

An MDP based Approach to Solve

Quay Crane Scheduling Problem under Uncertainty

Tianyi Gu, Christopher Amato
Department of Computer Science, University of New Hampshire,

Durham, NH 03824, USA
tg1034@wildcats.unh.edu, camato@cs.unh.edu

Abstract

One issue of container terminal operation planning is quay
crane scheduling problem (QCSP). The number of time-
conflict-tasks for yard cranes (YC) in yard operation is con-
sidered as one of the important measures for the evaluation
of the level of fluency for quay crane scheduling by terminal
experts. In this project, an MDP model for QCSP will is
developed. A UCT algorithm is designed to solve the model.
Several numerical tests will be conducted to show the per-
formance of the proposed approach.

Introduction

Since the introduction of the container in April 1956, when
Malcolm McLean moved fifty-eight 35 foot containers
from Newark to Houston by a refitted oil tanker, container
flows have increased continuously. Annually, about 108
million cargo containers are transported through seaports
around the world, constituting the most critical component
of global trade. Between 1990 and 2015, the total number
of full containers shipped internationally is expected to
grow from 28.7 million to 177.6 million (United Nations:
ESCAP, 2007). A simple calculation shows that there are
enough containers on the planet to build more than two 8-
foot-high walls around the equator (Taggart, 1999).

Containerization has become the main driver for inter-
modal freight transport, which involves the transportation
of freight in containers of standard dimensions (20 ft
equivalent unit (1 TEU), 40 ft (2 TEU), 45 ft (high-cube)),
using multiple modes of transportation such as ships,
trucks, trains, or barges without any handling of the freight
itself when changing modes (Crainic and Kim, 2007).
Bundling freight in containers reduces cargo handling, and
thereby improves security, reduces damages and losses,
and allows freight to be transported faster (Agerschou et al.,

Copyright © 2015, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1983). In the chain of intercontinental transport, container
terminals are of special importance since all containers
pass through at least one of them during their drayage.
Container terminals are the nodes where different modali-
ties meet to transport containers.

Seaport container terminals are essential nodes in sea
cargo transportation networks. The marine container indus-
try has grown dramatically in the last three decades, and
container transportation has become a predominant mode
of inter-continental cargo traffic. Container terminals,
which are multi-modal interfaces that connect sea transpor-
tation with land transport, have an important role. To ex-
ploit economies of scale, the size of container ships has
significantly increased during the last few decades. A large
container ship typically requires the lifting of thousands of
containers at the terminal during one call. Since running a
container ship involves a major capital investment and sig-
nificant daily operating costs, customer service has become
the principal issue at container terminals. More container
terminals are seeking to improve their throughput and re-
duce the turnaround time of vessels. As such, the opera-
tional efficiency of container terminals in handling con-
tainers passing through them plays a critical role in a glob-
alized world economy. Many models and algorithms have
been developed to address various decision problems in
container terminals to help improve operational efficiency.
One issue of container terminal operation planning is quay
crane scheduling problem (QCSP). The number of time-
conflict-tasks for yard cranes (YC) in yard operation is
considered as one of the important measures for the eval-
uation of the level of fluency for quay crane scheduling by
terminal experts.

This paper present an MDP based approach to solve the
Quay Crane Scheduling Problem under Uncertainty. Our
reasons for choosing MDP based approach as a solution
approach are as follows: Firstly, because of the complexity
of the problem, we can imagine that the QCSP model will

be a NP-hard problem. It is deemed unable to obtain opti-
mal solutions for large-scale problems. Hence, heuristic
algorithms are wildly used to obtain near-optimal solutions
efficiently. However, because of the numerous constraints
with high degree of irregularity, it is difficult to evaluate a
scheduling scheme in the process of heuristic algorithms.
Secondly, today it is widely observable by operators in real
world container terminal that it is better to generate quay
scheduling plan before generate ship stowage plan. Be-
cause if people plan for container vessel location without
the information of QC working sequence, a lot of good
scheduling chance will be kill. But, if we want to generate
QC scheduling sequence without stowage plan, uncertainty
is difficult to tackle by the analytical model alone. Thirdly,
in practice, how to schedule QC according to real-time
condition is important. We can use an online MDP solver
to handle this problem. Each time after all QC performs an
action, the yard response (as indicated by its new state) is
used for planning next action. The objective is to develop a
decision-making policy for selecting the appropriate action
rule for each QC. By this approach, the optimal moves for
QCs can be obtained. In this project, an MDP model for
QCSP is developed. A UCT algorithm is designed to solve
the model. Several numerical tests are conducted to show
the performance of this approach.

The remainder of the paper is organized as follows. We
first provide background on quay crane scheduling prob-
lem as well as our approach which is based on Markov
decision processes (MDPs) and MDPs solver algorithms.
We then discuss our MDP based approach for solving quay
crane scheduling problem under uncertainty. In section 4,
we describe our experimental results, showing that this
approach can solve both small size problem and large size
problem. Finally, we supply an overview of the related
work on QCSP and then conclude.

Background

Quay Crane Scheduling Problem

Container handling equipment includes quay cranes (QCs),
yard cranes (YCs), and yard trucks (YTs). These systems
are shown in Figures 1a–c, and are used to transship con-
tainers from ships to barges, trucks and trains. Sea contain-
er terminals are divided into several areas such as seaside,
landside, stacking, and internal transport areas that cater to
seaside and landside operations. At a container terminal,
QCs load and unload containers from ships berthed along
the quay at the seaside. QCs pick up or drop off containers
on YTs which transport containers from the seaside to the
stacking area where YCs take over. The typical work flow
(Figure 2) during a loading operation for container depar-
ture that are retrieved from the yard and loaded to a vessel

(a) QC (b) YC

(c) YT

Figure 1: A top view of a container terminal and material
handling equipment

(YV), is as follows. One YC (yard crane) picks up a con-
tainer from a container block and loads it onto an YT (yard
truck). The YT then transports the container to a QC (quay
crane), which loads the container onto the vessel. The un-
loading operation for arrival containers is the reverse of the
foregoing: a container is unloaded from a vessel to the yard
(VY).

Seaside operations planning consists of ship berthing
operations (berth planning and quay crane scheduling), and
loading and unloading of containers onto ships. Further,
the stowage planning where the sequence of loading and
unloading containers in a ship is optimized plays a critical
role in the seaside operations planning.

In container terminals, the principal objective of termi-
nal operators is to minimize the duration of time for which
a vessel stays at the terminal. Short ship sojourn times min-
imize the risk of violating the ship’s time window. It also
allows negotiating better time slot lengths with the ship
liners. The prime objective of ship liners is to have the ship
sailing as much as possible as berthing time is considered
as cost. The order in which containers are unloaded and
loaded by each QC can significantly alter the handling time
of a vessel. Thus, optimal sequencing of tasks performed
by each QC is necessary. This problem is widely known as
the quay crane scheduling problem (QCSP). In terminal
operations, QCs are typically the most constrained re-
sources. Hence, optimal schedules can maximize through-
put, and minimize ship handling time (ship make span).
Several constraints need to be satisfied during the schedule
generation process, such as preventing crane crossovers

YV

VY

Figure 2: Typical work flow at a container terminal

(structural constraint imposed on cranes and crane trajecto-
ry), maintaining a minimum distance between cranes
(neighborhood constraint), time separation of containers
that need to be stacked in the same location (job separation
constraint), and ensuring that unloading transactions within
a ship bay precede loading transactions (precedence con-
straint defined by the stowage plan). Multiple optimization
formulations have been developed with variations in task
attributes (single or multiple bays), crane attributes (initial
and final positions of the cranes, operational time win-
dows), and interference attributes.

Markov decision processes

To generate quay crane scheduling plan without detail ship
stowage plan, we choose to use Markvo Decision Process-
es (MDPs) as the general framework. MDPs are a common
method for modeling sequential decision-making with sto-
chastic actions. We generate quay crane scheduling policy
for an MDP through sampling-based techniques.

A finite discrete-time fully observable MDP is a tuple
<S, A, T, R>, where:
 S, a finite set of all possible states of the system;
 A, a finite set of all actions an agent can take;
 T, a transition function, a mapping specifying the proba-

bility T(s1,a,s2) of going to state s2 if action a is exe-
cuted when the agent is in state s1.

 R, a reward function that gives a finite numeric reward
value R(s,a) obtained when the system take action a
in state s.

An MDP unfolds over a series of steps. At each step, the
agent observes the current state, s, chooses an action, a,
and then receives an immediate reward that depends on the
state and action, R(s,a). The agent begins in the initial state
s0, which is assumed to be known. The state transitions
according to the distribution P as given above and the pro-
cess continues. The goal is to find a policy, which is a
mapping, π, from states to actions, that maximizes the sum
of rewards over the steps of the problem. In this paper, we
consider the finite horizon problem which unfolds over a
finite number of steps.

Algorithms to solve MDP

Value iteration
To find the optimal policy π we will compute the value
vector U. For each state s S , U(s) is the expected cost
of reaching the target state, using the best possible se-
quence of actions starting at state s.

We can start from an initial value vector U0(s) = 0 for all
s S . Then the update step is

1
'

() max (,) (' | ,) (')t t
a A

s S

U s R s a P s s a U s




 
  

 


(1)

In other words, we maximize the sum of the local reward
of taking some action, along with the expected reward
from the possible new states. The policy is updated at each
step by

1
'

() arg max (,) (' | ,) (')t t
a A s S

s R s a P s s a U s 
 

 
  

 
 (2)

The value iteration algorithm is guaranteed to converge.
We can also apply a discounting factor γ to reflect the

fact that rewards incurred in the future are worth less than
ones incurred in the present. If 0 1  then the value
iteration update is simply

1
'

() max (,) (' | ,) (')t t
a A

s S

U s R s a P s s a U s




 
  

 
 (3)

Real-time Dynamic Programming
RTDP is a simple DP algorithm that involves a sequence of
trials or runs, each starting in the initial state s0 and ending
in a goal state. Each RTDP trial is the result of simulating
the greedy policy πV while updating the values V(s) using
(4) over the states s that are visited.

'

() : max (,) (' | ,) (')
a A

s S

V s R s a P s s a V s




  (4)

Thus, RTDP is an asynchronous value iteration algo-
rithm in which a single state is selected for update in each
iteration. This state corresponds to the state visited by the
simulation where successor states are selected with their
corresponding probability. This combination is powerful,
and makes RTDP different than pure greedy search and
general asynchronous value iteration.

Note that unlike asynchronous value iteration, in RTDP
there is no requirement that all states be updated infinitely
often. Indeed, some states may not be updated at all. On
the other hand, the proof of optimality lies in the fact that
the relevant states will be so updated.
 The convergence of RTDP is asymptotic, and indeed,
the number of trials before convergence is not bounded
(e.g., low probability transitions are taken eventually but
there is always a positive probability they will not be taken
after any arbitrarily large number of steps). Thus for prac-
tical reasons, like for value iteration, we define the termi-

nation of RTDP in terms of a given bound 0  on the
residuals.

UCT: Upper Confidence bounds on Trees
Solving an MDP system using value iteration can become
computationally intensive on large examples because each
update step necessarily reads and changes every element of
the value and policy vectors.
 An alternative approach is to use Monte Carlo planning.
The algorithm alternates randomly between trying new
actions at each state (in order to search for better policies)
or using the current best policy to improve the estimate of
the policy. The policy vector π is not explicitly computed.
Instead we have the state-action vector Q(s, a), the average
seen reward of taking action a when in state s.
 The UCT algorithm just changes the way that actions are
selected during a rollout. The algorithm used is called Up-
per Confidence Bounds (UCB). Imagine that we have K
gambling machines with arbitrary reward distributions
P1,..., PK. At each time step we can play any machine j that
we choose, and receive a reward according to the distribu-
tion Pj. We would like a strategy that maximizes our total
reward over n plays. Since the distributions Pj are fixed but
unknown, we want to avoid sampling too many times from
machines with low reward. In other words, we have to bal-
ance exploration versus exploitation.
 The UCB1 strategy is:
1. Play each machine once.

2. Play machine j that maximizes
2 ln

j

j

n
x

n
 where

jx is the average reward from machine j, machine j

has been played nj times so far, and n is the total num-
ber of plays so far.

 The jx term gives preference to machines that have

performed well in past plays, while the 2 ln / jn n term

gives preference to machines that have not been played
many times so far, relative to ln n.
The UCT algorithm is the same as Monte Carlo planning
except that UCB is used to select the action at each tree
node. To do this we have to keep track of the average re-
ward so far (i.e. up to time t) of taking action a from state s,
denoted Qt(s, a). We also track Ns(t), the number of times
that state s has been visited up to time t. If we are at a tree
node s then the action is chosen using the UCB rule

*

,

ln ()
arg max (,)

()
s

t
a A s a

N t
a Q s a

N t




  
  

  
 (5)

Where α is a constant that has to be chosen empirically. A
badly chosen α can have a huge effect on the convergence
of the algorithm.

An MDP based approach for QCSP

The basis of our approach is to fully model the quay crane
scheduling problem by Markov decision process. We use a
sampling-based algorithm (UCT) to solve the MDP model.
During quay crane planning, all QC choose the best joint
action according to the accumulate Q value of each action
in UCT tree.

Modeling QCSP as MDP

The QC assignment is the precondition of QCSP, which
means we know each QC will work on which vessel bays.
Vessel bays is consisted of vessel slots (Figure 3), so we
know each QC will work on which vessel slots. As we
described in section 2, unloading operations is the reverse
of loading operations, so we just discuss loading operations
here. We assume the configuration of yard blocks will not
be changed during the planning period, which means there
will be no new container transfer to every block and no
pre-upload task will be cancel.

State space
We define the state space with the loaded container num-
bers in each bay slot and the pre-load container numbers of
each container type in each block. These two type of con-
tainer numbers were chosen because they provide the full
information about the loading progress status.
 States are then discretized over the possible values. Let

vi be the loaded container numbers in vessel slot i,
t
ib be

the t type pre-load container numbers in block i. Then the
state could be describe as follow:

1 2 1 1
1 2 3 1 1 1 2 2: , , ,..., | , ,..., , ,..., ,... ,...,t t t

i i iS v v v v b b b b b b b

 For example, if we have 3 slots, 2 blocks, and 2 contain-
er types , the state <11, 7, 1, 9, 1, 4, 3, 3> (Figure 4) means
11 containers have been loaded to slot 1, 7 containers have
been loaded to slot2, 1container have been loaded to slot 3,
9 containers have been loaded to slot4, and for all type 1
containers, there are 1 containers left in block 1 wait to be
loaded, there are 3 containers left in block 2 wait to be
loaded, and For all type 2 containers, there are 4 containers
left in block 1 wait to be loaded, there are 3 containers left
in block 2 wait to be loaded.

Action space
An action is a joint action of all QCs movements in next

step. We defined
k
ia as the action of QC k moving to bay

slot i. Then
1 2: , ,..., k
i i iA a a a is the joint action in this

Figure 3: Vessel slots of vessel bay

model. For example, if we have two QCs, the action <2,6>
means QC1 move to slot2 and QC2 move to slot6 in next
step. For those QC do not need to move, we use a dummy
action -1 to represent.

Transition model

We define conflict index ic for each legal next state i.

Conflict index is the aggregate conflict container numbers
for every block when transfer from previous state. All legal
next states are ranked by their conflict index. We define
the transition probability as 0.9 for the highest rank state
and as 0.1 divided by the remainder for all other legal
states. Legal states can satisfy both previous states and
action on logic. In real world container terminal, operators
always like to clean those blocks with less containers. Ac-
cording to this operation rule, for those states have same
conflict index, the state with less containers will get higher
transition probability.

 

 '

 s' with

0.9

' (,)

1

1

0.

If s is the highest rank state

choose the less containers

if several states all rank first

Number of legal next st

P s s a

El
e

se
at s 




      




Reward model
We define the immediate reward as follow:

1
)

1

 00
(

 If s is final state
R s

Else


 



UCT

UCT is a planning algorithm that can successfully cope
even with exponential transition functions. Exponential
transition functions plague other MDP solvers ultimately
because these solvers attempt to enumerate the domain of
the transition function for various state-action pairs, e.g.,
when summing over the transition probabilities or when
generating action outcomes to build determinizations. Be-
ing a Monte Carlo planning technique, UCT only needs to
be able to efficiently sample from the transition function

(a) Slots

(b) Blocks

Figure 4: An example of state space

and the reward function.
 Our UCT is presented in Algs. 1-5. The algorithm starts
with a given initial state, in which all the slots are empty
and all the blocks are full, and the final state, in which, all
the slots are filled and all the blocks are empty.
1)Main UCT (Alg. 1, Lines 2-4): UCT works by sampling a
number of trajectories through the state space and build
UCT tree. In each trial, the algorithm insert a new state
node into UCT tree by selection policy, and get a Q-value
by playing rollout on this state, and updates Q-value ap-
proximations for the state-action pairs the trajectories visit.
2)Selection policy (Alg. 2, Lines 2-5): In every state s,
UCT selects an action a’ based on UCB value (Alg .3). The
algorithm then samples an outcome of a’ and continues the
trial until find a new state s which is not in the UCT tree
and add this node to UCT tree. Then the algorithm will
play a rollout on this state (Alg .4) and get a Q-value.
3)Backup (Alg. 5, Lines 2-6): For each state s in the search
trajectory, UCT maintains a counter ns for the number of
times state s has been visited by the algorithm. The ns
counter is incremented every time a rollout passes through
s. For each state-action pair<s,a>, UCT maintains a coun-
ter ns,a of how many times UCT selected action a when

visiting state s. Clearly, for each s ,s s a
a A

n n


 . Finally,

for each <s,a>, UCT keeps track of an approximation of
the Q-value of a in s equal to the average reward accumu-
lated by past rollouts after visiting s and choosing a in s.

Algorithm 1: UCTSEARCH()
1 While there is time left do:
2 s’TREEPOLICY(s)

3 Q PLAYSIMULATOR(s’)
4 BACKUP(s’,Q)
5 end while
6 return BESTACTION(s)

Algorithm 2: TREEPOLICY(s)
1 While s is in UCT Tree do:
2 aBESTACTION(s)
3 ssample according to T(s’|s,a)
4 end while
5 add s into UCT Tree
6 return s

Algorithm 3: BESTACTION(s)

1

return

 
 

,

lnˆ ,arg max s

s aa A

n
Q s a c

n


  
 

  

Experiments

To demonstrate the applicability of out approaches, we
performed several different scale problems. All our exper-
iments are performed on a Quad-Core Intel i-7 processor.
We use 100 as the execution horizon for small size prob-
lem and 1000 for large size problem, although reaching the
goal earlier will stop the execution. The planning horizon
for a decision is an input to each problem. All UCT
rollouts use random actions. The exploration constant c for
UCB equation is set as the same magnitude of current Q
value at the node. How to set this automatically is an im-
portant question for future work.

Small and large size cases study

In our small size case, there are 5 vessel slots, in each slot
there are 3 containers to be loaded. In yard area, there are 3
yard blocks. There are 2 QCs assigned to finish all load
tasks. There are 2 container types. Table 1 is the configura-
tion of all slots. The number in each slot is the container
identify number and the number in the parenthesis is the
type of this container. Table 2 is the configuration of all
blocks. The numbers in parenthesis indicate the number of
containers of each container type in each block. Table 3 is
the QC assignment.

The result is shown in Figure 5. By ten joints action of 2
QCs, the loading operation can be finished without yard
conflict. The action sequence of each QC is shown in Ta-
ble 4.

Algorithm 4: PLAYROLLOUT (s)

1 while s is not final state do:
2 a  randomly pick an action in s

3 ssample according to T(s’|s,a)
4 QQ+R(s)
5 end while
6 return Q

Algorithm 5: BACKUP (s,Q)

1 while s is not NULL do:
2 a  parent of s
3 s parent of a
4

,

,

ˆ (,)ˆ (,)
1

s a

s a

n Q s a Q
Q s a

n






5 ns ns + 1
6 ns,a  ns,a + 1

In our large size case, there are 10 vessel slots, in each

slot there are 10 containers to be loaded. In yard area, there
are 6 yard blocks. There are 4 QCs assigned to finish all
load tasks. There are 8 container types. Table 5 is the con-
figuration of all slots. The number in each slot is the con-
tainer identify number and the number in the parenthesis is
the type of this container. Table 6 is the configuration of all
blocks. The numbers in parenthesis indicate the number of
containers of each container type in each block. Table 7 is
the QC assignment.

The result is shown in Fig. 6. By 30 joint actions of 4
QCs, the loading operation can be finished within only 9
yard conflicts. The action sequence of each QC is shown in
table 8.

Simulation

To test the performance of this approach, we test on a mid-
size problem. We take an average of 100 trials for each
number of nodes are inserted for each decision. In our ex-
periments we find that as the increase of nodes in UCT
trees, the result (Table 9) of the algorithm can converge to
optimal solution.

Related work

The earliest work on the QCSP is by Daganzo (1989) and
Peterkofsky and Dazango (1990). They assume one crane
per hold is assigned for each vessel. Daganzo formulates a
mixed integer program for the QCSP considering multiple
vessels, and presents both exact and approximation meth-
ods to solve the problem for small instances. Peterkofsky
and Dazango attempt to minimize the delay costs of the
vessels and propose a branch and bound method to solve
the problem. However, both these studies ignore some key

Table 1: The configuration of all slots (small size)
Slot 0 Slot 1 Slot 2 Slot 3 Slot 4

2(1) 5(0) 8(1) 11(0) 14(1)

1(0) 4(1) 7(0) 10(1) 13(0)

0(1) 3(0) 6(1) 9(0) 12(1)

Table 2: The configuration of all blocks (small size)

Block 0 Block 1 Block 2

0(2) 0(3) 0(2)

1(3) 1(2) 1(3)

Table 3: The QC assignment (small size)

QC slots

0 0,1

1 2,3,4

Table 4: QC action sequence (small size)

QC Actions

0 0,0,0,1,1,1

1 3,2,2,3,4,3,4,2,4

characteristics of the QCSP such as interference of QCs,
safety distance requirements between adjacent QCs, and
precedence relationships between tasks. The QCs are
mounted on the same rail track and cannot overtake each
other. Some unloading (loading) tasks cannot be executed
simultaneously, e.g. if the containers are positioned too
close to each other. Further, some tasks need to be per-
formed in sequence. For instance, containers on the deck
have to be unloaded before unloading the containers from
the hold of the vessel. These limitations are addressed in
the papers by Kim and Park (2004) and Lim et al. (2004).
 Kim and Park discussed practical QC scheduling in
terms of assumed time windows during which QCs are
assigned to a vessel. They developed an effective heuristic
search algorithm, called GRASP (Greedy Randomized
Adaptive Search Procedure), for the QC scheduling prob-
lem to eliminate the computational difficulty of the previ-
ously branch and bound method. Subsequently, Lee, Wang,
and Miao (2008) proposed a genetic algorithm to optimize
the handling sequence for QCs, and accounting for inter-
ference among QCs.
 Stahlbock and Voß (2008) studied various CT operation
planning problems, Although the container sequence prob-
lem (CSP) has not yet been addressed directly, key related
issues, such as crane operations planning, dual cycling, and
container reshuffling, have been investigated in the context
of stowage planning, yard crane scheduling, and QC
scheduling. Zhu and Lim (2005) and Liu, Wan, and Wang
(2006) also investigated the quay crane scheduling prob-
lem.
 Goodchild and Daganzo (2006) firstly incorporated
crane dual cycling issues into QC scheduling. Their ap-

proach concerns the operating process of a single QC at a
bay of a container vessel. Every container stack in the con-
sidered bay is represented by two tasks that are related by
precedence, the first of which is unloading the stack and
the other of which is loading the stack. The processing
time of these task are determined by the number of con-
tainers to be (un-)loaded. Crane dual cycling is realized by
the parallelization of unloading and loading of different
stacks. The problem is to find a sequence for processing
stacks that minimizes the make span of the schedule while
maximizing crane dual cycling. Hence, formulate this
problem as a two-machine flow shop scheduling problem,
which is solved exactly using the rule of Johnson (1954).
Goodchild and Daganzo (2007) proved the economic bene-
fits of the QC dual cycling, which are increased crane
productivity, berth utilization, and vessel utilization. Zhang
and Kim (2009) extended the approach of Good child and
Daganzo by considering the effect of hatch covers on QC
operations including local search to solve stack-based QC
scheduling incorporates dual cycling. Frank and Matthias
(2010) proved that the consideration of internal reshuffles
shortens vessel handling time more than does crane dual-
cycling alone. Zhen, L (2011) studies two tactical level
decision problems arising in transshipment hubs: berth
template planning that is concerned with allocating berths
and quay cranes to arriving vessels, and yard template
planning that is concerned with assigning yard storage lo-
cations to vessels. Lu Chen (2012) studied the interactions
between crane handling and truck transportation in a mari-
time container terminal by considering them as simultane-
ous. They formulated the problem as a constraint pro-
gramming model and developed a three-stage algorithm.

Conclusion

In this paper, we present an MDP based approach to solve
the Quay Crane Scheduling Problem under Uncertainty.
The MDP model handle the uncertainty of generating quay
scheduling plan without ship stowage plan. A UCT algo-
rithm is designed to solve the model to fulfill the real-time
condition. This approach is able to obtain the optimal
moves for QCs. We show that both small size problem and
large size problem can be solved in reasonable time.
 In the future, we are interested in extending this line of
research in several ways. For instance, according to real
world operation, other operation rules can be add to influ-
ence the transition probability. Also, many terminal opera-
tion related problem can be modeled and solved using AI
techniques. We hope that others will also explore more
way of using AI techniques in this rich domain.

Figure 5: Scheduling result for small size QCSP

Table 5: The configuration of all slots (large size)
Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot6 Slot 7 Slot 8 Slot 9

0(1) 10(3) 20(5) 30(7) 40(1) 50(3) 60(5) 70(7) 80(1) 90(3)

1(2) 11(4) 21(6) 31(0) 41(2) 51(4) 61(6) 71(0) 81(2) 91(4)

2(3) 12(5) 22(7) 32(1) 42(3) 52(5) 62(7) 72(1) 82(3) 92(5)

3(4) 13(6) 23(0) 33(2) 43(4) 53(6) 63(0) 73(2) 83(4) 93(6)

4(5) 14(7) 24(1) 34(3) 44(5) 54(7) 64(1) 74(3) 84(5) 94(7)

5(6) 15(0) 25(2) 35(4) 45(6) 55(0) 65(2) 75(4) 85(6) 95(0)

6(7) 16(1) 26(3) 36(5) 46(7) 56(1) 66(3) 76(5) 86(7) 96(1)

7(0) 17(2) 27(4) 37(6) 47(0) 57(2) 67(4) 77(6) 87(0) 97(2)

8(1) 18(3) 28(5) 38(7) 48(1) 58(3) 68(5) 78(7) 88(1) 98(3)

9(2) 19(4) 29(6) 39(0) 49(2) 59(4) 69(6) 79(0) 89(2) 99(4)

Figure 6: Scheduling result for large size QCSP

Table 6: The configuration of all blocks (large size)
Block 0 Block 1 Block 2 Block 3 Block 4 Block 5

0(0) 0(5) 0(0) 0(4) 0(0) 0(3)

1(6) 1(0) 1(5) 1(0) 1(2) 1(0)

2(0) 2(6) 2(0) 2(5) 2(0) 2(2)

3(5) 3(0) 3(6) 3(0) 3(2) 3(0)

4(0) 4(5) 4(0) 4(6) 4(0) 4(2)

5(4) 5(0) 5(5) 5(0) 5(3) 5(0)

6(0) 6(4) 6(0) 6(5) 6(0) 6(3)

7(5) 7(0) 7(4) 7(0) 7(3) 7(0)

Table 7: The QC assignment (large size)

QC slots

0 0,1

1 2,3,4

2 5,6,7

3 8,9

Table 8: QC action sequence (large size)

QC Actions

0 0,1,0,1,0,0,0,0,1,0,0,1,1,1,1,1,0,0,1,1

1 2,4,4,2,4,2,3,2,4,4,4,4,4,2,2,4,3,2,4,2,3,2,2,3,3,3,3,
3,3,3

2 5,7,6,6,5,6,5,7,5,7,6,5,6,7,7,7,5,5,6,7,5,6,5,6,5,6,6,
7,7,7

3 8,9,9,9,8,8,9,9,9,9,9,9,9,8,8,8,8,8,8,8

Acknowledgments

The authors would thank the members of the UNH AI
Group and CS980 for their insightful comments.

References

United Nations: ESCAP. 2007. Regional Shipping and Port De-
velopment: Container Traffic Forecast 2007 Update. United Na-
tions: Economic and Social Comission for Asia and the Pacific
(ESCAP), New York.

Taggart, S. 1999. The 20-ton packet. Wired Magazine 7(10) 246.

Crainic, G. T., K. H. Kim. 2007. Chapter 8 intermodal transporta-
tion. C. Barnhart, G. Laporte, eds., Transportation, Handbooks in
Operations Research and Management Science, vol. 14. Elsevier,
467–537.

Agerschou, H., H. Lundgren, T. S¨orensen, T. Ernst, J. Korsgaard,
L. R. Schmidt, W. K. Chi. 1983. Planning and Design of Ports
and Marine Terminals. John Wiley and Sons, Chichester.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley-Interscience, 1994.

F. Sailer, M. Buro, and M. Lanctot. Adversarial planning through
strategy simulation. The IEEE Symposium on Computational
Intelligence and Games, Honolulu, HI, 2007.

Levente Kocsis and Csaba SzepesvÃąri. Bandit based monte-
carlo planning. In: ECML-06. Number 4212 in LNCS, pages 282–
293. Springer, 2006. 5, 1

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine Learning,
47(2):235–256, May 2002.

Daganzo C (1989) The crane scheduling problem. Transp Res
Part B 23:159–179

Peterkofsky R, Dazango C (1990) A branch and bound solution
method for the crane scheduling problem. Transp Res Part B
24:159–172

Kim K, Park Y (2004) A crane scheduling method for port con-
tainer terminals. Eur J Oper Res 156:752–768

Lim A, Rodrigues B, Xiao F, Zhu Y (2004) Crane scheduling
with spatial constraints. Nav Res Logistics 51:386–406

Lee D, Wang H, Miao L (2008) Quay crane scheduling with non-
interference constraints in port container terminals. Transp Res
Part E 44:124–135

Lee, D. H., Wang, H. Q., & Miao, L. (2008). Quay crane schedul-
ing with non-interference constraints in port container terminals.
Transportation Research Part E, 44, 124–135.

Stahlbock R, Voß S (2008). Operations research at container
terminals: a literature update. OR Spectrum (1):1–52

Zhu, Y., & Lim, A. (2005). Crane scheduling with non-crossing
constraint. Journal of the Operational Research Society, 57(12),
1464–1471.

Liu J, Wan Y-W, Wang L (2006). Quay crane scheduling at con-
tainer terminals to minimize the maximum relative tardiness of
vessel departures. Nav Res Logist 53(1):60–74

Goodchild AV, Daganzo CF (2006). Double-cycling strategies
for container ships and their effect on ship loading and unloading
operations. Transp Sci 40(4):473–483

Goodchild AV, Daganzo CF (2007). Crane double cycling in
container ports: planning methods and evaluation. Transp Res B
41(8):875–891

Zhang H, Kim KH (2009). Maximizing the number of dual-cycle
operations of quay cranes in container terminals. Comput Indust
Eng 56(3):979–992

Frank Meisel, Matthias Wichmann (2010).Container sequencing
for quay cranes with internal reshuffles. OR Spectrum (32):569–
591

Zhen, L., Chew, E. P., & Lee, L. H. (2011). An Integrated Model
for Berth Template and Yard Template Planning in Transship-
ment Hubs. Transportation Science, 45(4), 483-504.

Lu Chen, André Langevin, Zhiqiang Lu (2012). Integrated sched-
uling of crane handling and truck transportation in a maritime
container terminal. European Journal of Operational Research
225 (2013) 142-152

