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Abstract

Natural handwriting is often a mixture of different
“styles”, some even hard to recognize by human. A
reliable recognizer for such handwriting would greatly
help. In this paper, we compare the accuracy and re-
liability of several different classifiers in recognizing
handwritten digit. Classifiers such as K-Nearest Neigh-
bors, Decision Tree, and Random Forest are applied to
the problem and results are compared. Our results show
that using K-Nearest Neighbors is the most accurate of
the recognizer algorithms.

Introduction
Classification, a supervised learning approach, is probably
the most widely used form of machine learning, and has
been used to solve many interesting and often difficult real-
world problems. In this paper, we study image classification.
Now consider the harder problem of classifying images di-
rectly, where a human has not pre-processed the data. We
might want to classify the image as a whole, e.g., is it an in-
doors or outdoors scene? is it a horizontal or vertical photo?
does it contain a dog or not? This is called image classifica-
tion. In the special case that the images consist of isolated
handwritten letters and digits, for example, in a postal or ZIP
code on a letter, we can use classification to perform hand-
writing recognition(Murphy, 2012).

Natural handwriting is often a mixture of different
“styles”, thin, fat, italic, some even hard recognized by hu-
man. A reliable recognizer for such handwriting would
greatly improve interaction with pen-based devices, but its
implementation presents technical challenges(LeCun et al.,
1995). Great algorithms have been developed in the area of
handwritten digit recognition. In this paper we contrast the
relative merits of each of the algorithms.

Approaches
The following are three approaches that can be used in de-
termining the handwritten digit in an image. All of these ap-
proaches require supervised learning and a number of train-
ing examples.
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K-Nearest Neighbors
The K nearest neighbor (KNN) classifier(Murphy, 2012) is a
non-parametric classifier. This simply looks at the K points
in the training set that are nearest to the test input x, counts
how many members of each class are in this set, and returns
that empirical fraction as the estimate. More formally,

P (y = c|x,D,K) =
1

K

∑
i∈Nk(x,D)

1(yi = c) (1)

where Nk(x,D) are the (indices of the) K nearest points
to x in D and 1(e) is the indicator function defined as fol-
low:

1(e) =

{
1 if e is true
0 if e is false

(2)

The most common distance metric to use is Euclidean dis-
tance (which limits the applicability of the technique to data
which is real-valued), although other metrics can be used.

Decision Tree
Decision tree induction is one of the simplest and yet most
successful forms of machine learning(Russell and Norvig,
2010). A decision tree represents a function that takes as
input a vector of attribute values and returns a ”decision”a
single output value. The input and output values can be dis-
crete or continuous. A decision tree reaches its decision by
performing a sequence of tests. Each internal node in the
tree corresponds to a test of the value of one of the input at-
tributes, Ai and the branches from the node are labeled with
the possible values of the attribute, Ai–Each leaf node in the
tree specifies a value to be returned by the function. The
decision tree representation is natural for humans.

Finding the optimal partitioning of the data is NP–
complete (Hyafil and Rivest 1976), so it is common to use
the greedy procedure. The greedy search used in deci-
sion tree learning is designed to approximately minimize the
depth of the final tree. The idea is to pick the attribute that
goes as far as possible toward providing an exact classifica-
tion of the examples. All we need, then, is a formal measure
of ”fairly good” and ”really useless” and we can implement
the importance function. We will use the notion of infor-
mation gain, which is defined in terms of entropy, the funda-
mental quantity in information theory (Shannon and Weaver,
1949).



Entropy is a measure of the uncertainty of a random vari-
able; acquisition of information corresponds to a reduction
in entropy.A random variable with only one value–a coin
that always comes up headshas no uncertainty and thus its
entropy is defined as zero; thus, we gain no information by
observing its value. A flip of a fair coin is equally likely to
come up heads or tails, 0 or 1, and we will soon show that
this counts as “I bit” of entropy. The roll of a fair four-sided
die has 2 bits of entropy, because it takes two bits to describe
one of four equally probable choices. Now consider an un-
fair coin that comes up heads 99% of the time. Intuitively,
this coin has less uncertainty than the fair coinif we guess
heads we’ll be wrong only 1% of the time–so we would like
it to have an entropy measure that is close to zero, but posi-
tive.

An attribute A with d distinct values divides the training
set E into subsets Ek,Each subset Fk has pk positive ex-
amples and nk negative examples, so if we go along that
branch, we will need an additional H(pk/(pk + nk)) bits
of information to answer the question. A randomly chosen
example from the training set has the kth value for the at-
tribute with probability ((pk+nk)/(p+n)),so the expected
entropy remaining after testing attribute A is

Remainder(A) =

K∑
k=1

pk + nk
p+ n

H(
pk

pk + nk
) (3)

The information gain from the attribute test on A is the ex-
pected reduction in entropy:

Gain(A) = H(
p

p+ n
)−Remainder(A) (4)

In fact Gain(A) is just what we need to implement the im-
portance function.

To prevent overfitting, we can stop growing the tree if the
decrease in the error is not sufficient to justify the extra com-
plexity of adding an extra subtree. However, this tends to be
too myopic. For decision trees, a technique called decision
tree pruning combats overfitting. Pruning works by elim-
inating nodes that are not clearly relevant. We start with a
full tree and look at a test node that has only leaf nodes as de-
scendants, If the test appears to be irrelevant-detecting only
noise in the data, then we eliminate the test, replacing it with
a leaf node. We repeat this process, considering each test
with only leaf descendants, until each one has either been
pruned or accepted as is.

To detect that a node is testing an irrelevant attribute, we
can use a statistical significance test. Such a test begins by
assuming that there is no underlying pattern (the so-called
null hypothesis). Then the actual data are analyzed to calcu-
late the extent to which they deviate from a perfect absence
of pattern. If the degree of deviation is statistically unlikely
(usually taken to mean a 5% probability or less), then that
is considered to be good evidence fur the presence of a sig-
nificant pattern in the data. The probabilities are calculated
from standard distributions of the amount of deviation one
would expect to see in random sampling.

Random Forest
One way to reduce the variance of an estimate is to average
together many estimates(Murphy, 2012). For example, we
can train M different trees on different subsets of the data,
chosen randomly with replacement, and then compute the
ensemble

f(x) =

M∑
m=1

1

M
fm(x) (5)

where fm is the m’th tree. This technique is called bagging
(Breiman 1996), which stands for bootstrap aggregating.

Unfortunately, simply re-running the same learning algo-
rithm on different subsets of the data can result in highly
correlated predictors, which limits the amount of variance
reduction that is possible. The technique known as random
forests (Breiman 2001a) tries to decorrelate the base learn-
ers by learning trees based on a randomly chosen subset of
input variables, as well as a randomly chosen subset of data
cases. Such models often have very good predictive accu-
racy (Caruana and Niculescu-Mizil 2006), and have been
widely used in many applications (e.g., for body pose recog-
nition using Microsofts popular kinect sensor (Shotton et al.
2011)).

Bagging is a frequentist concept. It is also possible to
adopt a Bayesian approach to learning trees. In particu-
lar, (Chipman et al. 1998; Denison et al. 1998; Wu et al.
2007) perform approximate inference over the space of trees
(structure and parameters) using MCMC. This reduces the
variance of the predictions. We can also perform Bayesian
inference over the space of ensembles of trees, which tends
to work much better. This is known as Bayesian adaptive
regression trees or BART (Chipman et al. 2010). Note that
the cost of these sampling-based Bayesian methods is com-
parable to the sampling-based random forest method. That
is, both approaches are farily slow to train, but produce high
quality classifiers.

Digit Recognizer
In this paper, to contrast the relative merits of each of the
algorithms, we implement these three approaches and train
the classifiers to recognize handwritten digits.

Data Collection
A standard dataset used in this area is known as MNIST,
which stands for “Modified National Institute of Standards”.
(The term “modified” is used because the images have been
preprocessed to ensure the digits are mostly in the center of
the image.)

The data files train.csv and test.csv contain gray-scale im-
ages of hand-drawn digits, from zero through nine.

Each image is 28 pixels in height and 28 pixels in width,
for a total of 784 pixels in total. Each pixel has a single pixel-
value associated with it, indicating the lightness or darkness
of that pixel, with higher numbers meaning darker. This
pixel-value is an integer between 0 and 255, inclusive.

The training data set, (train.csv), has 785 columns. The
first column, called “label”, is the digit that was drawn by



Figure 1: First 9 test MNIST gray-scale images

the user. The rest of the columns contain the pixel-values of
the associated image.

Each pixel column in the training set has a name like pix-
elx, where x is an integer between 0 and 783, inclusive. To
locate this pixel on the image, suppose that we have decom-
posed x as x = i∗28+j, where i and j are integers between
0 and 27, inclusive. Then pixelx is located on row i and col-
umn j of a 28× 28 matrix, (indexing by zero).

The test data set, (test.csv), is the same as the training
set, except that it does not contain the “label” column. See
Figure 1 for some example images.

K-Nearest Neighbors
To implement K-Nearest Neighbors for digit recognizer, for
each training image, we calculate the distance from the test
image

D =

√∑
pixel

(ci − c′i)2 (6)

Then, we sort all training images to find k “nearest” images.
So that we can calculate the fraction of each class are in this
set using equation 1. At the end, we just need to return the
class with maximum p value. Algorithm 1 is the pseudo-
code for K-Nearest Neighbors.

Algorithm 1: KNN(TrainSet, TestSet,K):
1 foreach image y ∈ TestSet do
2 foreach image x ∈ TrainSet do
3 x.d← dis(x, y);
4 end
5 KNearestSet←K nearest images in TrainSet;
6 foreach image x ∈ KNearestSet do
7 if x.l = c then c.count++;
8 end
9 foreach class c from 0 to 9 do

10 if y.c.cout < c then y.c = c;
11 end
12 end
13 return TestSet

Image Attributes classpixel1 pixel2 ... pixel783 pixel784
X1 76 188 ... 1 199 0
X2 234 18 ... 1 45 8

Table 1: Attributes of images for decision tree

Image Attributes classpixel1 pixel2 ... pixel783 pixel784
X1 10-100 100-200 ... < 10 100-200 0
X2 > 200 100-200 ... < 10 10-100 8

Table 2: Simplified attributes of images for decision tree

Decision Tree
We want a tree that is consistent with the examples and is as
small as possible. Unfortunately, no matter how we measure
size, it is an intractable problem to find the smallest consis-
tent tree: there is no way to efficiently search through the
22

n

trees. With some simple heuristics, however, we can
find a good approximate solution: a small (but not smallest)
consistent tree. Algorithm 2 adopts a greedy divide-and-
conquer strategy: always test the most important attribute
first. This test divides the problem up into smaller subprob-
lems that can then be solved recursively. By “most important
attribute” we mean the one that makes the most difference
to the classification of an example. That way, we hope to
get to the correct classification with a small number of tests,
meaning that all paths in the tree will be short and the tree
as a whole will be shallow.

Intuitively, we want to use catalogues rather than 256 inte-
ger numbers to branch each attribute, because that will make
the tree too big so that it will be more probably overfit. For
example, we can simplify table 1 to table 2 by using the fol-
lowing catalogues.

catalogue1 : 0− 10

catalogue2 : 10− 100

catalogue3 : 100− 200

catalogue4 : 200− 255

In line 7 of Algorithm 2, we choose the attribute that mini-
mizes the remaining information needed

Reminder(A) =
∑

i∈cata

ei
e
H(

c0

ei
,
c1

ei
, ...,

c9

ei
)

=
∑

i∈cata

ei
e
(−
∑
c

c

ei
log

c

ei
)

(7)

Then we branch on that pixel. We keep doing this until no
more examples or pixels and get the tree. After this, we can
use the tree to determine the class for test image.

Random Forest
We implement Random Forest based on Decision Tree ap-
proach. The idea is we train M different trees on random
subsets of the data and attributes and let every tree take a
vote on classification for each test image by using equation 5



Algorithm 2: DTL(examples, attribs, default) re-
turn a decision tree:

1 if example is empty then return default;
2 else if all example have the same classification then
3 return the classification
4 else if attributes is empty then
5 return MODE(examples)
6 else
7 best←CHOOSE-

ATTRIBUTE(attributes,examples);

8 tree←a new decision tree with root test best;
9 foreach value vi of best do

10 examplesi ←{a new decision tree with root
test best};

11 subtree←DTL(examplesi,attrebutes–
best,MODE(examples));

12 add a branch to tree with label vi and subtree
subtree;

13 end
14 return tree
15 end

Analysis
First, We split the training data set into two parts. One part
for training and the other for testing. Second, we learn three
classifiers respectively and do several analysis on each ap-
proach.

K-Nearest Neighbors
In the first experiment on K-Nearest Neighbors, we pick
k = 3 and it turned out to perform very well, with only
0.03 misclassification rate. We still need to do model selec-
tion, means choosing K. As show in Figure 2 we do cross
validation on 5 folds. The best k = 3,with misclassification
rate=0.025.

Here are some of misclassified images as show in Fig-
ure 3. l:8 p:1 means the label of image is 8 but our pre-
diction is 1. We can say most of them are hard to classify.
However, we can also find some characteristic misclassified
images like those “thin” 8 in Figure 4. KNN always predict
them as 1. This might one of the weak point of KNN.

Decision Tree
The first experiment on Decision Tree, we use 5 catalogues
to share the 0-255 value of each feature. The classifier work
with missclassification rate of 0.29, this is so bad.

So then, we try to increase catalogue number. As show
in Figure 5, as the catalogue number increase, the Decision
Tree classifier even performs worse. The result tell us 3 cat-
alogues are enough. However the misclassificaion rate still
bad, which is about 0.2.

Then, we try to do pruning. We can measure the devi-
ation by comparing the actual numbers of each catalogue
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Figure 2: Misclassification rate vs K in a K-nearest neighbor
classifier. On the left, where K is small, the model is com-
plex and hence we overfit. On the right, where K is large,
the model is simple and we underfit. Blue line: training set
(size 38000). Red line: test set (size 4000).

Figure 3: Some of misclassified images by KNN.

Figure 4: Characteristic misclassified images by KNN.
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Figure 5: Misclassification rate vs catalogue number in a
Decision Tree classifier. Blue line: misclassification rate.
Red line: tree node number

examples in each subset, pc with the expected numbers p̂c

p̂c = ec ×
ei
e

(8)

A convenient measure of the total deviation is given by

D =

9∑
i=0

∑
c∈cata

(p−p̂c)
2

p̂c
(9)

So if D is less than some ε, we prune this node. Algorithm 3
is the pseudocode of this approach. When the whole tree is
built, we do pruning bottom up.

As shown in Figure 6, the best ε = 8. But one decision
tree still performs very bad.

Random Forest
The first experiment on Random Forest, we use 20 trees,
4000 random samples, 27 random features, and 3 cata-
logues. We end up with misclassification rate of 0.1435,
which is better than single decision tree.

To improve the performance, we can try different param-
eters: tree number, sample number, features number, and
catalogue number. As shown in Figure 7 8 9 and 10, the best
parameters are 400 trees, 8000 random samples, 80 features,
and 3 catalogues. The best misclassification rate is 0.0633.

Discussion
K-Nearest Neighbors classifier has the advantage that no
training time and no brain on the part of the designer are re-
quired. However, the memory requirement and recognition
time are large: the complete 38000 28 by 28 pixel training
images(about 70 Megabytes) must be available at run time.
As we can see in Algorithm 1, the time complexity of this
approach is O(|train||test||pixel|), when we do cross vali-
dation it takes about 10 hours.

A summary of the performance of our classifiers is shown
in Figure 11. Although K-Nearest Neighbors and Random
Forest both did well on the test set, K-Nearest Neighbors

Algorithm 3: DTLwithPruning(examples, attribs, default)
return a decision tree:

1 if example is empty then return default;
2 else if all example have the same classification then
3 return the classification
4 else if attributes is empty then
5 return MODE(examples)
6 else
7 best←CHOOSE-

ATTRIBUTE(attributes,examples);

8 tree←a new decision tree with root test best;
9 foreach value vi of best do

10 examplesi ←{a new decision tree with root
test best};

11 subtree←DTLwithPruning(examplesi,attrebutes–
best,MODE(examples));

12 add a branch to tree with label vi and subtree
subtree;

13 end
14 best.D← get total deviation(best);
15 return tree
16 end
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Figure 6: Misclassification rate vs pruning epsilon in a De-
cision Tree classifier. On the left,no pruning, the model is
complex and hence we overfit. On the right, pruning too
much, the model is simple and we underfit. Blue line: mis-
classification rate. Red line: tree node number
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Figure 7: Misclassification rate vs catalogues number in a
Random Forest classifier.
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Figure 8: Misclassification rate vs tree number in a Random
Forest classifier.
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Figure 9: Misclassification rate vs feature number in a Ran-
dom Forest classifier.
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Figure 10: Misclassification rate vs sample number in a Ran-
dom Forest classifier.
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Figure 11: Misclassification rate comparison of K-Nearest
Neighbors, Decision tree, and Random Forest classifiers.

is clearly the best, achieving a score of 0.025, followed by
Random Forest at 0.0633.

Future Work

In the future we would like to run the same comparison but
with more experiments. It is clear to see that both the K-
Nearest Neighbors and the Random Forest perform not bad.
I am curious if Random Forest would beat K-Nearest Neigh-
bors given more trees and samples.

Also there are several machine learning approaches that I
would like to try. For example, support vector machine and
neural nets.
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