areas are the obstacles. The red patches are ‘tar pits’, cells
for which the cost of moving to an adjacent empty cell is
very high (i.e., high cost for stepping out from a ’tar pit’).
With this setting, there will be a high cost if an agent com-
mits to an action that steps into a pit, as the agent would
have to step out of it in order to reach the goal. Note that the
admissible heuristic function does not take these costs into
account. Therefore, the agent has to be very careful about
its commitment decisions. The small red tar pits are very
common in the left part of the map, so a search’s lookahead
frontier will have a high probability of including at least one,
possibly even as the best node. Thus, we expect an agent
with a strategy that commits all the way to the frontier to be
fairly likely to step into a tar pit at some point. In the mid-
dle, we have a long empty area. Since in this area there are no
traps or mazes, algorithms can safely commit and re-root the
search to the frontier nodes in order to gain search time for
the future. In contrast, algorithms that conservatively com-
mit only to one action at a time and re-root the search tree
at every step cannot benefit from such gains in future search
time. On the right side of the map, we have a corridor setting.
Again, the red region is a large tar pit, where there is a small
cost of stepping into this area, but a large cost of getting out
of it. If agents do not have sufficient lookahead to observe
that the red region is a high cost local minimum, they are
likely to be tempted to get into this large tar pit, as it will
seem to be a shorter path to the goal because we sample the
goal position from the lower rows and sample the entrance
of the corridor from upper rows so that the agent must go
against the Euclidean heuristic to enter the upper corridor.
However, with a sufficiently large lookahead, agents can de-

4 10 30 100 300
Expansions per action

1

4

6

8

10

12

14

16
G
AT
 fa
ct
or
 o
f o
pt
im
al

Algorithm
LSS-LRTA*(ALL)
Dynamic ̂f
LSS-LRTA*(ONE)
FACS

Figure 3: Goal achievement time as a function of search
speed in grid pathfinding with tar pits near the start.

tect that this tar pit is a dead-end and avoid stepping into
it altogether. Therefore, we expect agents that accumulate
search time (i.e., lookahead) during the middle empty region
to be able to utilize it to avoid the large tar pit. In the next
section, we show results for maps that only have the left-side
tar pits, maps that only have the right-side corridor and pit,
and maps with both left-side and right-side pits.

Experiments
All algorithms were implemented in C++ and run on 64-
bit Linux systems with 3.16 GHz Intel E8500 processors
and 8 GB of RAM. We used grid maps of 50 rows and 200
columns. For each map, we set the start in the left-most col-
umn and goal in the right-most column, randomizing the row
numbers of the start position and goal position to generate
100 problem instances. We used lookahead limits of 4, 10,
30, 100, and 300 expanded nodes per action (i.e., the rela-
tive search vs action execution speed), shown in the x axis
of each plot in Figures 3-5. We set the cost of stepping out
of a tar pit as 1,000 expansions. The y axis shows GAT, nor-
malized as a factor of the GAT of a clairvoyant agent that
immediately commits to an optimal plan without searching.
Error bars show 95% confidence intervals on the mean over
all the instances. The legends are sorted by the geometric
mean across all lookahead limits.

Figure 3 shows the result of grid pathfinding problems
with tar pits near the start. FACS preforms consistently close
to clairvoyant across all search speeds. The commit-one
strategy is also very competitive at low search speed, due
to its conservative commitment strategy that helps the agent
avoid stepping into tar pits. The Dynamic f̂ and commit-all
strategies are both far from optimal in this map, with dy-
namic f̂ stepping less frequently into tar pits as it accumu-
lates a slightly longer lookahead by the time it reaches the
tar pit field.

Figure 4, shows results for maps with a corridor field near

4 10 30 100 300
Expansions per action

1

2

3

4

5

6

7

8

G
AT

 fa
ct

or
 o

f o
pt

im
al

Algorithm
LSS-LRTA*(ALL)
LSS-LRTA*(ONE)
Dynamic ̂f
FACS

Figure 4: GAT with corridor and tar pit near the goal.

4 10 30 100 300
Expansions per action

1

5

10

15

20

25

G
AT

 fa
ct
or
 o
f o
pt
im
al

Algorithm
LSS-LRTA*(ALL)
LSS-LRTA*(ONE)
Dynamic ̂f
FACS

Figure 5: GAT with tar pits at both ends.

the goal. Both FACS and dynamic f̂ perform close to clair-
voyant since they take advantage of accumulating search
time in the empty area and thus have a lookahead that is
large enough to detect the dead-end and avoid stepping into
the high-cost trap area. Both variants of LSS-LRTA* are un-
able to detect the dead-end with lookahead limit below 30.

In Figure 5, we show the results for maps with tar pits
both near the start and near the goal. FACS is able to sur-
vive both the tar pit field and corridor field, with a conser-
vative commitment strategy initially, adapting to an aggres-
sive commitment strategy in the empty area, and having a
sufficiently large lookahead to avoid the large tar pit when
reaching the corridor.

Discussion
We have suggested an approximate metareasoning scheme
for action commitment geared at focusing a real-time search,
in order to get additional time to search farther ahead in the

search tree. Our scheme involves some domain assumptions,
as well as several metareasoning assumptions. While FACS
performed well in our contrived grid pathfinding domain,
further experiments are necessary to characterize when its
assumptions lead to poor behavior, thereby guiding further
theoretical work.

Possible Extensions
Typically, metareasoning assumptions are not true limita-
tions. Instead, these are just a way to simplify the semantics
and computation of expected utilities for the search. The in-
dependence assumption falls in this category; it is made so
that we can have an easy-to-compute estimate, even though
in practice it does not hold.

Our treatment of action commitment is in a different cate-
gory. As mentioned above, if we observe that we have com-
mitted to a set actions that will lead us through a loop in the
path, it is clear that this sequence of actions achieves noth-
ing, except a delay. Even in such cases, this delay may be
useful as it can be used to do additional search before phys-
ically reaching a possible trap (Cserna, Ruml, and Frank
2017). It thus is a non-trivial issue when we might wish to
un-commit actions, even in such a seemingly simple case.

We might also wish to un-commit actions when we ob-
serve that the predicted f-costs resulting from deeper search
are much worse than those initially projected. In such cases
where actual action execution has not reached such an unex-
pectedly bad state, it may be better to un-commit actions and
expand nodes that seemed worse and pruned by the commit-
ments earlier on. When it might be good to do that is another
non-trivial issue.

Re-examination of the set of assumptions about the search
process is also needed, especially if we use a completely
different search component in the online setting. Of special
interest is the effect of using envelope search (Björnsson,
Bulitko, and Sturtevant 2009; Gall, Cserna, and Ruml 2020)
or Monte-Carlo tree search (MCTS) (Browne et al. 2012;
Schulte and Keller 2014) on both the metareasoning deci-
sions and on actual performance.

Last but not least are low-hanging fruit relating to addi-
tional experimentation with parameters of the scheme de-
veloped in this work. One issue is varying the frequency at
which we perform metareasoning independently from the
expansion rate. Is it better to perform metareasoning after
each expansion (possibly more precise but a large overhead),
once per real-world action, or only after search phase fin-
ishes, as done in the empirical evaluation in this paper?

Summary
This paper introduces FACS, a basic metareasoning scheme
for action commitment geared at focusing a real-time search
in order to get additional time to search farther ahead in
the search tree. Due to numerous assumptions and decisions
needed in order to simplify the analysis that might have been
done differently, this is preliminary work that has consider-
able room for expansion. Nevertheless, favorable empirical
results in contrived grid pathfinding scenarios show that this
approach has promise and could lead to a principled treat-

ment of one of the most fundamental issues on online plan-
ning and execution.

Acknowledgments
This work was partially funded by NSF-BSF via grant
No. 2008594 (NSF) and grant No. 2019730 (BSF).

References
Björnsson, Y.; Bulitko, V.; and Sturtevant, N. R. 2009.
TBA*: Time-Bounded A*. In Proceedings of IJCAI, 431–
436.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in Games 4(1): 1–43.
Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-
zzeni, D.; and Ruml, W. 2018. Temporal planning while
the clock ticks. In Proceedings of ICAPS.
Cserna, B.; Ruml, W.; and Frank, J. 2017. Planning time
to think: Metareasoning for on-line planning with durative
actions. In Proceedings of ICAPS.
Gall, K. C.; Cserna, B.; and Ruml, W. 2020. Envelope-Based
Approaches to Real-Time Heuristic Search. In Proceedings
of AAAI, 2351–2358. AAAI Press.
Hernández, C.; Baier, J. A.; Uras, T.; and Koenig, S. 2012.
Time-bounded adaptive A. In Proceedings of AAMAS, 997–
1006.
Kiesel, S.; Burns, E.; and Ruml, W. 2015. Achieving goals
quickly using real-time search: experimental results in video
games. Journal of Artificial Intelligence Research 54: 123–
158.
Koenig, S.; and Sun, X. 2008. Comparing real-time and
incremental heuristic search for real-time situated agents.
Journal of Autonomous Agents and Multi-Agent Systems
18(3): 313––341.
Korf, R. E. 1990. Real-time Heuristic Search. Artificial
Intelligence 42: 189–211.
Nadarajah, S.; and Kotz, S. 2008. Exact Distribution of
the Max/Min of Two Gaussian Random Variables. IEEE
Transactions on Very Large Scale Integration (VLSI) Sys-
tems 16(2): 210–212. doi:10.1109/TVLSI.2007.912191.
O’Ceallaigh, D.; and Ruml, W. 2015. Metareasoning for
Concurrent Planning and Execution. ICAPS Workshop on
Planning and Robotics (PlanRob-15) 86.
Russell, S. J.; and Wefald, E. 1991. Do the Right Thing:
Studies in Limited Rationality. MIT Press.
Schulte, T.; and Keller, T. 2014. Balancing exploration and
exploitation in classical planning. In Proceedings of SoCS.
Shperberg, S. S.; Coles, A.; Karpas, E.; Ruml, W.; and
Shimony, S. E. 2021. Situated Temporal Planning Using
Deadline-aware Metareasoning. In Proceedings of ICAPS,
volume 31, 340–348.

