
Retrieve Instruction from Manual for Strategy Games

Alison Paredes, Tianyi Gu

Department of Computer Science
University of New Hampshire

Durham, NH 03824 USA

Abstract
In this project, we study the task of helping an auto-
mated player win a computer game by reading a strate-
gic user’s guide designed for human players. In com-
plex computer games such as Star Craft, War Craft, and
Civilization, finding a winning strategy is challenging
even for humans. Therefore, human players typically
rely on manuals and guides. Recently, researchers have
tried to using such textual information to train an auto-
mated player(Branavan, Silver, and Barzilay 2011). Our
goal, is to better understand the retrieval model used in
their paper in terms of algorithms and metrics from the
field of information retrieval. Our results provide some
evidence that inverse document frequency out performs
recurrent neural networks at assisting human players,
and could be used as a baseline for evaluating retrieval
models used in playing games like this.

Introduction
In this project, we evaluated ways that relevant text could be
retrieved from a strategic user’s guide to aid in automated
planning in a turn-based strategy game. In complex com-
puter games such as Star Craft, War Craft, and Civilization,
finding a winning strategy is challenging even for humans,
therefore, human players may take advantage of strategic
manuals to play a winning game. Automated planning in
games like these is also challenging because of the number
of actions available at each turn. In game such as the one
discussed in this paper there can be as many as 1021 possible
actions at each turn. Recently, some researchers (Branavan,
Silver, and Barzilay 2011) have proposed to use a strategic
user’s guide designed for human readers to limit automated
search for promising actions.

In this paper we compare two retrieval models, a vector
space model and a generative language model, and we eval-
uate them in terms of their ability to satisfy an information
need defined by human experts. First, we give an overview
of Monte-Carlo Tree Search, a critical component of Brana-
van, et. al. to identify relevant text automatically.

(Branavan, Silver, and Barzilay 2011) approach this task
in a online supervised framework based on a feedback signal
from the tree leaves. Because at the beginning steps, the tree
search will guided by an un-trained retrieval model, which
certainly could waste the computational resource, we pro-
pose two approaches to learn the retrieval model offline. Our

Figure 1: An example sentence from the user manual of the
game Civilization II

first approach is to use vector space model as the retrieval
model, where we treat each sentence in the manual as a doc-
ument. We compute the TF-IDF value for all documents of-
fline. The game state could be described as a query sentence.
Then in online tree search, we compute the similarity be-
tween the query and all sentences and rank them with the
hope that the most relevant sentence is at the top of the rank-
ing. Our second approach is to train a language model offline
by recurrent neural network, which would contain all the in-
formation of the user manual. Then in online tree search, we
use the language model as a generative model, sample from
it to generate a sentence to bias the search, using the query
as seed words. We evaluate our method using mean average
precision (MAP@K=10) and Normalized Discounted Cum-
mulative Gain (NDCG@K=10). Then we show our results
could be used as an alternative retrieval model in the tree
search framework.

Related Work
Training a Robot to Read
Our work is based on previous research in machine learn-
ing (Branavan, Silver, and Barzilay 2011). As they do, our
method also operates within the Monte-Carlo tree search
framework (Tesauro and Galperin 1996), which has been
successfully applied to complex games such as Go (Silver
et al. 2016) and Klondike Solitaire (Bjarnason, Fern, and
Tadepalli 2009). The game is defined by a large Markov
Decision Process 〈S,A, T,R〉. Here S is the set of possible
states which encodes attributes of the games such as play-
ers’ territories and military resources. A is the space of le-
gal actions such as arrange some works to get natural re-
sources. T (s′|s, a) is a stochastic state transition function
where s, s′ ∈ S and a ∈ A. Finally, a given utility function
R(s) ∈ R captures the likelihood of winning the game from



state s.
The goal of the Monte-Carlo search algorithm is to dy-

namically select the best action for the current state st. This
select is based on the results of multiple roll-outs which
measure the outcome of a sequence of actions in a simu-
lated game. States and actions are evaluated by an action-
value function Q(s, a), which is an estimate of the expected
outcome of action a in state s. As the accuracy of Q(s, a)
improves, the quality of action selection improves and vice
versa, in a cycle of continual improvements (Sutton and
Barto 1998).

In their work (Branavan, Silver, and Barzilay 2011), the
authors propose a method for learning an action-value func-
tion augmented with linguistic features, while simultane-
ously modeling sentence relevance and predicate structure.
They employ a multi-layer neural network where the hidden
layers represent sentence relevance and predicate parsing de-
cisions. The hidden layer encodes the action-value function
Q(s, a, d), which also depends on the document d. Their rel-
evance decision is modeled as a log-linear distribution over
sentences as follows:

P (yi|st, at, d) ∝ e
−→µΦ(yi,st,at,d)

Here Φ(yi, st, at, d) ∈ Rn is a feature function and −→µ are
the parameters need to estimate online.

Probabilistic models are one of the most important classes
of retrieval models in information retrieval making its use
in this case not unusual. One of the most popular proba-
bilistic models is the binary independence model which is
like the probabilistic model proposed in their paper because
not only does it rank documents, in our case sentences, by
probability of of its relevance given a vector of features of
both the query and the sentence after some training but it can
also be used untrained, without any judgments as to the rel-
evance of a sentence given a sentence and the query. Since
the model is trained as the game is played it may be initially
untrained, vector u will be 0, therefore the probability that
any sentence will be the most relevant sentence to the cur-
rent state will be the same across all sentences. At the start of
the game any sentence may look like the most relevant sen-
tence. But unlike the authors probabilistic model where all
sentences are equally likely to be relevant before the model
has been trained, in binary independence model (BIM) some
sentences will be more likely than others to be relevant given
the query. It is this baseline case that we would like to use
to compare any other retrieval model used in game playing
because it is a common model, not only is it used in proba-
bilistic models but also vector space models of retrieval.

Vector Space Model

We begin by showing how the vector space model we have
chose is related to the probabilistic model noted above. BIM
weighs the ratio that a term used in the query appears in
a relevant document against the frequency that it appears
in a non-relevant document. The idea is that a query term
will appear more frequently in relevant documents than non-
relevant documents.

∑
t:xt=1,qt=1

log
pt(1− ut)
ut(1− pt)

Of course this requires knowing something about which
documents are relevant to the query or not. Instead, if we as-
sume that it is equally likely that a term appears in a relevant
document as not,

pt =
1

2

and that the proportion of times it does not show up in a non
relevant document is influenced by the number of sentences
it shows up in across the entire corpus,

ut =
nt
N

=
dft
N

then we we can say that without any training terms that show
up rarely in other sentences throughout the user’s guide but
do show up in the sentence in question make this sentence
more likely to be the most relevant sentence than other sen-
tences. ∑

t:xt=1,qt=1

log
N − dft
dft

This weight is the similar to a weight used in vector
space retrieval models, inverse document frequency (IDF)
(Christopher D. Manning and Schtze 2008).

log
N

dft

This will serve as the baseline for comparison for other
retrieval models discussed in this paper given its popularity
and its simplicity. While it is better than a uniform distribu-
tion over relevant sentences it is nothing fancy. It weights
some terms more than others in a way that models the fre-
quency of words in language using limited computational
effort. If we can assume that we can read the entire user’s
guide before it is ever queried by the player then we can
score each term in our user’s guide’s vocabulary in a way
that can be leveraged at query time in constant time, giving
us a rough but quick score of relevant documents which we
can use to compare to more sophisticated methods.

Language Model
Our another approach is to use language model to predict
a sentence that relevant to the query. The Recurrent Neural
Network (RNN) is neural sequence model that achieves state
of the art performance on important tasks that include lan-
guage modeling (Mikolov et al. 2010), speech recognition
(Graves 2013), and machine translation (Kalchbrenner and
Blunsom 2013). The RNNs address the issue that it is un-
clear how a traditional neural network could use its reason-
ing about previous words in the documents to inform later
ones. Essential to these success is the use of Long Short
Term Memory networks (LSTMs), a very special kind of
recurrent neural network, for many tasks, much better than
the standard version. They were introduced by (Hochreiter



and Schmidhuber 1997), and were refined and popularized
by many people in following work.

One of the appeals of RNNs is the idea that they are able
to connect previous information to the present task, such as
using previous paragraph inform the understanding of the
present sentence.

Approach
Vector Space Model
One simplifying assumption we made was to forego any lan-
guage processing in constructing the vocabulary. We did not
remove any stop words such as ”a” or ”the” either in the vo-
cabulary or in our query construction. Instead we relied on
the model to emphasize ubiquitous and therefore less valu-
able words like ”a” and ”the” in distinguishing once sen-
tence from another. In a small corpus such as ours, this as-
sumption may not have been as helpful as we would have
liked since the corpus is so small even words like ”the”
which we would expect to occur in every document if they
were much larger did not, and while they were weighted
low as expected, their scores were close to zero, other less
valuable words that occurred in our query such as ”how”
might have had a bigger impact then we would have liked.
Nonetheless, as our results show, IDF still out performed
RNN despite the influence of stop words.

tf = 1

(1 + log(tf))(log
N

dft
) = log

N

dft

We also opted not to normalize scores by the length of
the sentence in which they occurred as is more commonly
practiced in using the vector space model to retrieve doc-
uments from a large corpus. We made this decision when
we initially ran a normalized version of this scoring func-
tion against the user’s guide and discovered a characteristic
of the user’s guide that would be expected of a single doc-
ument but not necessarily of a corpus of documents. Since
our user’s guide is a collection of sentences and each sen-
tence, to be consistent with the task defined by Brannavan
et. al, is treated as a single document. We found that some
sentences within the user’s guide act more as subtitles than
sentences. They are consequently much shorter than the av-
erage sentence and therefore will score higher than the aver-
age sentence when they contain the same set of terms. Be-
cause subtitles however are not structured the same way as a
sentence with an object and a predicate, predicate being the
more interesting piece of the sentence for our longer term
objective, to test the ability of information from the user’s
guide to influence action selection and since actions can be
found in the predicate of a sentence, we opted to simplify
the scoring model. This introduced a new assumption about
which sentences would be more useful to a player, longer
more complex sentences than shorter collections of words.

Finally, we opted to weight query terms only by their ex-
istence, using a binary model. We assumed all query terms
would be equally weighted and we let the occurrence of the
query term in a sentence drive the value of that term. The

score of a particular query and sentence was therefore the
sum of TF-IDF scores for each term in the query.

Another reason why we were excited to be able to com-
pare Branavan et. al’s probabilistic model to a vector space
model was because it enables us to query the user’s guide
in constant time. Ideally we would have liked to be able to
compare the performance of both our baseline and our gen-
erative retrieval model using a different source of feedback
other than our human annotators. We believe it is a good
baseline to measure retrieval models using judgments pro-
vided by human players, given that the game is designed for
human players and the user’s guide is designed for human
readers. We are implicitly assuming that encapsulated in our
annotator judgments is their assessment that the sentence
is relevant to playing a winning game. The authors Brana-
van et al propose another way to evaluate the relevance of
a sentence. They propose to use its performance in a simu-
lated game as a proxy. This could be considered a kind of
relevance feedback which they use to adjust their retrieval
model. For our purposes we would have liked to use the re-
sult of a simulated game as a proxy simply for determining
relevance. This would have however required simulating a
game which in order to be feasible would have required our
implementation of querying the user’s guide to be fast, con-
stant time ideally.

Consequently our system indexes the user’s guide offline,
at the time calculating term frequency (TF) for each term-
document pair in the user’s guide’s vocabulary. The time to
construct this index is O in the number of terms in the user’s
guide. We expect to read every word in the corpus and either
add the word and sentence to our index and increment the to-
tal number of sentences in the user’s guide, add the sentence
to our index and increment document frequency, or incre-
ment the count of the word in our index to support TF. We
defer calculating TF-IDF until query time rather than revisit
every term-sentence pair to calculate and store TF-IDF. At
query time all we have to do is look up the number of sen-
tences we read and the term where we can access the term’s
document frequency and its posting list, where for each post-
ing we can access the term-frequency in the sentence, and at
that time calculate TF-IDF. Because calculating TF-IDF for
a single term-sentence pair involves directly accessing these
stored values we can consider calculating TF-IDF takes con-
stant time at query time. Ideally we can characterize the cal-
culation of TF-IDF for all the terms in a query as constant
time if we assume that the query size is considerably smaller
than the size of our vocabulary. For the queries we tested in
the project this is true, however it is possible that the num-
ber of terms used in a query initiated by an automated player
may have considerable more terms. But for now we can say
queries are executed in constant time.

The size of our implementation is also O in the size of
our vocabulary and the number of sentences in the user’s
guide. Given that we expect some words to occur in almost
every document and many more words to occur in very few
documents, we estimate the size of implementation to be O
in the size of the vocabulary.



Language Model
Language modeling is a task of learning a probability dis-
tribution P (w1, ..., wn) over a set of all possible word se-
quences. The goal is to learn such probability distribution P
that real sentences will have much higher probability com-
pared to random sets of words. Once such probability dis-
tribution is learned, we can use it as a generative model and
sampling from it to generate new text. In this section, we will
talk about a language model approach that predict a sentence
given several query words as sampling seed.

To predict a sentence, sometimes, we only need to look at
recent information to perform the present task. For example,
consider a language model trying to predict the next word
based on the previous ones. If we trying to predict the last
word in “the clouds are in the sky”, we don’t need any further
context. In such cases, where the gap between the relevant
information and the place that it’s needed is small. There
are also cases where we need more context. Consider trying
to predict the last word in the text “I grew up in France...I
speak fluent French”. Recent information suggests that the
next word is probably the name of a language, but if we want
to predict which language, we need the context of France,
from a sentence might be several paragraph back. It’s en-
tirely possible for the gap between the relevant information
and the point where it is needed to become very large. Re-
current neural network is a neural network with a recurrent
connection. That is, unlike conventional network, it consid-
ers it’s previous state in addition to the current input. Be-
cause of this modification RNNs are natural model of choice
for modeling sequential data.

So we have an idea about what RNNs are, why they are
super exciting. We’ll now ground this in our task: We’ll train
RNN language models. An obvious way to achieve this is to
train a word based language model. However, sampling with
query words which are not exist in the manual is likely to be
a problem. This problem can be solved by train character
based language model. That is, we’ll give the RNN the huge
chunk of text (the manual) and ask it to model the probabil-
ity distribution of the next character in the sequence given a
sequence of previous characters. This will then allow us to
generate new sentence one character at a time.

Figure 2: Example sentences generated by RNN

Here, we just follow Tensorflow’s tutorial. Instead of us-

ing the data set from the original paper (Zaremba, Sutskever,
and Vinyals 2014), we use the user manual of the game Civ-
ilization II. My seed phrase is: “autoworker” which is found
in the manual. As shown in figure 2, before any training, we
get a totally random sequence of characters. As expected,
this sentence doesn’t make sense, meaning that our (cur-
rently random) probability distribution over word sequences
isn’t particularly useful. Amazingly, just after the first epoch,
the model seems to have learned sentences are split by space.
After 19 epoch the model have learned to to spell English
words. While the phrase itself does not make sense, the word
in it are undoubtedly English with a typo or two. After epoch
38, we get a sentence that try to summarize the mean of “au-
toworker”. As shown in figure 3, after eporch 82, the per-
plexity of both train set and test set converge to about 2.5.

4

8

12

16

0 20 40 60 80

P
e

rp
le

x
it
y

Epoch

train
test

Figure 3: Perplexity of our prediction method

Evaluation
Data set
The data set we used for this project was the same data set
used in Branavan, et al. We were able to get a copy of it from
the authors. The file, civ II game manual.txt was a text file
which differed somewhat what one would have expected a
player would have seen. This version appeared to have been
processed although minimally. We did not need to distin-
guish sentences from each other. Most importantly the au-
thors had organized the user’s guide to put each sentence on
its own line in the file, delimited by end of line characters.
We were thus able to read the file line by line and consider
each new line a new sentence. Sentence IDs therefore corre-
sponded to line numbers in the file making it easy to check
our parser.

Our decision to interpret each sentence in the user’s guide
as a single document was motivated by the retrieval model
used in Branavan et al. to retrieve the single most relevant
sentence from the user’s guide to evaluate in simulation.
Secondly, this interpretation enabled us to compare Brana-
van et al’s retrieval model to well established information re-
trieval models. There is a significant difference however be-
tween the size of a sentence and the size of a document. Our



benchmark retrieval model is designed to be used in tradi-
tional information retrieval settings where the unit of infor-
mation is the document, a body of text made up of a number
of sentences. A corpus should be made up of a large number
of documents. In our situation we have significantly reduced
the size of both the unit of information and the corpus. On
average the size of our unit of information, the sentence, is
only 16 words long and the size of our corpus is only 2,084
sentences. Our vocabulary is considerably smaller than a tra-
ditional vocabulary might be as well. Instead of millions of
terms we have only 3552 terms, including stop words such as
”the”. The distribution of our vocabulary however is shaped
similarly to what we would expect of a traditional corpus.
A few words have an IDF close to zero indicating that they
occur frequently in many sentences in the corpus while the
majority of words are close to the highest IDF indicating
that they occur rarely. Nonetheless a sentence may still be
too small a unit of information to benefit fully from IDF’s
ability to minimize the influence of common words. For ex-
ample the word ”the” should be ubiquitous but it appears
in only 1426 sentences of our 2084 sentence corpus, result-
ing in an IDF of 0.4. With the highest IDFs at about 3.4,
0.4 is still about 12% of the weight of a unique term. In a
long query such as the queries we used our experiment, a
sentence made up of a handful of infrequent words could
compete with one made of much rarer words and return a
poor result set.

Measures
This project is in part a response to Branavan et al which
took an approach to evaluating their retrieval model used in
machine learning, evaluating the result returned by their re-
trieval model for accuracy. They took the single most rel-
evant sentence returned by their retrieval model and deter-
mined if it was accurate or not. They were able to distinguish
an accurate result from an inaccurate result by adding sen-
tences they considered inaccurate into the user’s guide. They
argued that because of the large variety of states a player
could be in when it queries the user’s guide that it would be
impossible to manually annotate enough sentence-state pairs
to adequately evaluate their model using other methods. We
have however attempted this alternative method of evaluat-
ing a retrieval model with statistically significant results.

In our method we used a tiny subset of the large num-
ber of possible information needs a player could have had
at the outset of a new game. Like Branavan et al we fo-
cused our experiment on the beginning phase of the game
which they propose is better addressed by the user’s guide.
This information needs was then represented as a query for
each system. We then queried each system returning a list
of sentences from each ranked in order of most relevant to
least relevant. In RNN we made the assumption that earlier
epochs would be less relevant that more current epochs. A
copy of the results, the information need represented by a
question and a saved copy of the game state at the time in-
formation need was defined were given to each of our two
expert judges to annotate as either relevant to the informa-
tion need or not. We attempted to control for variation in
judges’ assessments by selecting judges with similar expe-

rience with the game. They both had significant experience
playing a more recent version of the game so they were fa-
miliar with some aspects of the game. But neither had much
experience with this much older version of the game and so
might have a genuine information need for strategic advice
about how to win this version of the game. In the next sec-
tion we compare how our queries performed in aggregate ac-
cording to our judges using several metrics from information
retrieval bolstered by a measure of our judges’ judgments.

Mean Average Precision (MAP) measures a retrieval
model by aggregating across queries the average precision
of each query. Average precision is the average of the preci-
sion at each increase in recall up to some k number of results.
Starting with the most relevant sentence we calculate recall,
which is the number of relevant sentences in the sentences
so far divided by the total number of relevant sentences in
the result set. If recall increases then measure precision at
this ranking. Precision is the total number of relevant sen-
tences so far divided by the total number of sentences so
far. Once all k results have been considered then we take the
arithmetic mean of all precision measurements for the result
set. This is the average precision of the query. The mean of
the average precision of each query across all queries using
this retrieval model is the MAP measurement of the retrieval
model.

We chose to measure MAP for K=10, since we intended
to present our results to human annotators, which we can
assume expect some results and have some tolerance for
sorting through multiple responses. However because our
ultimate objective is to help evaluate the performance of a
retrieval model for an automated player which has the po-
tential to be able to sort through many more results than
the usual player and an architecture for training a retrieval
model that has very little tolerance for anything but the most
relevant sentence we thought it would should also evaluate
our query results using NDCG which rewards queries that
place relevant results higher in the ranked result set. Ideally
a good retrieval model should return the most relevant result
in the first result in the result set. While a K=1 would have
evaluated how well the highest ranked sentences performed,
each system returned a relevant result in the top ranked po-
sition so infrequently that we would not have been able to
make a statistically significant comparison using this met-
ric. NDCG however allows us to get a sense of this metric
with some forgiveness for a rough retrieval model, which
our benchmark was intended to be.

NDCG is a ratio of a weighted sum of relevance judg-
ments, where relevant sentences ranked higher in the result
set get a higher score compared to relevant sentences ranked
lower in the result set, compared to an ideal ranking of the
same result set.

zkj

k∑
m=1

2k(jm) − 1

log(1−m)

And like MAP this score is aggregated across all queries
in the test suite using the arithmetic mean. As for MAP, we
chose K=10 for NDCG as well.



Results
Results of MAP@K=10 and NDCG@K=10 for 10 queries
are shown in Figure 4. Since there was no interaction be-
tween judge and retrieval model, the single-variable model
for the retrieval model seemed to best describe this data.

For MAP, the difference between retrieval models is (IDF-
J1+IDF-J2) - (RNN-J1 +RNN-J2). The mean difference is
0.4688. The standard error of the mean difference is 0.1992.
A correlated t-test of the difference in scores finds the mean
difference to be statistically significant at the 0.05 confi-
dence level (t=0.4687609/0.1991941= 2.3533 and Degrees
of Freedom=9, two-tailed p=0.0431). The power of this test
however is low (0.350). Note because the data were posi-
tively skewed we chose a positive transformation. The scores
shown below represent the square root of the measurement
of the query in each condition.

For NDCG, the difference between retrieval models is
(IDF-J1+IDF-J2) - (RNN-J1 +RNN-J2). The mean differ-
ence is 0.5222. The standard error of the mean difference is
0.2480. A correlated t-test of the difference in scores failed
to find the mean difference to be statistically significant at
the 0.05 confidence level (t=0.5222/0.2480= 2.1056 and De-
grees of Freedom=9, two-tailed p=0.0645). The power of
this test however is low (0.350). Note because the data were
positively skewed we chose a positive transformation. The
scores shown below represent the square root of the mea-
surement of the query in each condition.

Figure 4: Mean difference in MAP and NDCG

Conclusion
In conclusion, while there is some evidence that the preci-
sion of the IDF retrieval model is better than RNN, a larger
sample of queries would have made for stronger evidence.
Still a difference in MAP of 0.05 percentage points, trans-
formed back to raw average precision, is not a scientifically
significant difference. Neither IDF nor RNN performed very
well on the given information needs using this traditional
approach–a good MAP score should have been higher. That
does not however preclude the possibility that these retrieval
models could support automated game play. But if one were
to pursue this question one should increase the number of

queries in each condition from 10 to at least 40 for better
power.

In summary, we set out to evaluate retrieval models for
use in querying a single document, a strategic user’s guide,
for strategic advice that an automated player could use to
play a winning game. We began first by characterizing the
retrieval model used in Branavan et. al. and comparing it to
similar models from the field of information retrieval. We
looked at a comparable vector space model (IDF), which
became our baseline, and a promising generative language
model (RNN), and trained these models offline using only
the strategic user’s guide. While Branvan et. al. evaluated
their retrieval model’s performance by comparing how well
their automated player performed with and without help
from the user’s guide, our idea was to better understand the
retrieval model in comparison to other retrieval models and
to use metrics from information retrieval to evaluate them.
Our results showed that IDF performed better than a gener-
ative language model for human players but we would have
liked to try these models on an automated player. Given that
an automated player using Monte-Carlo Tree Search may
try many different actions in simulation at each turn before
committing to its next action, it is possible that an automated
player may judge different sentences to be relevant than our
human experts. If the actions implied by the sentence re-
sult in a promising Q(s,a) value then the automated player
should judge the sentence’s advice to be relevant. While we
did not have the opportunity to implement a Monte-Carlo
Tree Search to get this kind of feedback, we think it would
have produced a more nuanced understanding of the perfor-
mance of these two types of retrieval models in the con-
text of playing turn-based strategy games because we be-
lieve while our human experts scored RNN results poorly,
an automated player might have made better use of these
sentences.

Future work along this line of thinking should consider
including more words in the calculation of IDF for each sen-
tence, perhaps by clustering sentences to better distinguish
between sentences. One should give RNN more time to train
its model to get the best possible results, perhaps leveraging
GPU. And finally one should consider caching offline in-
dexes. If we were to attempt to use game scores instead of
expert judgments we would need ideal performance at query
time to execute 200 queries per roll-out as outlined in Brana-
van, et al and calculate the expected value of these games
thereby giving us a game score that we can use as feedback,
a proxy for the relevance of a sentence to the given game
state described by the query and measure of the automated
player’s happiness with the results.

Individual Contributions
The authors, Tianyi Gu and Alison Paredes, contributed
equally to designing and executing this project. Alison Pare-
des coded the indexer and query function for the vector
space model. Tianyi installed and ran the recurrent neu-
ral network. Both authors facilitated annotations, and each
wrote sections of this paper. Alison Paredes performed the
data analysis of the the results. Tianyi laid out the final paper
and created all of the equations in LaTeX.



The authors would like to thank Professor Laura Dietz,
Professor Wheeler Ruml, Bryan Zhang and other members
of the UNH AI Group and CS880 for their insightful com-
ments. We also thank Igor Kozlov and Joseph Sichelstiel for
being our human experts.

References
[Bjarnason, Fern, and Tadepalli 2009] Bjarnason, R.; Fern,
A.; and Tadepalli, P. 2009. Lower bounding klondike soli-
taire with monte-carlo planning. In ICAPS.

[Branavan, Silver, and Barzilay 2011] Branavan, S.; Silver,
D.; and Barzilay, R. 2011. Learning to win by reading
manuals in a monte-carlo framework. In Proceedings of the
49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1, 268–
277. Association for Computational Linguistics.

[Christopher D. Manning and Schtze 2008] Christopher
D. Manning, P. R., and Schtze, H. 2008. Introduction to
Information Retrieval. Cambridge University Press.

[Graves 2013] Graves, A. 2013. Generating sequences with
recurrent neural networks. arXiv preprint arXiv:1308.0850.

[Hochreiter and Schmidhuber 1997] Hochreiter, S., and
Schmidhuber, J. 1997. Long short-term memory. Neural
computation 9(8):1735–1780.

[Kalchbrenner and Blunsom 2013] Kalchbrenner, N., and
Blunsom, P. 2013. Recurrent continuous translation models.
In EMNLP, volume 3, 413.

[Mikolov et al. 2010] Mikolov, T.; Karafiát, M.; Burget, L.;
Cernockỳ, J.; and Khudanpur, S. 2010. Recurrent neural
network based language model. In Interspeech, volume 2,
3.

[Silver et al. 2016] Silver, D.; Huang, A.; Maddison, C. J.;
Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser,
J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al.
2016. Mastering the game of go with deep neural networks
and tree search. Nature 529(7587):484–489.

[Sutton and Barto 1998] Sutton, R. S., and Barto, A. G.
1998. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge.

[Tesauro and Galperin 1996] Tesauro, G., and Galperin,
G. R. 1996. On-line policy improvement using monte-carlo
search. In NIPS, volume 96, 1068–1074.

[Zaremba, Sutskever, and Vinyals 2014] Zaremba, W.;
Sutskever, I.; and Vinyals, O. 2014. Recurrent neural
network regularization. arXiv preprint arXiv:1409.2329.


	Introduction
	Related Work
	Training a Robot to Read
	Vector Space Model
	Language Model

	Approach
	Vector Space Model
	Language Model

	Evaluation
	Data set
	Measures
	Results

	Conclusion

