
Control Algorithms for Real-Time Motion Planning with Dynamic Obstacles

Tianyi Gu

Department of Computer Science
University of New Hampshire

Durham, NH 03824 USA

Abstract

In this paper, we design two control algorithms:
sampling based model–predictive control (SBMPC)
and bisection search based model–predictive control
(BBMPC). The algorithms are implemented as the con-
troller for a real-time planning system in ROS to en-
able a Pioneer robot to move quickly in environments
with dynamic obstacles. The behaviors of both algo-
rithms are demonstrated through straight and curve line
following experiments from simulation and real–world
environments. We also discussed several issues of the
real-time planning system.

Introduction
Our project is a real-time planning system in ROS to en-
able a Pioneer robot to move quickly in environments with
dynamic obstacles. This requires the development and inte-
gration of state-of-the-art technologies in planning, control,
and sensing. The focus of this paper is on the control sub-
system (or “controller”). In the big picture, given the latest
obstacles information and vehicle states, the motion plan-
ner computes an action that can achieve a feasible trajectory
and a temporal goal point within a certain time bound. The
action and the temporal goal are then sent to the controller,
which interfaces directly to the vehicle, and is responsible
for the execution of the motion plan.

The main challenge for autonomous vehicles moving
through dynamic obstacles such as humans and other ve-
hicles is that it often need to do complex online replanning
with high frequency. It is important to ensure all modules
are efficient enough, as on-board computational resources
are typically limited and fast planning rates are often re-
quired. In this paper, we present two algorithms for imple-
menting a model-predictive control. Our first algorithm, a
sampling based model-predictive control (SBMPC), is able
to efficiently find a control that result in a state that is close
to the goal. Our second algorithm, bisection search based
model-predictive control (BBMPC), performs a local search
to systematically find the optimal control that can result in
a state closest to the goal. This paper reports on the design
and implementation of these two controllers, including how
they works in the on-board planning system, for our Pioneer
project. The effectiveness of the controller algorithms and

the system is discussed, based on the experimental results
from both simulation and the Pioneer 3–DX robot.

Related Work
There has been much related work on re-planning algo-
rithms for motion planning with dynamic obstacles. Some of
them are focusing on real-world environment, meaning try-
ing to deploy a system on the robot, while others are work-
ing on simulation. Since our work is built on both of this two
type, we introduce several previous works of each type. We
also introduce several related control algorithms here.

Re-planning algorithms
ARA* (Likhachev, Gordon, and Thrun 2003) is an anytime
A* algorithm that can reuse as much as possible of the re-
sults from previous searches so that it can save consider-
able computational effort. The work is based on the idea of
improving the solution quality by keep decreasing inflation
factors. ARA* speeds up by not re-computing the g value
that have been correctly computed in the previous iterations.
The way to employ ARA* in real-time online planning is to
root the search tree at the goal state and expand the tree to-
ward the robot current state so that one can re-use the search
tree. To plan on-board, it require accurate prediction of the
robot’s future state.

To deal with the issue of moving obstacles, two real-time
search algorithm RTR* and PLRTA* (Cannon, Rose, and
Ruml 2014) incorporate time as part of the state space. RTR*
is an extension of R* (Likhachev and Stentz 2008), and
PLRTA* is an extension of LSS-LRTA* (Koenig and Sun
2009).They made five major changes to transform R* into
RTR*. The modification to LSS-LRTA* is partition g and h
values into static and dynamic portions, and then employ
different learning strategy on each portion.

Multipartite RRT(MP-RRT) (Zucker, Kuffner, and Bran-
icky 2007) is another real-time search algorithm to deal
with dynamic obstacles. It combines the strengths of ERRT,
DRRT and RFF. In each planning iteration, they first clean
the motion tree by remove the invalid tree nodes and save
unconnected subtrees into a stand-by forest. Then a random
state is sampling by biasing by the nearest tree in forest or
the goal. If the new sampled state is in one of the subtree,
then it will try to connect the nearest state on current motion

tree to that sample state by solving a boundry value problem,
else, it will do conventional RRT extend routine.

D* Lite (Koenig and Likhachev 2005) is a fast re-planning
algorithm that builds on LPA* (Koenig, Likhachev, and oth-
ers 2002), which is an incremental heuristic search method
that repeatedly determines shortest paths between two given
vertices as the edge costs of a graph change. Both of the
first and second version of D* Lite searches from the goal
vertex to the start vertex and only update those vertices that
are locally inconsistent in the priority queue, while the sec-
ond version save a lot effort on reordering the priority queue
by maintain lower bounds on the keys of vertices. D* Lite
achieve the same path as (Focussed) D*, but they are algo-
rithmically different.

A Variable Level-Of-Detail(VLOD) (Zickler and Veloso
2010) algorithm ignores far-future dynamic obstacles to
speed up its search. The algorithm is based on RRT (LaValle
and Kuffner 2001). A pre-defined LOD-horizon is set by
user as a time threshold to ignore obstacles. The replan-
ning interval is set by user as well , which depends on the
expected domain uncertainty. A “Hallway” domain and an-
other more complex “Maze” domain are used to test the
VLOD planner.

On-board Motion Planning System
Multi-resolution lattice state space (Likhachev and Ferguson
2009) is used to solve complex dynamically feasible maneu-
vers for autonomous vehicles. The configuration space is
discretized into a multi-resolution lattice state space. Then
the Anytime Dynamic A* algorithm is employed with a
combined heuristic function, consisting of freespace heuris-
tic and 2D heuristic, to search the lattice graph backwards
from the goal configuration towards the current configura-
tion of the vehicle. They test this approach on a real world
vehicle, and the results show that the multi-resolution lattice
is faster than a high-resolution lattice as well as guarantee
the solution quality. However, the anytime algorithm ADA*
does not perform well with dynamic obstacles.

A time–bounded lattice data structure (Kushleyev and
Likhachev 2009) is proposed to ensure the real-time per-
formance of online planning. For each obstacle, they first
compute a time bound that ensure the error of its position
prediction is still within some tolerance. Then the maxi-
mum time bound among all obstacles is used to construct
a lattice graph, in which all states are six–dimensional
(x, y, θ, v, w, t). As soon as a state s has a time stamp
later than the time bound, it is projected onto a 2D grid in
which all states are two-demensional (x, y) for fast search.
A weighted A* is used to search for lattice graph, the heuris-
tic is computed by Dijkstra search in 2D state space. Their
experiments are doing both in simulation and real world
robots.

HDRC3 (Doherty et al. 2015) is an architecture for Un-
manned Aircraft Systems and also can be applied on any
other autonomous robotic systems. It has three main layer:
control layer, reactive layer, and deliberative layer. The mid-
dle ware infrastructure is called DyKnow that is used to cre-
ate and manage the data flow, which is using ROS. The Tem-
poral Action Logic is used for both specification and on-line

monitoring purposes. The collaborative systems is shortly
discussed.

Control Algorithms
The closed-loop RRT (CL-RRT) (Kuwata et al. 2009) ex-
tends the RRT by making use of a low-level controller and
planning over the closed-loop dynamics. The low-level con-
troller takes a lower dimension reference command and runs
a forward simulation using a vehicle model and the con-
troller to compute the predicted state. They employ the pure-
pursuit controller as the steering control as well as PI con-
trol as the speed control. In their application, the controller
is used in two different ways. One is in the closed-loop pre-
diction, and the other is the execution of the motion plan in
real time.

The model predictive controller (Howard et al. 2014) is
a model-based approach to effectively find best control ac-
tion that take the robot to the goal. This approach is particu-
larly important as the robot move into unstructured domains
where the mapping between control inputs and robot mo-
tion can be nontrivial. As it is difficult to generate trajecto-
ries by inverting the nonlinear, coupled equations of robot
motion with limited computational resources, efficient sam-
pling techniques must be developed to achieve the real-time
performance.

Another choice is bisection search (Press et al. 1982),
which is a simple local search approach that can quickly lo-
cate a local optimal solution.

Implementation of the Controller
The big picture is that in each search–execution iteration, the
online real–time planner computes an action that can achieve
a feasible trajectory and a temporal goal point within a cer-
tain time bound, given the motion primitives. The action and
the temporal goal are then sent to the controller. The con-
troller then generate a sequence of control command (lin-
ear velocity v and angular velocity w) by forward simula-
tion following the model of the robot, so that the robot can
achieve the temporary goal as much as possible. In this sec-
tion, we explain how we design the motion primitives and
the detail of the model predictive controller.

Motion Primitives
The motion primitives are defined here to be the actions that
connect states in the state space graph and that are feasible
motions. It is also the reference information that the planner
send to the controller, along with the temporal goal state.

First, we define 3 linear accelerations to apply: FA(fast
acceleration), SA(slow acceleration), H(hold current speed),
FD(fast deceleration), SD(slow deceleration). Second, we
define 5 angular acceleration to apply: HL(Hard Left),
SL(Soft Left) and HR(Hard Right), SR(Soft Right) and
N(No turn).Therefore, we have totally 25 motion primitives
for each state. Here, we give a demonstration of how to get
the control parameters ω and v. Let’s say the robot is cur-
rently in a state with the linear velocity vc and angular ve-
locity ωc, and we want to get the two parameters of the mo-
tion primitive that consist of linear acceleration A along with

SL π/8 rad/s2

SR −π/8 rad/s2

HL π/4 rad/s2

HR −π/4 rad/s2

N 0 rad/s2

FA 300 mm/s2

SA 150 mm/s2

H 0 mm/s2

FD −300 mm/s2

SD −150 mm/s2

δt 250 millisecond

Figure 1: Parameters for motion primitives generation.

Figure 2: The example of the motion primitives. The red dots
are the states; the black lines/curves are trajectories between
states.

angular acceleration SL. To get the velocity v, we need one
additional parameters vmax (which is the maximum velocity
of the robot, for pioneer, it is 1.2m/s) . Then we can get v
by the following formula.

v = min(vc + 300× δt, vmax)

We can get angular velocity by the following formula.

ω = ωc + (π/8)× δt
Analogously, we then can get the control parameters of all
other motion primitives. With the ω and v on hand, we now
can simulate the position of the robot in next state by ap-
plying the following formula. Figure 2 gives a example of
the simulated states(red dots) along with its motion primi-
tives(black curve).

ẋ = v cos Φ

ẏ = v sin Φ

Φ̇ = ω

In our experiments, We find the rotation speed of Pioneer is
100◦/s; this will be the limit of the hard turns. Because of
the safety reason, we forbid the hard-turn motion primitive
in high speed states.

Model Predictive Controller
To achieve the real–time performance, we employ the
robot’s motion model to predict the end states given different
control inputs. Then we search for the best control input by
comparing the distance between all end states and goal state.
Finally, we publish this best control to the robot. In the rest
of this section, we first describe our design of distance func-
tion. Afterward, we explain the details of two approaches
that we implement the model predictive controller.

Distance Function
In our application, the robot states are designed as five di-
mensions (x, y, θ, s, t), where x and y are the position of
the robot , θ is the heading angle, s is the speed, and t is
the associated time stamp. To measure the distance between
two five-dimension states, we need to normalize all the di-
mensions. Therefore, we define three unit quantities for dis-
tance, heading, and speed respectively. Every unit is equally
important for the measurement. For example, in our appli-
cation, we define 1cm as one unit distance, 3◦ as one unit
heading, 0.15m/s as one unit speed. Therefore, 1cm offset
on position is as important as 3◦ deflection on heading or
0.15m/s deviation on speed. Now we can measure the dis-
tance between two states–that have the same time stamp–by
the following equation. Given two states (x1, y1, θ1, s1, t1)
and (x2, y2, θ2, s2, t2) where t1 = t2, the distance d then
can be computed by:

d =

√
(x1 − x2)2 + (y1 − y2)2

unitdis
+
|θ1 − θ2|
unith

+
|s1 − s2|
units

For instance, in our application, two states with 6cm offset
on position and 6◦ deflection on heading result in 8 units
distance.

Sampling Based Approach
To reduce the search space for the planner, we discretize
the control space into several motion primitives. However,
to best achieve the goal state, the controller should be able
to take any action in the continuous feasible control space
(given the associated motion primitive as a reference con-
trol). As it is difficult to find the optimal control among the
huge continuous control space by applying the nonlinear,
coupled equations of robot motion with limited computa-
tional resources and time, we investigate two approaches to
achieve the real–time performance in our application: sam-
pling based approach and local search based approach. In
the first case, we use random sampling techniques to sample
a great amount of controls (200 in our application) among
all the feasible controls and then choose the best one.

Figure 3 shows the main steps in the sampling based
model–predictive control (SBMPC). SBMPC first generate
random controls by reference control (line 1) (in the exper-
iment section below, we employ both normal and uniform
distribution randomizing technique in this step), initialize
best control as none (line 2), and initialize best distance as
∞ (line 3), forward simulate the sample control (line 6),
compute distance between the end state and the goal state
(line 7). Line 8– 11 ensure the best control can be selected

SBMPC(refAction, start, goal)
1: controls←RandomSampling(refAction)
2: cbest ← none
3: d←∞
4: δt← goal.t− start.t
5: for c in controls do
6: end←Propagate(c, start, δt)
7: dcur ←Distance(end, goal)
8: if dcur < d then
9: d← dcur
10: cbest ← c
11: end if
12: end for

Figure 3: Pseudocode for sampling based model predictive
control.

and afterward published to the robot.

Bisection Search Based Approach
In previous subsection, we develop SBMPC by employing
random sampling techniques to achieve a good control with
respecting to the efficiency. In this subsection, we pursue
another approach: bisection search based model–predictive
control (BBMPC), which adapt a local search algorithm, bi-
section search, to the problem of searching for a good con-
trol among all feasible controls.

In our implementation, a control is a two–dimension vec-
tor that consist of linear velocity υ and angular velocity
ω. Given two initial controls, we then use bisection search
move along the first dimension to its optimum, then from
there along the second dimension to its optimum, cycling
through both of the directions as many times as necessary,
until the distance function stops decreasing.

Figure 4 shows how we do bisection search on both linear
velocity and angular velocity. We first start from two initial
controls; one is the reference control that given by the plan-
ner; another one is the mean of reference control and the
robot’s maximum velocities (line 13- 16). Then we do bi-
section search one dimension a time (line 23- 31), until the
distance function stop decreasing (line 34- 39).

Figure 5 and Figure 6 are the two main steps of bisec-
tion search algorithm. Given two initial value, the first step
is to bracket a local minimum: (1) try guess cm in the middle
(line 41); (2) if cl is the smallest, move the right to middle
(line 46), move middle to left (line 47) and move left to fur-
ther left by original r − l to double the bracket range; (3) if
cr is the smallest, shift all the three points right (line 67- 69);
(4) if cm is the smallest, local minimum is between left and
right point.

The second step is to refine the estimate: (1) try lm be-
tween left and middle (line 57); (2) if lm is smaller than
middle, shift right to middle and shift middle to lm (line 62-
65); (3) otherwise trymr between middle and right (line 58);
(4) ifmr is smaller than middle, shift left to middle and shift
middle to mr; (5) otherwise middle is the smallest, we shift
left to lm and right to mr; (6) we keep refine until range be-

BBMPC(refAction, start, goal, υmax, ωmax,
minRange,minDeltaDis)

13: υl ← refAction.υ
14: υr ← (refAction.υ + υmax)/2
15: ωl ← refAction.ω
16: ωr ← (refAction.ω + ωmax)/2
17: υm ← none
18: ωm ← none
19: cbest ← none
20: d←∞
21: optimize υ ←true
22: while true do
23: if optimize υ then
24: υl, υm, υr ←Bracket(υl, υr, start, goal)
25: υl, υm, υr ←Refine(υl, υm, υr, start, goal,

minRange, minDeltaDis)
26: optimize υ ←false
27: else
28: ωl, ωm, ωr ←Bracket(ωl, ωr, start, goal)
29: ωl, ωm, ωr ←Refine(ωl, ωm, ωr, start, goal,

minRange, minDeltaDis)
30: optimize υ ←true
31: end if
32: ccur ← (υm, ωm)
33: dcur ←PropagateAndDistance(ccur, start, goal)
34: if dcur < d then
35: d← dcur
36: cbest ← ccur
37: else
38: break
39: end if
40: end while

Figure 4: Pseudocode for bisection search based model pre-
dictive control.

tween left and right is small enough or the improvement is
not significant enough (line 56).

Experiments
This section presents the application results of model–
predictive control algorithms on a Pioneer 3-DX robot (Fig-
ure 7), both in simulation and real–world environments. We
use the differential drive model (described in section 3) to
predict the robot’s future position. The control inputs to this
system are the linear velocity υ and angular velocity ω.

Figure 8 shows a snapshot of the hallway environment
and the air view in Rviz (a visualization tool). The robot is
in the lower middle of the figure. The purple line represent
the plan.

The controller module use the Robot Operating System
(ROS) to communicate with the robot hardware and other
modules. In each plan–execute iteration, the planner send a
reference motion to the executive (a central module to coor-
dinate all the modules); the executive then project the robot
current state to a target state by simulate the reference mo-
tion and send the target state to the controller along with
the reference motion. In our application, the time duration T

Bracket(cl, cr, start, goal)
41: cm ← (cl + cr)/2
42: dl ←PropagateAndDistance(cl, start, goal)
43: dm ←PropagateAndDistance(cm, start, goal)
44: dr ←PropagateAndDistance(cr, start, goal)
45: if dl is the smallest then
46: cr ← cm
47: cm ← cl
48: cl ← 2cl − cr
49: else if dr is the smallest then
50: cl ← cm
51: cm ← cr
52: cr ← 2cr − cl
53: end if
54: return cl, cm, cr

Figure 5: Pseudocode for bracket a local minimum control
in one dimension.

of the plan–execute is 250 millisecond. Figure 9 shows the
main loop how controller works. When it receives an target
state, the controller start to run at 60Hz and keep searching
(line 79) and publishing (line 80) the best control to the robot
until the time duration is end (line 77). If it does not receive
a new target state when the time duration is end (line 76), it
will trigger the estop to emergency stop the robot (line 83).
In line 78, the controller listen to the amcl and rosaria top-
ics, which are published by the robot’s hardware platform, to
update the robot’s position, heading and velocity. Figure 10
shows the architecture that the controller communicate with
other modules.

Straight Line Results
The following subsections present results from simulation
and real–world experiments. In simulation, the system was
running on two quad-core 3.5GHz Intel Xeon processors.
In real–world experiments, the Pioneer robot is connect to
a laptop with a quad-core 3.7GHz Intel processor. In both
environments, the controller takes one core and runs at ap-
proximately 60Hz.

We first test SBMCP and BBMCP to follow a sequence
of straight line goal states. To make a simple test case, we
turn off the planner and hard code the straight line plan in
the executive. For SBMCP, we test with random sampling
both from uniform and Gaussian distribution. The range for
uniform random sampling is [0, 3] for υ and [−1.7, 1.7] for
ω. This setting enable the robot can choose any control com-
mand within its limit. The mean for Gaussian random sam-
pling is the reference motion, and we set the standard devi-
ation as 0.1 m/s for υ and 0.01 radius/s for omega. Fig-
ure 11 shows how these three control algorithm behave. The
green line is a path of sequence of goal states. The red line
is the trajectory of the robot. As we can see, SBMPC with
Gaussian random sampling performs best, SBMPC with uni-
form sampling is the worst, and BBMPC is in between. Fig-
ure 12 gives the distance from the end state to the goal state,
for every published control from the first to last.

The reason uniform sampling performs bad is because it

Refine(cl, cm, cr, start, goal,minRange,minDeltaDis)
55: δd←∞
56: while |cl − cr| > minRange and

δd > minDeltaDis do
57: clm ← (cl + cm)/2
58: cmr ← (cm + cr)/2
59: dlm ←PropagateAndDistance(clm, start, goal)
60: dmr ←PropagateAndDistance(cmr, start, goal)
61: dm ←PropagateAndDistance(cm, start, goal)
62: if dlm < dm then
63: cr ← cm
64: cm ← clm
65: δd← dl − dlm
66: else if dmr < dm then
67: cl ← cm
68: cm ← cmr

69: δd← dm − dmr

70: else
71: cl ← clm
72: cr ← cmr

73: end if
74: end while
75: return cl, cm, cr

Figure 6: Pseudocode for refine estimate a local minimum
control in one dimension.

Figure 7: Pioneer 3-DX robot.

get wide spread samples, a lot of which are useless controls.
While Gaussian sampling technique can focus on controls
around the reference motion given by the planner. BBMPC
is also able to quickly locate a good control and ignore use-
less controls. Notice that, in this test, we continually pub-
lish the target states without checking the current state of
the robot. This means even if the robot is on a wrong direc-
tion or far away from the position it should be, it will still
receive a target state in the original plan. Considering this,
the error will be boosted after the robot take the first wrong
control.

We also test straight line following in the real–world en-
vironment. Figure 13 shows the behaviors of two sampling
based model predictive controller. Here both target path and
robot’s trajectory are painted in purple. As we can see, the
uniform sampling approach can’t follow the line can hit the
wall but Gaussian sampling works well.

Figure 8: Lane following in the hallway environment.

Controller()
76: while received a new target state do
77: while time duration is not end do
78: update current state of robot
79: run SBMCP or BBMCP to find the best control
80: publish the best control to the robot
81: end while
82: end while
83: trigger estop

Figure 9: Pseudocode for controller main steps.

Curved Path Results
To test curve line following scenarios in the simulation en-
vironment, we set the start position at bottom left of the map
and goal position at upper right. The dark gray areas in Fig-
ure 14 are walls; the robot can only move in light gray areas.
The green line is the path published by executive module
that the robot need to follow, and the red line is the trajec-
tory of the robot. All three algorithm follow closely with
the target curve and take the robot to the goal position. Fig-
ure 15 gives the distance measurement from the end state to
the goal state, for every published control from the first to
last. All of the three algorithms keep their distance function
value at a low level (about 10 units).

The reason all three algorithm behave better in curve line
test is that the projection step in executive always update the
robot’s current position to the planner, so it can always re–
plan from a correct position and gives a close target to the
controller, which makes controller easy to follow it.

We also do curve–line–following test in the real–world
environment. Figure 16 shows the behaviors of the sampling
based model predictive controller. Here both target path and
robot’s trajectory are painted in purple. As we can see, the
controller is able to follow the curve closely.

Discussion
The ultimate purpose of this project is to to enable a Pioneer
robot to move quickly in environments with dynamic ob-
stacles. However, as we do the integral test – together with

Figure 10: The architecture of the controller module.

SBMPC(uniform):

SBMPC(Gaussian):

BBMPC:

Figure 11: Controller behavior when following a sequence
of straight line target.

planning , control, and sensing – several issues emerge and
fail the robot to move as what it suppose to do. For exam-
ple, both mission in Figure 17 are failed; the robot move too
close to the wall so that the estop was triggered.

Low AMCL Rate

In the bottom case in Figure 17, we turn off the projection
function in the executive, which make the controller to fol-
low a one-shot plan. The mission is failed; the controller is
not able to bring the robot back to the plan path when it take
a wrong action and end up with run toward the wall. We find
out that the robot is heavily rely on the executive to update
the robot’s position to the planner. However this projection
function is designed not to correct the controller’s error but
for dynamic obstacles.

By looking into the controller log file, we find the con-
troller published some extreme turning and velocity control.
It turns out this is cause by incorrect state data that received
from AMCL. Although AMCL is run at 60Hz, but the data is
actually updated at 10Hz. By further investigate, we find our
AMCL rate is limited by the laser rate. Therefore we speed
up the laser rate to 60Hz and the system works better in the
simulation. However, we are still not able to make the laser
faster for the real robot. Figure 18 shows the data collected
as the robot is running. We can see the heading data is not
continually updated in real–world experiment.

Figure 12: Distance from the end state to the goal state in
straight line following test.

SBMPC(uniform):

SBMPC(Gaussian):

Figure 13: Controller behavior when following a sequence
of straight line target in real–world environment.

Under and Over Shooting
The controller also face under and over shooting problems
when it try to follow a target state. At the start stage of the
project, the robot was always behind the given targets, espe-
cially at the beginning that the robot suppose start to move,
but it didn’t. It turns out a parameter named “latch” in the
ROS publisher need to be set as true to take the robot to
move with only issue one control command. Otherwise it
won’t move until it receives a sequence of commands.

The over shooting issue is the scenario that the robot is
on or over the target state earlier than ETA. This can cause
the robot to take a random control. For example, if the robot
is on the target state with some linear velocity, then the best
end state is the not to move but to stay in its position. How-
ever, the robot has inertia, so it can’t stop immediately. Then
according to the distance function, a turn–and–slow–down
control could result in a same distance as a slow–down con-
trol. So the algorithm may result in any “best” control that
has the same distance function value.

We now fix the over shooting issue by publish a stop con-
trol command when the current state is too close to the target
state. It prevent the robot to choose a random “best” control,

SBMPC(uniform):

SBMPC(Gaussian):

BBMPC:

Figure 14: Controller behavior when following a sequence
of curve line target.

Figure 15: The distance from the end state to the goal state
in curve line following test

Figure 16: Controller behavior when following a sequence
of curve line target in real–world environment

but this still not perfectly solve the problem. We are now
considering another solution that make the planner send two
target states to the controller so that it has more information
to support its reasoning about what to do in over shooting
scenario.

Inaccurate Robot Motion Model
As the project going, we find out that the robot is not able to
closely follow the original plan path. In Figure 19, the blue
line in the left is the original plan for that test, and the red
line in the right is the robot’s trajectory; we can clearly see
they are not the same. Therefore, we design several exper-
iments to test how accurate is the robot motion model. We
publish a single control to the robot for a certain time pe-
riod: 1 second or 5 seconds, and see how the robot achieve
that command. Figure 20 shows the results in simulation. As
we increase the linear velocity value, the robot lose its abil-
ity to turn. This is quite different from our robot model. We
also find out the maximum angular acceleration is about 2.4

Figure 17: Two fail cases. Top run in simulation. Bottom run
in real–world.

radius/s , the maximum linear acceleration is 0.65 m/s2
and the maximum linear velocity is about 3.0 m/s. These
parameters are also different from what we get from the
manual. We also do the same test for the real–world robot.
Figure 21 shows the results. It turns out the configuration
of the real robot is quite different from the simulation one.
It still get quite good turning performance even it received
a linear velocity command. The maximum angular accelera-
tion is about 1.5 radius/s, the maximum linear acceleration
is about 0.55 m/s2 and the maximum velocity is 0.75 m/s.
This explain why the robot can’t closely follow the plan; the
reason is that the target state given by the planner is quite
above the ability of the robot.

Conclusion

In this paper, we design two control algorithms: sampling
based model–predictive control and bisection search based
model–predictive control. The algorithms are implemented
as the controller for a Pioneer robot. The behaviors of both
algorithms are demonstrated through straight line and curve
following experiments from simulation and real–world envi-
ronments. We also discussed several issues of the real–time
planning system.

Figure 18: Angular velocity and heading data. Top run in
simulation ,and bottom run in real–world.

Acknowledgments
The authors would thank the members of the UNH AI Group
and CS980 for their insightful comments.

References
[Cannon, Rose, and Ruml 2014] Cannon, J.; Rose, K.; and
Ruml, W. 2014. Real-time heuristic search for mo-
tion planning with dynamic obstacles. AI Communications
27(4):345–362.

[Doherty et al. 2015] Doherty, P.; Kvarnstrom, J.; Wzorek,
M.; Rudol, P.; Heintz, F.; and Conte, G. 2015. Hdrc3:
A distributed hybriddeliberative/reactive architecture for un-
manned aircraft systems. In Handbook of Unmanned Aerial
Vehicles. Springer. 849–952.

[Howard et al. 2014] Howard, T. M.; Pivtoraiko, M.; Knep-
per, R. A.; and Kelly, A. 2014. Model-predictive motion
planning: Several key developments for autonomous mobile
robots. IEEE Robotics & Automation Magazine 21(1):64–
73.

[Koenig and Likhachev 2005] Koenig, S., and Likhachev, M.

Figure 19: Comparison between the original plan path and
the robot’s trajectory.

control end state
υ ω t h ω υ
0 1.7 1 1.04 1.97 -0.06
0.3 1.7 1 0.74 1.89 0.31
0.6 1.7 1 0.11 1.03 0.49
3 1.7 1 -0.01 -0.01 0.63
0 2.0 1 1.02 2.33 -0.03
0 5.3 1 0.96 2.1 -0.17
0 10 1 0.7 2.21 -0.1
0 20 1 1.1 2.39 -0.05
0.3 0 1 -0.01 -0.02 0.35
0.6 0 1 -0.01 0.01 0.65
1.5 0 1 -0.01 -0.01 0.63
3 0 1 -0.01 0.00 0.65
3 0 5 0.71 0.58 3.04
1.5 0 5 0.21 0.03 1.81

Figure 20: Result of single control test in simulation.

2005. Fast replanning for navigation in unknown terrain.
IEEE Transactions on Robotics 21(3):354–363.

[Koenig and Sun 2009] Koenig, S., and Sun, X. 2009. Com-
paring real-time and incremental heuristic search for real-
time situated agents. Autonomous Agents and Multi-Agent
Systems 18(3):313–341.

[Koenig, Likhachev, and others 2002] Koenig, S.;
Likhachev, M.; et al. 2002. Incremental a*. Advances in
neural information processing systems 2:1539–1546.

[Kushleyev and Likhachev 2009] Kushleyev, A., and
Likhachev, M. 2009. Time-bounded lattice for efficient
planning in dynamic environments. In Robotics and Au-
tomation, 2009. ICRA’09. IEEE International Conference
on, 1662–1668. IEEE.

[Kuwata et al. 2009] Kuwata, Y.; Teo, J.; Fiore, G.; Kara-
man, S.; Frazzoli, E.; and How, J. P. 2009. Real-time mo-
tion planning with applications to autonomous urban driv-
ing. IEEE Transactions on Control Systems Technology
17(5):1105–1118.

[LaValle and Kuffner 2001] LaValle, S. M., and Kuffner, J. J.
2001. Randomized kinodynamic planning. The Interna-
tional Journal of Robotics Research 20(5):378–400.

[Likhachev and Ferguson 2009] Likhachev, M., and Fergu-
son, D. 2009. Planning long dynamically feasible maneu-
vers for autonomous vehicles. The International Journal of
Robotics Research 28(8):933–945.

control end state
υ ω t h ω υ
0 1.7 1 0.48 1.57 0
0.3 1.7 1 0.43 1.5 0.3
0.6 1.7 1 0.47 1.54 0.5
3 1.7 1 0.11 1.64 0.5
0 2.0 1 0.36 1.46 0
0 5.3 1 0.47 1.45 0
0 10 1 0.51 1.47 0
0 20 1 0.49 1.2 0
0.3 0 1 0 -0.02 0.3
0.6 0 1 0 -0.01 0.53
1.5 0 1 0 0.01 0.54
3 0 1 0 0 0.50
3 0 5 0 0.02 0.75

Figure 21: Result of single control test in real–world.

[Likhachev and Stentz 2008] Likhachev, M., and Stentz, A.
2008. R* search. In Proceedings of the 23rd National
Conference on Artificial Intelligence, volume 1, 344–350.
AAAI.

[Likhachev, Gordon, and Thrun 2003] Likhachev, M.; Gor-
don, G. J.; and Thrun, S. 2003. Ara*: Anytime a* with
provable bounds on sub-optimality. In NIPS, 767–774.

[Press et al. 1982] Press, W. H.; Teukolsky, S. A.; Vetterling,
W. T.; and Flannery, B. P. 1982. Numerical recipes in C,
volume 2. Cambridge Univ Press.

[Zickler and Veloso 2010] Zickler, S., and Veloso, M. M.
2010. Variable level-of-detail motion planning in environ-
ments with poorly predictable bodies. In ECAI, 189–194.

[Zucker, Kuffner, and Branicky 2007] Zucker, M.; Kuffner,
J.; and Branicky, M. 2007. Multipartite rrts for rapid replan-
ning in dynamic environments. In Robotics and Automation,
2007 IEEE International Conference on, 1603–1609. IEEE.

	Introduction
	Related Work
	Re-planning algorithms
	On-board Motion Planning System
	Control Algorithms

	Implementation of the Controller
	Motion Primitives
	Model Predictive Controller
	Distance Function
	Sampling Based Approach
	Bisection Search Based Approach

	Experiments
	Straight Line Results
	Curved Path Results

	Discussion
	Low AMCL Rate
	Under and Over Shooting
	Inaccurate Robot Motion Model

	Conclusion

