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Abstract Solving the problem of allocating and schedul-
ing quay cranes (QCs) is very important to ensure favorable
port service. This work proposes a bi-criteria mixed integer
programming model of the continual and dynamic arrival
of several vessels at a port. A multi-objective genetic algo-
rithm is applied to solve the problem in three cases. The
results thus obtained confirm the feasibility and effective-
ness of the model and GA. Additionally, the multi-objective
solution considering both the total duration for which ves-
sels stay in the port and QCs move is the best, as determined
by comparing with considering only the total time for which
vessels stay in the port or QCs move, as it considers, and it
balances these two objectives.
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Introduction

Marine container terminals are critical components of global
supply chains, and their operators face various challenges
in seeking to keep their daily operations efficient and com-
petitive. Most of these challenges are associated with the
interactions between operations and facilities in the termi-
nals. Operations and facilities, which mainly include quay
cranes (QCs), yard trucks (YTs) and yard cranes (YCs),
must be allocated to vessels before they enter the port (Han
et al. 2008). Among these three facilities, the QC is the
most expensive and the most important. The quay container
crane is the most important machine for transporting con-
tainers in a port. As the speed of the QCs increases, and
the loads become heavier, the dynamic responses of the
QCs become urgent and their effects on QCs allocation
and scheduling cannot be neglected. To remain competitive,
terminal operators must develop accurate and reliable QC
schedules.

Research on the impact and dynamic characteristics of
cranes on quay cranes allocation and scheduling both domes-
tically and abroad is extensive. Kim and Park solved the
problem of single-vessel QC scheduling using the branch
and bound method (Kim and Park 2004). Moghaddam et al.
(2009) constructed a mixed integer programming model of
the quay crane scheduling and allocating problem (QCSAP)
and solved it using genetic algorithm (GA). Der-Horng Lee
and Hui Qiu Wang et al. developed a sequence of allocat-
ing QCs to container vessels taking into account interference
between QCs. Jin and Li (2011) discussed the problem of
dynamically scheduling QCs based on berth planning, mainly
under the limited of QCs and considered the priorities of
loading and unloading tasks. Qin et al. (2013) researched the
relationship between allocation and scheduling of QCs ori-
ented multi-vessels, developing a mixed integer model whose
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objective function is to minimize the total fee of operators.
These authors considered the interference among QCs and
safe distance between QCs. Zhang (2012) studied the static
and dynamic scheduling of QCs based on workload balance,
considering the interference among QCs, and comparing and
analyzing the two results of the static and dynamic schedul-
ing.

Most current researches in the QC scheduling problem
seek to minimize the total time vessels stay in port or to
minimize the delaying time. This study considers two targets,
i.e., minimizing the total time of vessels staying in the port
and minimizing the number of moves of multiple QCs. And
Pareto method is applied to obtain better results considering
both the two targets.

Definition of problem

QCs load and unload containers into or from vessels when
they arrive at a port. Their efficiency is important to the port.
A port is competitive if QCs are scheduled properly. The QC
allocating and scheduling problem is the appropriate assign-
ing of QCs to finish operators to offer an efficient service
to vessels. The goal is to determine the sequence of opera-
tors (Fan and Le 2013). Most of the working time is taken
by the work and move of the QCs and little time is taken
by waiting both QCs wait for YTs and YTs wait for QCs.
Since QCs are huge machines, their moves take a long time
and disturb the facilities around them. Therefore, the mov-
ing of QCs must be considered in providing favorable port
service.

In this study, given information about multiple QCs
and vessels, the QC allocating solution is obtained, which
minimizes the total time vessels staying in the port and
the number of moves of the QCs. In this paper, the
berth plan is known, and a dynamic model of QCs allo-
cating that is based on continuous time is constructed,
accounting for the dynamic arrival of vessels at the port.
The allocation and working sequences of the QCs are
obtained by solving the bi-criteria mixed integer program-
ming model.

For convenience, berths are divided into one unit per
100 m, and 1 day is composed of 24 periods. In Fig. 1, the hor-
izontal axis represents time and the vertical axis represents
berth position:

Figure 1 provides the information on the arrival of vessels
at the port and their berthing positions. For example, vessel 1
berths at [0,4], which is the position of berth 1 if the berths are
ordered from small to large and the arrival time of the vessel
is time 0. QCs operate on the first batch vessels which arrive
in the port at the first time—vessel 1, vessel 2 and vessel 3,
and then on the second batch—vessel 4, vessel 5, and vessel
6—and so on.
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Fig. 1 Berth-time of vessels

Mathematical model of multiple QC scheduling

Assumptions

Before the mathematical formulation of QC allocating and
scheduling is proposed, we discuss the assumptions for for-
mulating a model as follows.

1. Available berths as well as QCs are uniformly distributed
along a coastline. In the coordinate system, the horizontal
axis represents time and the vertical axis represents the
initial position of vessels.

2. All of the loading and unloading tasks in each vessel
should be handled continuously, which means all the tasks
in the same vessel should be finished in continuous time
unit.

3. The berth plan as well as the unloading lists of all vessels
are given. To reduce the complexity of the problem, only
unloading tasks are considered.

4. All the QCs work at the same efficiency.
5. All the containers are 20-foot containers.

Parameters

Vessel: set of vessels to be served in a planning period,
{1, 2, . . . V } ∈ V essel;

QC: set of available QCs in a container port, {1, 2, . . . Q}
∈ QC ;

T: set of periods, {1, 2, . . . nT } ∈ T ;
Q: number of available QCs;
nT: planning period. If the planning period is 3 days

and 1 day is divided into 24 periods, one planning
period is composed of 72 periods, so nT = 72;

v: working speed of QCs;
nB: total number of available berths;
AR j : arrival time of vessel j;
r j : maximum number of QCs that can work on vessel

j simultaneously;

123



J Intell Manuf

S j : the total number of container need to be operated of
vessel j, measured in twenty-foot equipment unit
(TEU);

M: a large positive number.

Decision variables

AV j : starting time of operators of vessel j;
CVj : finishing time of operators of vessel j;
N Qt j : number of QCs assigned to vessel j in period t;
h j1 j2 : sequence of operators of vessel j1 and vessel j2;

if tasks of vessel j2 cannot be started until tasks
of vessel j1 have been completed, then h j1 j2 = 1;
otherwise h j1 j2 = 0. Therefore,h j1 j2 = 0 when
tasks of vessel j2 begin before tasks of vessel j1
are completed; tasks of vessel j1 and vessel j2
begin at the same time or tasks in vessel j1 start
after those in vessel j2.

Xt j : if vessel j is operating in period t ; Xt j = 1; oth-
erwise, Xt j = 0;

Ytq j : if QC q is working on vessel j in period t, then
Ytq j = 1; otherwise, Ytq j = 0;

θtq j : if QC q is moving toward vessel j in period t, then
θtq j = 1; otherwise, θtq j = 0.

Model formulation by bi-criteria mixed integer
programming

After analyzing a multi-ship quay crane (QC) and dynamic
configuration of QC scheduling problem and by using para-
meters and decision variables defined, we can formulate the
following bi-criteria mixed integer programming model:

Objective functions:

min f1 =
V∑

j=1

(CVj − AR j ) (1)

min f2 =
nT∑

t=1

Q∑

q=1

V∑

j=1

θtq j (2)

Constraints:

AVj ≥ AR j , ∀ j ∈ V essel (3)

AVj = min
{
(t−1) ∗ Xt j

∣∣∣Xt j =1
}

∀ j ∈ V essel, t ∈ T

(4)

CVj = max
{
(t+1) ∗ Xt j

∣∣∣Xt j =1
}

, ∀ j ∈ V essel, t ∈ T

(5)

N Qt j ≤ r j , ∀ j ∈ V essel, t ∈ T (6)
V∑

j=1

N Qt j ≤ Q, ∀t ∈ T (7)

nT∑

t=1

N Qt j = S j/v, ∀ j ∈ V essel (8)

V∑

j=1

Ytq j ≤ 1, ∀t ∈ T, q ∈ QC (9)

N Qt j =
Q∑

q=1

Ytq j , ∀ j ∈ V essel, t ∈ T (10)

Xt j ≥ Ytq j , ∀ j ∈ V essel, t ∈ T, q ∈ QC (11)
V∑

j=1

Xt j ≤ nB, ∀t ∈ T (12)

CVj1 − AVj2 ≤ M ∗ (
1 − h j1 j2

)
, ∀ j1, j2 ∈ V essel (13)

CVj1 − AVj2 + M ∗ h j1 j2 ≥ 0, ∀ j1, j2 ∈ V essel (14)

h j1 j2 + h j2 j1 ≤ 1, ∀ j1, j2 ∈ V essel (15)

M ∗ (
h j1 j2 + h j2 j1

) ≥
Q∑

k=1

k ∗ Ytk j1 −
Q∑

q=1

q ∗ Ytq j2 + 1

∀k, q ∈ QC, j1, j2 ∈ V essel, j1 < j2 (16)

h j1 j2 , Xt j , Ytq j , θtq j ∈ {0, 1} ,

∀j, j1, j2 ∈ V essel, t ∈ T, q ∈ QC (17)

Objective function (1) minimizes the total time for which
all vessels staying in port; objective function (2) minimizes
the moving times of all QCs. Constraint (3) ensures that
the QCs can work on vessels only after those vessels have
arrived at the port. Constraint (4) defines the starting time
of operators in vessels. Constraint (5) defines the finishing
time of operators in vessels. Constraint (6) ensures that the
number of QCs that are assigned to each vessel does not
exceed the maximum number of QCs that can work on a ves-
sel simultaneously. Constraint (7) ensure that the number of
working QCs in a period does not exceed number of avail-
able QCs in the port. Constraint (8) ensures that all the tasks
are completed. Constraint (9) ensures that a QC can service
at most one vessel in one period. Constraint (10) specifies
the relationship between N Qt j and Ytq j ; and constraint (11)
expresses the relationship between Xt j and Ytq j . Constraint
(12) ensures that the number of working vessels does not
exceed the number of berths. Constraints (13)–(15) define the
working sequence of QCs as h j1 j2 . Constraint (16) prevents
interference among QCs. If h j1 j2 +h j2 j1 = 0, k−q+1 ≤ 0,
q ≥ k + 1, j1 < j2. Constraint (17) ensures that variables
h j1 j2 , Xt j and Ytq j are binary variables.

In this paper, the presented mix-integer programming
model, which comprises a lot of binary variables and integer
variables, cannot solved by standard optimization solver in
reasonable time. Therefore, a multi-objective genetic algo-
rithm (MoGA) is applied to solve the problem.
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V1 V2 V3 V4
5 0 0 0
4 3 0 0
0 6 4 0
0 1 5 4
0 0 0 6

Fig. 2 Representation of chromosome

Genetic algorithm

Chromosomes and initial population

The chromosomes and initial population is the basic elements
of a GA. A (V × nT) matrix, as shown in Fig. 2, is specified
in which V is the number of vessels in port in a planning
period, and nT is the duration of each planning period. The
gene is the number of QCs that are assigned to each vessel
during each period. Therefore, the total number of genes in
a row cannot exceed the number of available QCs, and the
total number of genes in a column cannot be more than the
working time of every vessel. Each chromosome represents
a QC-scheduling plan in a planning period.

As is well known, the initial population is very important
to the efficiency of a GA (Gen and Cheng 2000). Generating
chromosomes randomly is used in most situations. It can be
described as follows:

Step 1: For the jth column of chromosomes, determine
whether QCs must be allocated to vessels during the ith
period. If QCs must be allocated to vessels during the
ith, then go to step 2; otherwise assign the gene zero and
determine the vessel j + 1;
Step 2: If a QC in a port is available, then go to step 3,
otherwise, the gene is zero and then determine the row
i + 1;
Step 3: If the number of available QCs exceeds the max-
imum number of QCs that can work on a vessel the same
time, then its gene is generated from random integers in
[r j/2 + 1, r j ], otherwise its gene is generated from ran-
dom integers in [1, ni ], where r j is the maximum number
of QCs that can work on vessel j at the same time, and ni

is the number of available QCs. Then, update ni and the
completed tasks in vessel j, which are represented by c;
Step 4: Repeat step 2 until c > S j , and then adjust the
genes using c = S j . Update ni , such that all the other
genes in the jth column of chromosomes are zero.
Step 5: Generate genes in column j +1; repeat steps 1–4.
Step 6: Generate the next chromosome when a chromo-
some is finished. The initial population is generated until
M chromosomes are finished.

V1 V2 V3 V4
5 0 0 0
4 3 0 0
0 6 4 0
0 1 5 4
0 0 0 6

V1 V2 V3 V4
3 0 0 0
6 4 0 0
0 5 4 0
0 1 5 3
0 0 0 7

V1 V2 V3 V4
5 0 0 0
4 3 0 0
0 5 4 0
0 1 5 3
0 0 0 7

V1 V2 V3 V4
3 0 0 0
6 4 0 0
0 6 4 0
0 1 5 4
0 0 0 6

AA

AA

Parent 1 Parent 2

Offspring 1 Offspring 2

Fig. 3 Illustrative example of proposed crossover operator

V1 V2 V3 V4
3 0 0 0
6 4 0 0
0 6 4 0
0 1 5 4
0 0 0 6

× 0.7 =

V1 V2 V3 V4
3 0 0 0
6 2.8 0 0
0 6 4 0
0 1 3.5 4
0 0 0 6

V1 V2 V3 V4
3 0 0 0
6 3 0 0
0 6 4 0
0 1 4 4
0 0 0 6

Parent 1

Offspring 1

Fig. 4 Illustrative example of proposed mutation operator

Crossover operator

Maintaining a population is important and a simple crossover
method, single-point crossover, is utilized to do so. M arrays
are generated randomly and they are crossed with their neigh-
bors, as presented in Fig. 3.

Mutation operator

The mutation operator ensures that the next generation retains
excellent individuals in the search for the optimal solution.
Generally, all genes are examined and as presented in Fig. 4.

Some chromosomes as shown in Fig. 4, the sum of genes in
the third column are fewer than the tasks in vessel 3. That is,
not all of the tasks are completed by the end of the planning
periods. In such a situation, the genes must be repaired as
follows.

Step 1: If the total number of genes in column j exceeds
the number of tasks of vessel j, then go to Step 2. Other-
wise, go to Step 3.
Step 2: Add the difference of the total number of genes
and the number of tasks to the total number of genes in
row i; if the sum does not exceed the number of avail-
able QCs, then the gene is r j when the new sum of the
difference and the number of genes in row i and column
j exceeds the maximum number of QCs that can work
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Fig. 5 Heuristic algorithm for
allocating QCs
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on vessel j simultaneously. Update difference and repeat
Step 2 until the number of genes in column j equals S j ;
Step 3: If the row i minus the difference is not less than 1,
then assign the number of its gene minus the difference to
it. Otherwise, make the first non-zero gene 1, then update
the difference and repeat the Step 3 until the difference
is zero.

Selection operator

The chromosome is designed for solving the problem of
allocating QCs, whereas the heuristic algorithm is used to

solve the problem of scheduling QCs when their allocation
is known, as presented in Fig. 5.

The QC scheduling plan can be determined using GA algo-
rithm to solve. The fitness function is the objective function
in the GA, and it is used to determine the fitness of all indi-
viduals. The top of M make up a new generation.

Pareto fitness-optimized solution

The method of Pareto fitness optimization is used when
multi-objectives that consist of two single objectives are
considered (Gen and Lin 2014). The method is effective in

123



J Intell Manuf

solving multi-objectives in a GA. Two weights are introduced
to transform a multi-objective problem to a single-objective
problem.

In the population in iteration t, f min
1 (or f min

2 ) is the min-
imum of the two objectives and f min

1 (or f mean
2 )is their aver-

age. Compare these values with those in iteration t − 1 and
choose the better one in each case.

f min(t)
q =min

{
f min(t−1)
q , fq (vk)

∣∣k = 1, 2, . . . , popsize

}
,

q = 1, 2 (18)

f mean(t)
q =min

⎧
⎨

⎩ f mean(t−1)
q ,

⎛

⎝
pop_si ze∑

k=1

fq (vk)

⎞

⎠ /pop_si ze

⎫
⎬

⎭ ,

q = 1, 2 (19)

f min(t)
q and f mean(t)

q are the minimum and the average of the
qth objective of all the individuals in iteration t respectively.
vk is the kth feasible solution in the population.pop_size is
the total number of feasible solution.

The weights in the fitness function is set as (20) :

ω1 = f t
1 − f min(t)

1

f mean(t)
1

,ω2 = f t
2 − f min(t)

2

f mean(t)
2

(20)

The fitness function is:

eval (vk) = ω1 ∗ f1 + ω2 ∗ f2 (21)

The Pareto selection and mutation operator are used in this
method as in the previous one, and the optimal solution is
thus obtained.

Numerical experiments

Input data

In this paper, the number of berths is three and the berth plan is
known. Ten QCs are available and every QC operating speed
is 50TEU/h (Tang 2011). Tables 1–4 presents the information
of the vessels, such as the positions of their berths, the num-
bers of tasks, their arrival times, and their leaving time. The
number of individuals in a generation is set to 150 and the
mutation rate is set to 0.1. The GA computation performed
up to a limit of 500 generations.

Results

(1) Applying the data in Table 1 to MoGA, Table 2 presents
the results of the objective function that minimizes the total
time of all vessels in the port. Figure 6 presents the planned
scheduling and Tables 3, 4 presents the working sequence.

Table 1 The information of vessels in planning period

V.N N.T M.N.Q A.T L.T B.P

1 400 4 09:00 20:00 3

2 450 5 09:00 21:00 1

3 300 3 00:00 13:00 1

4 150 2 21:00 24:00 3

5 700 7 00:00 24:00 2

6 350 4 08:00 21:00 1

7 450 5 07:00 24:00 3

8 350 4 11:00 24:00 2

9 200 2 21:00 24:00 1

10 150 2 22:00 24:00 2

11 350 4 09:00 24:00 2

V.N number of vessels, N.T the number of tasks, M.N.Q the max number
of QCs in the vessel, A.T arrival time, L.T the latest time to leave port,
B.P berthing position

Table 2 Single objective 1 (minimizing total time for which all vessels
stay in port)

V.N A.T B.T S.T F.T Time (h)

1 09:00 10:00 10:00 12:00 3

2 09:00 10:00 10:00 13:00 4

3 00:00 00:00 00:00 02:00 2

4 21:00 21:00 21:00 23:00 2

5 00:00 00:00 00:00 02:00 2

6 08:00 08:00 08:00 10:00 2

7 07:00 07:00 07:00 09:00 2

8 11:00 12:00 12:00 14:00 3

9 21:00 21:00 21:00 23:00 2

10 22:00 22:00 22:00 24:00 2

11 09:00 09:00 09:00 10:00 1

V.N number of vessels, A.T arrival time, B.T berthing time, S.T time
work begins, F.T time work ends, Time total time of vessels in port

1

2

3

4

5

6

7

8

9

10

QC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 T

number vessel number: :number    the number of QCs
allocated to the vessel

Fig. 6 Single objective 1 (minimizing the total time for which all ves-
sels stay in port): allocation of QCs
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Table 3 Single objective 1 (minimizing total time for which all vessels
stay in port)—sequences of QCs operators

QC.N Vessels sequence QC move

1 3-6-2-9 0

2 3-6-2-9 0

3 3-6-11-2 2

4 5-6-11-2-8-10 4

5 5-11-2-8-10 2

6 5-7-11-8 2

7 5-7-1-8 2

8 5-7-1-8 2

9 5-7-1-4 1

10 5-7-1-4 1

Total 16

QC.N number of QCs, Vessel sequence the sequence in which QCs work
on vessels, QC move number of QC moves

Table 4 Single objective 2 (minimizing the number of times that all
QCs move)—results concerning other decision variables

V.N A.T B.T S.T F.T Time (h)

1 09:00 10:00 10:00 13:00 4

2 09:00 11:00 11:00 14:00 5

3 00:00 00:00 00:00 02:00 2

4 21:00 21:00 21:00 23:00 2

5 00:00 00:00 00:00 03:00 3

6 08:00 08:00 08:00 11:00 3

7 07:00 07:00 07:00 10:00 3

8 11:00 12:00 12:00 15:00 4

9 21:00 21:00 21:00 23:00 2

10 22:00 22:00 22:00 24:00 2

11 09:00 09:00 09:00 12:00 3

V.N number of vessels, A.T arrival time, B.T berthing time, S.T time
when work begins, F.T time when work ends, Time total time for which
vessels are in port

From the data in the above figure and table, the total time
for which the vessels stay in the port is 25 h, and the QCs
move 16 times. Hence, all 11 vessels arrive in the port 1 day
(one planning period) stay in the port for 25 h. From the
above, all of the vessels leave the port before their allowed
time and no delay occurs. Also, the total number of working
QCs is limited to the maximum number of QCs that can work
on a vessel at the same time. In the busy time, at least 50 %
of the vessels are working. These results explain that the
model promotes the utilization of QCs, and better results are
achieved made if the QCs move fewer times.

(2) Table 4 presents the results of the objective function
that minimizes the number of times that the QCs moves take.
Figure 7 presents the scheduling plan and Table 5 presents
the working sequence.

1

2

3

4

5

6

7

8

9

10

QC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 T

number vessel number: :number the number of QCs
allocated to the vessel

Fig. 7 Single objective 2 (minimizing the number of moves by all of
the QCs)—allocation of QCs

Table 5 Single objective 2 (minimizing the number of moves by all of
the QCs))—sequences of QCs operators

QC.N Vessels sequence QC move

1 3-6-2-9 0

2 3-6-2-9 0

3 3-6-2 0

4 5-11-2-8-10 2

5 5-11-8-10 0

6 5-11-8 0

7 5-7-1-8 2

8 5-7-1 1

9 5-7-1-4 1

10 7-1-4 0

Total 6

QC.N number of QCs, Vessel sequence the sequence in which QCs work
on vessels, QC move number of moves made by QCs

From the results in the figures and tables above, the vessels
spend 31 h in port, and the QCs move six times. Therefore,
all 11 vessels arrive in the port in 1 day (one planning period)
stay in the port for 31 h and QCs move six times. Accordingly,
all of the vessels leave the port before their allowed time and
no delay occurs, and the total time that vessels are in port is
increased by 24 % and can be improved.

(3) Multi-objectives results and analysis
The total time for which vessels stay in port in single

objective 2 (which minimizes the number of times all of the
QCs move) increases by 24 % compared with the total time in
single objective 1 (which minimizes the total time of vessels
staying in port), while the number of times the QCs move is
reduced by 62.5 %. The two objectives both have important
roles in improving the utilization and efficiency of QCs. The
solution is improved by considering both of these objectives.
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Table 6 Pareto optimal solution of QCs operators

Time (h) QC move Distance

1 (a) 34 6 8

2 30 7 4.12

3 (c) 28 8 2.83

4 27 10 4.12

5 (b) 26 13 5

Time total time for which all vessels are in port, QC move Number of QC
moves, Distance distance from ideal point (the best solution in theory)

T
im

e/
h

QCs moves/times

ideal point

a

c

b

5 7 9 11 13 15
23

25

27

29

31

33

35

Fig. 8 Pareto-optimal solution. Time: total time for which all vessels
are in port, QC move: Number of QC moves

Table 7 Multi-objectives (minimizing the total time spent by all vessels
in the port and minimizing the number of moves by all of the QCs)—
results concerning other decision variables

V.N A.T B.T S.T F.T Time (h)

1 09:00 10:00 10:00 13:00 4

2 09:00 10:00 10:00 13:00 4

3 00:00 00:00 00:00 02:00 2

4 21:00 21:00 21:00 23:00 2

5 00:00 00:00 00:00 03:00 3

6 08:00 08:00 08:00 10:00 2

7 07:00 07:00 07:00 10:00 3

8 11:00 11:00 11:00 13:00 2

9 21:00 21:00 21:00 23:00 2

10 22:00 22:00 22:00 24:00 2

11 09:00 09:00 09:00 11:00 2

V.N number of vessels, A.T arrival time, B.T berthing time, S.T time
work begins, F.T time work ends, Time total time of vessels in port

A Pareto optimal solution genetic algorithm is applied to
work out the solution and the computing time is acceptable.
The solution is as Table 6 and Fig. 8.

From Fig. 8, point c, where objective 1 is 28 h and objective
2 is 8, is the best. Therefore, the total time of all vessels in
the port is 28 h; the operating time is 25 h, and all of the
QCs move eight times in total. The relevant information is

1

2

3

4

5

6

7
8
9

10

QC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 T

number the number of vessels: :number the number of QCs
allocated to the vessel

Fig. 9 Multi-objectives (minimizing the total time spent by all vessels
in the port and minimizing the number of moves made by all QCs)—
allocation of QCs

Table 8 Multi-objectives (minimizing the total time spent by all vessels
in the port and minimizing the number of moves mad by all QCs)—
sequences of QCs operators

QC.N Vessels sequence QC move

1 3-6-2-9 0

2 3-6-2-9 0

3 3-6-2 0

4 5-6-11-2-8-10 4

5 5-11-8-10 0

6 5-11-8 0

7 5-7-1-8 2

8 5-7-1 1

9 5-7-1-4 1

10 7-1-4 0

Total 8

QC.N number of QCs, Vessel sequence the sequence in which QCs work
on vessels, QC move number of moves made by QCs

presented in Table 7; Fig. 9 displays the schedule and Table 8
presents the working sequence.

The total time spent by vessels in the port is easily deter-
mined to be 28 h, and the QCs move eight times. All vessels
leave the port before the latest time they are allowed to do
so and no delay occurs. Also, the total number of working
QCs is limited to the maximum number of multiple QCs that
can work on a vessel at the same time. QCs exhibit a high
utilization during the busy time. In the result of consider-
ing both minimizing the total time of vessels staying in port
and minimizing the number of QCs moves, the total time for
which vessels stay in port is 9.68 % less than in the solu-
tion to single objective 2 (minimizing the number of moves
made by all QCs), and the number moves made by QCs is
almost 50 % less than that in the solution to single objective
1 (minimizing the total time spent by all vessels in the port).
The multi-objective result is the best of the three and can be
utilized in allocating and scheduling multiple QCs.
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Conclusions

The paper studies the allocating and scheduling of multiple
Query Cranes (QCs) to several vessels, considering the con-
tinual and dynamic arrival of such vessels in port. The con-
cept of dynamic planning is applied to describe the arrival of
vessels at a port. The optimal plan for allocating and schedul-
ing multiple QCs is based on the arriving vessels berth plan.
A bi-criteria mixed-integer model consists of two objective
functions, one of which minimizes the total time spent by all
vessels in the port and the other of which minimizes the num-
ber of moves made by all the QCs. The two single-objective
functions are solved using a multi-objective genetic algo-
rithm (MoGA), and multi-objective function is solved by
finding the Pareto optimal solution. The final computational
results confirm the feasibility of the proposed model and the
algorithm MoGA. The multi-objective yields the best results,
balancing the two objectives conflicting each other.
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