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Abstract 

One issue of container terminal operation planning is quay 
crane scheduling problem (QCSP). The number of time-
conflict-tasks for yard cranes (YC) in yard operation is con-
sidered as one of the important measures for the evaluation 
of the level of fluency for quay crane scheduling by terminal 
experts. In this project, an MDP  model for QCSP will is 
developed. A UCT algorithm is designed to solve the model. 
Several numerical tests will be conducted to show the per-
formance of the proposed approach. 

Introduction   

Since the introduction of the container in April 1956, when 
Malcolm McLean moved fifty-eight 35 foot containers 
from Newark to Houston by a refitted oil tanker, container 
flows have increased continuously. Annually, about 108 
million cargo containers are transported through seaports 
around the world, constituting the most critical component 
of global trade. Between 1990 and 2015, the total number 
of full containers shipped internationally is expected to 
grow from 28.7 million to 177.6 million (United Nations: 
ESCAP, 2007). A simple calculation shows that there are 
enough containers on the planet to build more than two 8-
foot-high walls around the equator (Taggart, 1999). 

Containerization has become the main driver for inter-
modal freight transport, which involves the transportation 
of freight in containers of standard dimensions (20 ft 
equivalent unit (1 TEU), 40 ft (2 TEU), 45 ft (high-cube)), 
using multiple modes of transportation such as ships, 
trucks, trains, or barges without any handling of the freight 
itself when changing modes (Crainic and Kim, 2007). 
Bundling freight in containers reduces cargo handling, and 
thereby improves security, reduces damages and losses, 
and allows freight to be transported faster (Agerschou et al., 
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1983). In the chain of intercontinental transport, container 
terminals are of special importance since all containers 
pass through at least one of them during their drayage. 
Container terminals are the nodes where different modali-
ties meet to transport containers. 

Seaport container terminals are essential nodes in sea 
cargo transportation networks. The marine container indus-
try has grown dramatically in the last three decades, and 
container transportation has become a predominant mode 
of inter-continental cargo traffic. Container terminals, 
which are multi-modal interfaces that connect sea transpor-
tation with land transport, have an important role. To ex-
ploit economies of scale, the size of container ships has 
significantly increased during the last few decades. A large 
container ship typically requires the lifting of thousands of 
containers at the terminal during one call. Since running a 
container ship involves a major capital investment and sig-
nificant daily operating costs, customer service has become 
the principal issue at container terminals. More container 
terminals are seeking to improve their throughput and re-
duce the turnaround time of vessels. As such, the opera-
tional efficiency of container terminals in handling con-
tainers passing through them plays a critical role in a glob-
alized world economy. Many models and algorithms have 
been developed to address various decision problems in 
container terminals to help improve operational efficiency. 
One issue of container terminal operation planning is quay 
crane scheduling problem (QCSP). The number of time-
conflict-tasks for yard cranes (YC) in yard operation is 
considered as one of the important measures for the eval-
uation of the level of fluency for quay crane scheduling by 
terminal experts.  

This paper present an MDP based approach to solve the 
Quay Crane Scheduling Problem under Uncertainty. Our 
reasons for choosing MDP based approach as a solution 
approach are as follows: Firstly, because of the complexity 
of the problem, we can imagine that the QCSP model will 



be a NP-hard problem. It is deemed unable to obtain opti-
mal solutions for large-scale problems. Hence, heuristic 
algorithms are wildly used to obtain near-optimal solutions 
efficiently. However, because of the numerous constraints 
with high degree of irregularity, it is difficult to evaluate a 
scheduling scheme in the process of heuristic algorithms. 
Secondly, today it is widely observable by operators in real 
world container terminal that it is better to generate quay 
scheduling plan before generate ship stowage plan. Be-
cause if people plan for container vessel location without 
the information of QC working sequence, a lot of good 
scheduling chance will be kill. But, if we want to generate 
QC scheduling sequence without stowage plan, uncertainty 
is difficult to tackle by the analytical model alone. Thirdly, 
in practice, how to schedule QC according to real-time 
condition is important. We can use an online MDP solver 
to handle this problem.  Each time after all QC performs an 
action, the yard response (as indicated by its new state) is 
used for planning next action. The objective is to develop a 
decision-making policy for selecting the appropriate action 
rule for each QC. By this approach, the optimal moves for 
QCs can be obtained. In this project, an MDP  model for 
QCSP is developed. A UCT algorithm is designed to solve 
the model. Several numerical tests are conducted to show 
the performance of this approach. 

The remainder of the paper is organized as follows. We 
first provide background on quay crane scheduling prob-
lem as well as our approach which is based on Markov 
decision processes (MDPs) and MDPs solver algorithms. 
We then discuss our MDP based approach for solving quay 
crane scheduling problem under uncertainty. In section 4, 
we describe our experimental results, showing that this 
approach can solve both small size problem and large size 
problem. Finally, we supply an overview of the related 
work on QCSP and then conclude.  

Background 

Quay Crane Scheduling Problem 

Container handling equipment includes quay cranes (QCs), 
yard cranes (YCs), and yard trucks (YTs). These systems 
are shown in Figures 1a–c, and are used to transship con-
tainers from ships to barges, trucks and trains. Sea contain-
er terminals are divided into several areas such as seaside, 
landside, stacking, and internal transport areas that cater to 
seaside and landside operations. At a container terminal, 
QCs load and unload containers from ships berthed along 
the quay at the seaside. QCs pick up or drop off containers 
on YTs which transport containers from the seaside to the 
stacking area where YCs take over. The typical work flow 
(Figure 2) during a loading operation for container depar-
ture that are retrieved from the yard and loaded to a vessel  

(a) QC (b) YC 

 

(c) YT 

Figure 1: A top view of a container terminal and material 
handling equipment 

(YV), is as follows. One YC (yard crane) picks up a con-
tainer from a container block and loads it onto an YT (yard 
truck). The YT then transports the container to a QC (quay 
crane), which loads the container onto the vessel. The un-
loading operation for arrival containers is the reverse of the 
foregoing: a container is unloaded from a vessel to the yard 
(VY). 

Seaside operations planning consists of ship berthing 
operations (berth planning and quay crane scheduling), and 
loading and unloading of containers onto ships. Further, 
the stowage planning where the sequence of loading and 
unloading containers in a ship is optimized plays a critical 
role in the seaside operations planning. 

In container terminals, the principal objective of termi-
nal operators is to minimize the duration of time for which 
a vessel stays at the terminal. Short ship sojourn times min-
imize the risk of violating the ship’s time window. It also 
allows negotiating better time slot lengths with the ship 
liners. The prime objective of ship liners is to have the ship 
sailing as much as possible as berthing time is considered 
as cost. The order in which containers are unloaded and 
loaded by each QC can significantly alter the handling time 
of a vessel. Thus, optimal sequencing of tasks performed 
by each QC is necessary. This problem is widely known as 
the quay crane scheduling problem (QCSP). In terminal 
operations, QCs are typically the most constrained re-
sources. Hence, optimal schedules can maximize through-
put, and minimize ship handling time (ship make span). 
Several constraints need to be satisfied during the schedule 
generation process, such as preventing crane crossovers 



YV
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Figure 2: Typical work flow at a container terminal 

(structural constraint imposed on cranes and crane trajecto-
ry), maintaining a minimum distance between cranes 
(neighborhood constraint), time separation of containers 
that need to be stacked in the same location (job separation 
constraint), and ensuring that unloading transactions within 
a ship bay precede loading transactions (precedence con-
straint defined by the stowage plan). Multiple optimization 
formulations have been developed with variations in task 
attributes (single or multiple bays), crane attributes (initial 
and final positions of the cranes, operational time win-
dows), and interference attributes. 

Markov decision processes 

To generate quay crane scheduling plan without detail ship 
stowage plan, we choose to use Markvo Decision Process-
es (MDPs) as the general framework. MDPs are a common 
method for modeling sequential decision-making with sto-
chastic actions. We generate quay crane scheduling policy 
for an MDP through sampling-based techniques.  

A finite discrete-time fully observable MDP is a tuple 
<S, A, T, R>, where: 
 S, a finite set of all possible states of the system; 
 A, a finite set of all actions an agent can take; 
 T, a transition function, a mapping specifying the proba-

bility T(s1,a,s2) of going to state s2 if action a is exe-
cuted when the agent is in state s1. 

 R, a reward function that gives a finite numeric reward 
value R(s,a) obtained when the system take action a 
in state s. 

An MDP unfolds over a series of steps. At each step, the 
agent observes the current state, s, chooses an action, a, 
and then receives an immediate reward that depends on the 
state and action, R(s,a). The agent begins in the initial state 
s0, which is assumed to be known. The state transitions 
according to the distribution P as given above and the pro-
cess continues. The goal is to find a policy, which is a 
mapping, π, from states to actions, that maximizes the sum 
of rewards over the steps of the problem. In this paper, we 
consider the finite horizon problem which unfolds over a 
finite number of steps.  

Algorithms to solve MDP 

Value iteration 
To find the optimal policy π we will compute the value 
vector U. For each state s S , U(s) is the expected cost 
of reaching the target state, using the best possible se-
quence of actions starting at state s. 

We can start from an initial value vector U0(s) = 0 for all 
s S . Then the update step is 
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In other words, we maximize the sum of the local reward 
of taking some action, along with the expected reward 
from the possible new states. The policy is updated at each 
step by  
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The value iteration algorithm is guaranteed to converge. 
We can also apply a discounting factor γ to reflect the 

fact that rewards incurred in the future are worth less than 
ones incurred in the present. If 0 1    then the value 
iteration update is simply 
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Real-time Dynamic Programming 
RTDP is a simple DP algorithm that involves a sequence of 
trials or runs, each starting in the initial state s0 and ending 
in a goal state. Each RTDP trial is the result of simulating 
the greedy policy πV while updating the values V(s) using 
(4) over the states s that are visited.  
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Thus, RTDP is an asynchronous value iteration algo-
rithm in which a single state is selected for update in each 
iteration. This state corresponds to the state visited by the 
simulation where successor states are selected with their 
corresponding probability. This combination is powerful, 
and makes RTDP different than pure greedy search and 
general asynchronous value iteration.  

Note that unlike asynchronous value iteration, in RTDP 
there is no requirement that all states be updated infinitely 
often. Indeed, some states may not be updated at all. On 
the other hand, the proof of optimality lies in the fact that 
the relevant states will be so updated. 
 The convergence of RTDP is asymptotic, and indeed, 
the number of trials before convergence is not bounded 
(e.g., low probability transitions are taken eventually but 
there is always a positive probability they will not be taken 
after any arbitrarily large number of steps). Thus for prac-
tical reasons, like for value iteration, we define the termi-



nation of RTDP in terms of a given bound  0    on the 
residuals. 

UCT: Upper Confidence bounds on Trees 
Solving an MDP system using value iteration can become 
computationally intensive on large examples because each 
update step necessarily reads and changes every element of 
the value and policy vectors. 
 An alternative approach is to use Monte Carlo planning. 
The algorithm alternates randomly between trying new 
actions at each state (in order to search for better policies) 
or using the current best policy to improve the estimate of 
the policy. The policy vector π is not explicitly computed. 
Instead we have the state-action vector Q(s, a), the average 
seen reward of taking action a when in state s.  
 The UCT algorithm just changes the way that actions are 
selected during a rollout. The algorithm used is called Up-
per Confidence Bounds (UCB). Imagine that we have K 
gambling machines with arbitrary reward distributions 
P1,..., PK. At each time step we can play any machine j that 
we choose, and receive a reward according to the distribu-
tion Pj. We would like a strategy that maximizes our total 
reward over n plays. Since the distributions Pj are fixed but 
unknown, we want to avoid sampling too many times from 
machines with low reward. In other words, we have to bal-
ance exploration versus exploitation. 
 The UCB1 strategy is: 
1. Play each machine once. 

2. Play machine j that maximizes 
2 ln

j

j

n
x

n
 where  

jx  is the average reward from machine j, machine j 

has been played nj times so far, and n is the total num-
ber of plays so far. 

 The jx  term gives preference to machines that have 

performed well in past plays, while the 2 ln / jn n  term 

gives preference to machines that have not been played 
many times so far, relative to ln n. 
The UCT algorithm is the same as Monte Carlo planning 
except that UCB is used to select the action at each tree 
node. To do this we have to keep track of the average re-
ward so far (i.e. up to time t) of taking action a from state s, 
denoted Qt(s, a). We also track Ns(t), the number of times 
that state s has been visited up to time t. If we are at a tree 
node s then the action is chosen using the UCB rule 
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Where α is a constant that has to be chosen empirically. A 
badly chosen α can have a huge effect on the convergence 
of the algorithm. 

An MDP based approach for QCSP 

The basis of our approach is to fully model the quay crane 
scheduling problem by Markov decision process. We use a 
sampling-based algorithm (UCT) to solve the MDP model. 
During quay crane planning, all QC choose the best joint 
action according to the accumulate Q value of each action 
in UCT tree. 

Modeling QCSP as MDP 

The QC assignment is the precondition of QCSP, which 
means we know each QC will work on which vessel bays. 
Vessel bays is consisted of vessel slots (Figure 3), so we 
know each QC will work on which vessel slots. As we 
described in section 2, unloading operations is the reverse 
of loading operations, so we just discuss loading operations 
here. We assume the configuration of yard blocks will not 
be changed during the planning period, which means there 
will be no new container transfer to every block and no 
pre-upload task will be cancel.  

State space 
We define the state space with the loaded container num-
bers in each bay slot and the pre-load container numbers of 
each container type in each block. These two type of con-
tainer numbers were chosen because they provide the full 
information about the loading progress status. 
 States are then discretized over the possible values. Let 

vi be the loaded container numbers in vessel slot i, 
t
ib  be 

the t type pre-load container numbers in block i. Then the 
state could be describe as follow: 

1 2 1 1
1 2 3 1 1 1 2 2: , , ,..., | , ,..., , ,..., ,... ,...,t t t

i i iS v v v v b b b b b b b  

 For example, if we have 3 slots, 2 blocks, and 2 contain-
er types , the state <11, 7, 1, 9, 1, 4, 3, 3> (Figure 4) means 
11 containers have been loaded to slot 1, 7 containers have 
been loaded to slot2, 1container have been loaded to slot 3, 
9 containers have been loaded to slot4, and for all type 1 
containers, there are 1 containers left in block 1 wait to be 
loaded, there are 3 containers left in block 2 wait to be 
loaded, and For all type 2 containers, there are 4 containers 
left in block 1 wait to be loaded, there are 3 containers left 
in block 2 wait to be loaded. 

Action space 
An action is a joint action of all QCs movements in next 

step. We defined 
k
ia  as the action of QC k moving to bay 

slot i. Then 
1 2: , ,..., k
i i iA a a a  is the joint action in this  



 
Figure 3: Vessel slots of vessel bay 

model. For example, if we have two QCs, the action <2,6> 
means QC1 move to slot2 and QC2 move to slot6 in next 
step. For those QC do not need to move, we use a dummy 
action -1 to represent. 

Transition model 

We define conflict index ic  for each legal next state i. 

Conflict index is the aggregate conflict container numbers 
for every block when transfer from previous state. All legal 
next states are ranked by their conflict index. We define 
the transition probability as 0.9 for the highest rank state 
and as 0.1 divided by the remainder for all other legal 
states. Legal states can satisfy both previous states and 
action on logic. In real world container terminal, operators 
always like to clean those blocks with less containers. Ac-
cording to this operation rule, for those states have same 
conflict index, the state with less containers will get higher 
transition probability. 
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Reward model 
We define the immediate reward as follow:  
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UCT 

UCT is a planning algorithm that can successfully cope 
even with exponential transition functions. Exponential 
transition functions plague other MDP solvers ultimately 
because these solvers attempt to enumerate the domain of 
the transition function for various state-action pairs, e.g., 
when summing over the transition probabilities or when 
generating action outcomes to build determinizations. Be-
ing a Monte Carlo planning technique, UCT only needs to 
be able to efficiently sample from the transition function  

 

(a) Slots 

 

(b) Blocks 

Figure 4: An example of state space 

and the reward function.  
 Our UCT is presented in Algs. 1-5. The algorithm starts 
with a given initial state, in which all the slots are empty 
and all the blocks are full, and the final state, in which, all 
the slots are filled and all the blocks are empty.  
1)Main UCT (Alg. 1, Lines 2-4): UCT works by sampling a 
number of trajectories through the state space and build 
UCT tree. In each trial, the algorithm insert a new state 
node into UCT tree by selection policy, and get a Q-value 
by playing rollout on this state, and updates Q-value ap-
proximations for the state-action pairs the trajectories visit. 
2)Selection policy (Alg. 2, Lines 2-5): In every state s, 
UCT selects an action a’ based on UCB value (Alg .3). The 
algorithm then samples an outcome of a’ and continues the 
trial until find a new state s which is not in the UCT tree 
and add this node to UCT tree. Then the algorithm will 
play a rollout on this state (Alg .4) and get a Q-value. 
3)Backup (Alg. 5, Lines 2-6): For each state s in the search 
trajectory, UCT maintains a counter ns for the number of 
times state s has been visited by the algorithm. The ns 
counter is incremented every time a rollout passes through 
s. For each state-action pair<s,a>, UCT maintains a coun-
ter ns,a of how many times UCT selected action a when 

visiting state s. Clearly, for each s ,s s a
a A

n n


 . Finally, 

for each <s,a>, UCT keeps track of an approximation of 
the Q-value of a in s equal to the average reward accumu-
lated by past rollouts after visiting s and choosing a in s. 
 
 

Algorithm 1: UCTSEARCH() 
1 While there is time left do: 
2  s’TREEPOLICY(s) 



3  Q PLAYSIMULATOR(s’) 
4  BACKUP(s’,Q) 
5 end while 
6 return BESTACTION(s) 
 

Algorithm 2: TREEPOLICY(s) 
1 While s is in UCT Tree do: 
2  aBESTACTION(s) 
3  ssample according to T(s’|s,a) 
4 end while 
5 add s into UCT Tree 
6 return s 
 

Algorithm 3: BESTACTION(s) 

1 

return 
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Experiments 

To demonstrate the applicability of out approaches, we 
performed several different scale problems. All our exper-
iments are performed on a Quad-Core Intel i-7 processor. 
We use 100 as the execution horizon for small size prob-
lem and 1000 for large size problem, although reaching the 
goal earlier will stop the execution. The planning horizon 
for a decision is an input to each problem. All UCT 
rollouts use random actions. The exploration constant c for 
UCB equation is set as the same magnitude of current Q 
value at the node. How to set this automatically is an im-
portant question for future work.  

Small and large size cases study  

In our small size case, there are 5 vessel slots, in each slot 
there are 3 containers to be loaded. In yard area, there are 3 
yard blocks. There are 2 QCs assigned to finish all load 
tasks. There are 2 container types. Table 1 is the configura-
tion of all slots. The number in each slot is the container 
identify number and the number in the parenthesis is the 
type of this container. Table 2 is the configuration of all 
blocks. The numbers in parenthesis indicate the number of 
containers of each container type in each block. Table 3 is 
the QC assignment. 

The result is shown in Figure 5. By ten joints action of 2 
QCs, the loading operation can be finished without yard 
conflict. The action sequence of each QC is shown in Ta-
ble 4.  

 
 
Algorithm 4: PLAYROLLOUT (s) 

1 while s is not final state do: 
2 a  randomly pick an action in s 

3 ssample according to T(s’|s,a) 
4 QQ+R(s) 
5 end while 
6 return Q 

 
Algorithm 5: BACKUP (s,Q) 

1 while s is not NULL do: 
2 a  parent of s 
3 s parent of a 
4 
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In our large size case, there are 10 vessel slots, in each 

slot there are 10 containers to be loaded. In yard area, there 
are 6 yard blocks. There are 4 QCs assigned to finish all 
load tasks. There are 8 container types. Table 5 is the con-
figuration of all slots. The number in each slot is the con-
tainer identify number and the number in the parenthesis is 
the type of this container. Table 6 is the configuration of all 
blocks. The numbers in parenthesis indicate the number of 
containers of each container type in each block. Table 7 is 
the QC assignment. 

The result is shown in Fig. 6. By 30 joint actions of 4 
QCs, the loading operation can be finished within only 9 
yard conflicts. The action sequence of each QC is shown in 
table 8. 

Simulation 

To test the performance of this approach, we test on a mid-
size problem. We take an average of 100 trials for each 
number of nodes are inserted for each decision. In our ex-
periments we find that as the increase of nodes in UCT 
trees, the result (Table 9) of the algorithm can converge to 
optimal solution.   

Related work 

The earliest work on the QCSP is by Daganzo (1989) and 
Peterkofsky and Dazango (1990). They assume one crane 
per hold is assigned for each vessel. Daganzo formulates a 
mixed integer program for the QCSP considering multiple 
vessels, and presents both exact and approximation meth-
ods to solve the problem for small instances. Peterkofsky 
and Dazango attempt to minimize the delay costs of the 
vessels and propose a branch and bound method to solve 
the problem. However, both these studies ignore some key  

Table 1: The configuration of all slots (small size) 
Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 

2(1) 5(0) 8(1) 11(0) 14(1) 



1(0) 4(1) 7(0) 10(1) 13(0) 

0(1) 3(0) 6(1) 9(0) 12(1) 

 
Table 2: The configuration of all blocks (small size) 

Block 0 Block 1 Block 2 

0(2) 0(3) 0(2) 

1(3) 1(2) 1(3) 

 
Table 3: The QC assignment (small size) 

QC slots 

0 0,1 

1 2,3,4 

 
Table 4: QC action sequence (small size) 

QC Actions 

0 0,0,0,1,1,1 

1 3,2,2,3,4,3,4,2,4 

 
characteristics of the QCSP such as interference of QCs, 
safety distance requirements between adjacent QCs, and 
precedence relationships between tasks. The QCs are 
mounted on the same rail track and cannot overtake each 
other. Some unloading (loading) tasks cannot be executed 
simultaneously, e.g. if the containers are positioned too 
close to each other. Further, some tasks need to be per-
formed in sequence. For instance, containers on the deck 
have to be unloaded before unloading the containers from 
the hold of the vessel. These limitations are addressed in 
the papers by Kim and Park (2004) and Lim et al. (2004). 
 Kim and Park discussed practical QC scheduling in 
terms of assumed time windows during which QCs are 
assigned to a vessel. They developed an effective heuristic 
search algorithm, called GRASP (Greedy Randomized 
Adaptive Search Procedure), for the QC scheduling prob-
lem to eliminate the computational difficulty of the previ-
ously branch and bound method. Subsequently, Lee, Wang, 
and Miao (2008) proposed a genetic algorithm to optimize 
the handling sequence for QCs, and accounting for inter-
ference among QCs.  
 Stahlbock and Voß (2008) studied various CT operation 
planning problems, Although the container sequence prob-
lem (CSP) has not yet been addressed directly, key related 
issues, such as crane operations planning, dual cycling, and 
container reshuffling, have been investigated in the context 
of stowage planning, yard crane scheduling, and QC 
scheduling. Zhu and Lim (2005) and Liu, Wan, and Wang 
(2006) also investigated the quay crane scheduling prob-
lem.  
 Goodchild and Daganzo (2006) firstly incorporated 
crane dual cycling issues into QC scheduling. Their ap-

proach concerns the operating process of a single QC at a 
bay of a container vessel. Every container stack in the con-
sidered bay is represented by two tasks that are related by 
precedence, the first of which is unloading the stack and 
the other of which is loading the stack. The processing 
time of these task are determined by the number of con-
tainers to be (un-)loaded. Crane dual cycling is realized by 
the parallelization of unloading and loading of different 
stacks. The problem is to find a sequence for processing 
stacks that minimizes the make span of the schedule while 
maximizing crane dual cycling. Hence, formulate this 
problem as a two-machine flow shop scheduling problem, 
which is solved exactly using the rule of Johnson (1954). 
Goodchild and Daganzo (2007) proved the economic bene-
fits of the QC dual cycling, which are increased crane 
productivity, berth utilization, and vessel utilization. Zhang 
and Kim (2009) extended the approach of Good child and 
Daganzo by considering the effect of hatch covers on QC 
operations including local search to solve stack-based QC 
scheduling incorporates dual cycling. Frank and Matthias 
(2010) proved that the consideration of internal reshuffles 
shortens vessel handling time more than does crane dual-
cycling alone. Zhen, L (2011) studies two tactical level 
decision problems arising in transshipment hubs: berth 
template planning that is concerned with allocating berths 
and quay cranes to arriving vessels, and yard template 
planning that is concerned with assigning yard storage lo-
cations to vessels. Lu Chen (2012) studied the interactions 
between crane handling and truck transportation in a mari-
time container terminal by considering them as simultane-
ous. They formulated the problem as a constraint pro-
gramming model and developed a three-stage algorithm. 

Conclusion 

In this paper, we present an MDP based approach to solve 
the Quay Crane Scheduling Problem under Uncertainty. 
The MDP model handle the uncertainty of generating quay 
scheduling plan without ship stowage plan. A UCT algo-
rithm is designed to solve the model to fulfill the real-time 
condition. This approach is able to obtain the optimal 
moves for QCs. We show that both small size problem and 
large size problem can be solved in reasonable time. 
 In the future, we are interested in extending this line of 
research in several ways. For instance, according to real 
world operation, other operation rules can be add to influ-
ence the transition probability. Also, many terminal opera-
tion related problem can be modeled and solved using AI 
techniques. We hope that others will also explore more 
way of using AI techniques in this rich domain.  



 
Figure 5: Scheduling result for small size QCSP 

Table 5: The configuration of all slots (large size) 
Slot  0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot6 Slot 7 Slot 8 Slot 9 

0(1) 10(3) 20(5) 30(7) 40(1) 50(3) 60(5) 70(7) 80(1) 90(3) 

1(2) 11(4) 21(6) 31(0) 41(2) 51(4) 61(6) 71(0) 81(2) 91(4) 

2(3) 12(5) 22(7) 32(1) 42(3) 52(5) 62(7) 72(1) 82(3) 92(5) 

3(4) 13(6) 23(0) 33(2) 43(4) 53(6) 63(0) 73(2) 83(4) 93(6) 

4(5) 14(7) 24(1) 34(3) 44(5) 54(7) 64(1) 74(3) 84(5) 94(7) 

5(6) 15(0) 25(2) 35(4) 45(6) 55(0) 65(2) 75(4) 85(6) 95(0) 

6(7) 16(1) 26(3) 36(5) 46(7) 56(1) 66(3) 76(5) 86(7) 96(1) 

7(0) 17(2) 27(4) 37(6) 47(0) 57(2) 67(4) 77(6) 87(0) 97(2) 

8(1) 18(3) 28(5) 38(7) 48(1) 58(3) 68(5) 78(7) 88(1) 98(3) 

9(2) 19(4) 29(6) 39(0) 49(2) 59(4) 69(6) 79(0) 89(2) 99(4) 

 

 
Figure 6: Scheduling result for large size QCSP 

 



Table 6: The configuration of all blocks (large size) 
Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 

0(0) 0(5) 0(0) 0(4) 0(0) 0(3) 

1(6) 1(0) 1(5) 1(0) 1(2) 1(0) 

2(0) 2(6) 2(0) 2(5) 2(0) 2(2) 

3(5) 3(0) 3(6) 3(0) 3(2) 3(0) 

4(0) 4(5) 4(0) 4(6) 4(0) 4(2) 

5(4) 5(0) 5(5) 5(0) 5(3) 5(0) 

6(0) 6(4) 6(0) 6(5) 6(0) 6(3) 

7(5) 7(0) 7(4) 7(0) 7(3) 7(0) 

 
Table 7: The QC assignment (large size) 

QC slots 

0 0,1 

1 2,3,4 

2 5,6,7 

3 8,9 

 
Table 8: QC action sequence (large size) 

QC Actions 

0 0,1,0,1,0,0,0,0,1,0,0,1,1,1,1,1,0,0,1,1 

1 2,4,4,2,4,2,3,2,4,4,4,4,4,2,2,4,3,2,4,2,3,2,2,3,3,3,3,
3,3,3 

2 5,7,6,6,5,6,5,7,5,7,6,5,6,7,7,7,5,5,6,7,5,6,5,6,5,6,6,
7,7,7 

3 8,9,9,9,8,8,9,9,9,9,9,9,9,8,8,8,8,8,8,8 
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