
Online Policy Training vs Heuristic Search
Using Reinforcement Learning to Avoid Dynamic Obstacles

Collin Crowell∗, Tianyi Gu∗, Mostafa Hussein∗, Yishan Luo∗, Sangeeta Patnaik∗, Yuncong Zhou∗,

Abstract— This paper focus on finding better methods to
solve the problem of dynamic obstacles avoidance for mobile
robots. We studied two deterministic approaches which use
heuristic search techniques, and four stochastic approaches
which use reinforcement learning techniques. We proved these
two approaches are mathematically different. The experiment
results show that deterministic approaches work better for
this problem. They are not only faster but also robuster than
stochastic approaches. But stochastic approaches still applicable
for certain problem scenarios.

I. INTRODUCTION

The ability to avoid dynamic obstacle is very crucial
for mobile robots to operate in real world. Once the robot
gathers the sensor information, it needs a planner to come
up with an executable plan, say a sequence of actions, that
navigate the robot to the goal position without intersecting
with any obstacles. Figure 1 gives a brief description of the
problem. There are two ways to solve this problem. One
is to predict the movement of those dynamic obstacles so
that the problem becomes a stationary problem, then apply
deterministic algorithms to solve it. We call this framework
deterministic approach. The second approach is to solve
the stochastic problem directly by applying reinforcement
learning algorithms. We call it stochastic approach.

In this paper, we focus on studying the planning algorithms
and assume fully observability of the robot. We compared
deterministic approaches and stochastic approaches. More
specifically, we implement two search algorithms for the
deterministic approach and four reinforcement algorithms for
the stochastic approach. We developed a simulation frame-
work to mimic the real-time planning scenario to support the
experiments. The experiment results show that the determin-
istic approach is not only faster but also robuster than the
stochastic approach. We also proved that the deterministic
approach is mathematically different from the stochastic
approach.

In the following, Section 2 reviews the wildly used de-
terministic approaches and stochastic approaches. Section 3
presents the six implemented algorithms. Section 4 presents
the simulation framework and experiments that compare all
those algorithms. Section 5 discuss the similarity and differ-
ence between the deterministic approach and the stochastic
approach. We conclude with a summary and bring up some
future work in Section 6.

*Equal contribution

Fig. 1: We focus on the problem of navigating the robot (star
in the middle) from the start position (green ring) toward the
goal position (red ring) without intersect any static obstacles
(blue squares) and dynamic obstacles (orange circles).

II. RELATED WORK

A. Deterministic Approach

Several deterministic approaches have been implemented
to solve similar obstacle avoidance problems. Work has been
done in the planning space to safely navigate around dynamic
obstacles that move with uncertain motion patterns. Planning
a safe trajectory with dynamic obstacles requires accurate
prediction of the obstacles location and future behavior. An
algorithm was created to solve this problem by building a
learned motion pattern model by combining a sample based
reachability computation and Gaussian processes. Simula-
tions demonstrated that this planner could safely navigate
an autonomous vehicle around a complex environment in
real-time while mitigating the chance of a collision with the
dynamic obstacles [1].

Several other planning algorithms have been created that
can efficiently plan and re-plan trajectories dynamically by
modeling the dynamic obstacle uncertainty [16][21]. A dif-
ferent planning approach tries to tackle the challenge of clut-
tered and highly dynamic environmental surroundings. There
are two major challenges under these conditions: trying to
predict the trajectories of the dynamic obstacles is noisy
and planning is computationally expensive because of the
large state space. Also, re-planning needs to occur frequently
since the trajectories of the dynamic obstacles change. These
problems are addressed with a path planning algorithm that
models the dynamic obstacles predicted trajectories and the
uncertainty of the predictions. A time-bounded lattice is used
which combines short-term planning with time with long
term planning without time[12].

Another approach in planning with dynamic obstacles
is using a sampling-based motion planning algorithm like
RRT [15] specifically developed for large robotic vehicles

with complex dynamics and operating in uncertain, dynamic
environments like URBAN challenge [20] [13].

Finally, we can use any real-time algorithm that uses
incremental planning if we could solve the problem of
dynamic obstacles prediction like [9][11].

B. Stochastic Approach

One wildly used model-free reinforcement learning ap-
proach is Sarsa [19]. The idea is to the update the Q value
by the rule:

Q(s, a)← Q(s, a) + α[r + γQ(S′, a′)−Q(S, a)]

Algorithm 1 Sarsa

1: initialize Q(s, a),∀s ∈ S, a ∈ A(s), arbitrarily, and
Q(terminal-state,.)=0

2: for each episode do
3: Initialize S
4: Choose A form S using policy derived from Q
5: for each step of episode do
6: Take action A, observe R,S′

7: Choose A′ form S′ using policy derived from Q
8: Q(S,A) ← Q(S,A) + α[R + γ ∗ Q(S′, A′) −
Q(S,A)

9: S ← S′ ; A← A′

10: until S terminal

Algorithm 10 is the pseudo code of SARSA, it always
updates the Q value by the Q(s, a), which is derived by
the current learned policy. Another model-free reinforcement
learning approach is Q− learning [22]. The idea is to the
update the Q value by the rule:

Q(s, a)← Q(s, a) + α(r + γmax
a′

Q(S′, a′))

Algorithm 2 Q-Learning

1: initialize Q(s, a),∀s ∈ S, a ∈ A(s), arbitrarily, and
Q(terminal-state,.)=0

2: for each episode do
3: Initialize S
4: for each step of episode do
5: Choose A form S using policy derived from Q
6: Take action A, observe R,S′

7: Q(S,A)← Q(S,A) + α[R+ γmaxaQ(S′, a)−
Q(S,A)

8: S ← S′

9: until S terminal

Algorithm 9 is the pseudo code of Q−learning, it always
update the Q value by the maxaQ(s, a).

Model-based approaches such as LSTD [5] and LSPI [14]
are also widely used as reinforcement learning approaches.
These two approaches efficiently use sample experiences to
learn state value function and state-action value function

respectively. Both of them implicitly learn the embed MDP
model. There are also other approaches that learn the MDP
model explicitly. iPOMDP[7] tries to learn a POMDP model
which is much harder than learn a MDP. The way they
achieve this problem is to assume some prior distribution
over the model and do inference based on observation.
Once a MDP model is learned, the problem of solving
the reinforcement learning problem transfers into solving
the MDP. So we can apply any MDP solver such as
dynamic programming approaches: value iteration (VI)[3],
policy iteration (PI)[18], modified policy iteration (MPI)[17]
or sampling-based approaches: real-time dynamic program-
ming (RTDP)[2] and its improved version labeled-RTDP
(LRTDP)[4], Monte Carlo Tree Search (MCTS)[6] and its
variation Upper Confidence Bound for Trees (UCT)[10]. In
our work, we solved MDP with UCT algorithm considering
its remarkable ability of balancing between exploitation and
exploration, which is naturally adapt to real-time on-line
search scenario.

III. METHOD

A. Deterministic Approach

Our problem here is how to plan under uncertainty of the
movement of the dynamic obstacles we have two different
approaches based on A∗ algorithm [8].

1) A∗ algorithm: A∗ makes use of two values g(n) as
the distance from the start node to the intermediate node we
try to reach and h(n) as the heuristic part that represent the
distance from the intermediate node to the final goal then the
total cost f(n) of the final path we trying to find is simply
the sum of the two distances.

F (n) = g(n) + h(n) (1)

Algorithm 3 A∗ Algorithm

1: initialize the open list
2: initialize the closed list
3: put the starting node on the open list
4: while open list not empty do
5: node X = the node with the least f on the open list
6: pop X off the open list
7: generate X children and set their parents to x . we

don’t diagonal movement
8: for each child do
9: if child is the goal then

10: top the search
11: child.g = X.g + 1 . for simple grid world
12: child.h = Manhattan distance from goal to child
13: child.f = child.g + child.h
14: add the node to the open list
15: push X on the closed list
16: return the path

A∗ algorithm is one of the oldest and powerful algorithms
that work with a guaranty to find the optimal path to the

10 9 8 7 6 5

9 8 7 6 5 4

8 7 6 5 4 3

7 6 5 4 3 2

6 5 4 3 2 1

5 4 3 2 1 0

(a) heuristic Matrix without obstacles

10 9 8 7 6 5

9 8 7 6 5 4

8 7 1000 5 1000 3

7 6 5 4 3 2

6 1000 4 1000 2 1

5 4 3 2 1 0

(b) heuristic Matrix with static obstacles

Fig. 2: Heuristic Matrix

goal but, if we want to use it as real-time motion planner we
need to have some small modifications on it.

The first approach that we used is simply run A∗ at each
time step and select the first action to commit to the agent
this way will guaranty that we have the optimal path but
it will take a lot of time to compute and then use the first
action simply it’s waste of time but it will be useful if you
must have the optimal path which usually is not required.

The second Method is a simplified approach from LSS−
LRTA∗[11] which is using the original A algorithm and
run it only for three iterations and select the best action to
commit to the agent, this approach is going to be much faster
because we only compute a small part of the path but at the
final we will not have the optimal path.

2) Dealing with static obstacles: The simplest and ef-
fective way to deal with the static obstacles is to make it
unreachable by assigning the H(n) for the static obstacles
potion with 1000. For example, if we have 6∗6 map with the
start at the (0, 0) position at the upper left corner and the goal
at position (5, 5) at the bottom right the original heuristic will
look like Fig 2a if we used Manhattan distance. If we have
4 static obstacles at positions (2, 2), (2, 4), (4, 1), (4, 3) the
final heuristic matrix will look like Fig 2b.

3) Dealing with Dynamic obstacles: That is the most
important part for us if we manage with some approaches
to have a potability matrix that states the probability of a
dynamic obstacle D are going to be in position (x, y), we
can use this matrix with the help of Equation 2 for each
dynamic obstacle to update the heuristic matrix then we are
going to explain how we can get this probability matrix.

10 9 8 7 6 5
9 8 7 6 5 4
8 7 6 5 4 3
7 6 5 4 3 2
6 5 4 3 2 1
5 4 3 2 1 0

(a) heuristic Matrix without obstacles

0 .2 0 0 0 0
0 .2 0 0 .2 .2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 .2 0 0 0
0 0 0 0 0 0

(b) probability matrix of dynamic obstacles position in the next
movement

10 19 8 7 6 5
9 18 7 6 15 14
8 7 6 5 4 3
7 6 5 4 3 2
6 5 14 3 2 1
5 4 3 2 1 0

(c) heuristic Matrix with dynamic obstacles and α = 50

Fig. 3: Heuristic Matrix updating with dynamic obstacles
probability

h(x, y) = originalh(x, y) +

N∑
i=1

prob(Di) ∗ α (2)

where N is the number of dynamic obstacles and α are
the number that used as a trade of time of computation and
the chance of collision with an obstacle. In Fig 3 we can
see how to update the heuristic matrix based on the dynamic
obstacles probability.

4) Dynamic obstacles movement prediction: To simplify
the complex environment, the movements of the dynamic
obstacles were constrained to a known model. This section
will describe our model of the dynamic obstacles and explain
the movement predictions. The dynamic obstacles are limited
to five actions; move up, move down, move left, move right
and stay put. At each time step the obstacles can take a

Fig. 4: Dynamic Obstacles movement.

single action. Actions are chosen randomly with a normal
distribution and dynamic obstacles move independently from
each other. If an action is chosen that would cause a wall
collision, the obstacle does not move as if the stay put
action were taken. Figure 4 shows a grid with two dynamic
obstacles and their possible movements after one-time step.

Since the actions and the distribution are known, we can
calculate and predict the obstacles movement by creating
a probability matrix. The probability matrix is used in the
deterministic approach to avoid the dynamic obstacles in the
grid world. The predicted movement of the obstacles can
be computed for a variable number of time steps. As the
number of time steps increase, the dynamic obstacle can
move further and further away from its starting position,
increasing the number of possible locations. The probability
that the dynamic obstacle is in or near its starting position
is much higher that the probability of the obstacle having
moved farther away. We calculate the probability of an
obstacle being in a grid cell by summing the opportunities
that the obstacle had to move to that cell after each time
step. The counts in each cell are divided by the total number
of possible moves to compute a probability.

B. Stochastic Approach

For the stochastic approach, we first model the problem
in Markov decision process (MDP). A MDP model is an
agent acting in a stochastic environment. The MDP model
can be specified as a tuple < S,A, T,R >, where S is a
set of states, A is a set of agent actions. When agent take
action a ∈ A in state s ∈ S, it moves to a new state
s′ ∈ S with probability T (s, a, s′) and receives a reward
R(s, a). We discretized the continues state space into a grid-
world representation, then each state here represent the agent
position and obstacles’ position. The actions in our work
are ”up”, ”down”, ”left”, ”right”, and ”stop”. We provide
a goal-reaching reward 1000 upon task completion and a
collision penalty -1000. To encourage shorter trajectories, we
add a small time penalty -1 as immediate reward. Because
we don’t have the model for the uncertainty movements of
dynamic obstacles, the transition model is unknown initially.

Fig. 5: Our off-line framework separate the training phrase
and the running phrase. In the training phrase (left), we run
the RL algorithm for a large number of episodes (20,000 in
our experiment) in the hope that it can learn a decent policy
(middle look-up table). Then in the real-time running phrase
(right), we commit the action that follow the policy.

Fig. 6: Value Implementation function of Sarsa-learning.

To address this problem, we study the model-free approaches
and model-based approaches.

1) Model-free Approach: We design an off-line reinforce-
ment learning framework to apply two most wildly used RL
algorithms: Q − learning and SARSA. Figure 5 shows
the off-line framework. To apply Q − learning, we follow
the pseudopod in 9. To apply SARSA, we follow the
pseudopod in 10. Q-learning is off-policy algorithm and
SARSA is on-policy algorithm. They perform the updates
of action-value function estimate at the end of each step
without waiting for the terminal. The challenge of bring
these algorithm to on-line scenario is that there were infinite
number of states and the visiting each state and calculate
Q-value in that limited time is difficult.

To address this problem, we implemented value approxi-
mation which is similar to LSPI which is a reinforcement
learning algorithm designed to solve control problems. It
is uses value function approximation to cope up with large
state spaces and batch processing for efficient use of training
data. LSPI has been used successfully to solve several
large-scale problems using relatively few training. In this
implementation value approximation is the method of using
the Q-value for set of seen state-action pair and manipulating
it to get an appropriate equation which can generate Q-value
for unseen data.

The value approximation for Q-value was implemented
with the help of Features and Weights as described in
Figure 6. Features is structured information about the input
parameters of the environment. For the stochastic approach
we have considered basically three broad category of input
parameter. The first feature is about the information about
the agents position. The second feature is about the position
of all dynamic obstacles in the grid respectively. The third
feature is about the action taken.

One very important factor that was taken care while

designing the feature were that every feature should be
unique with respect to the position in the grid. For example,
if say

f1 = x+ y

For coordinates (3,4) and (4,3) the value of the feature
would be same. This would be a fault in the feature design.
So, all the features were designed in such a way that for
every position in the grid it generated unique value.

Weights are the value that are generated with the help
of the seen dataset. Initially, we came up with some random
weights, these weights were substituted in the value approxi-
mation equation. The Q-value was calculated. The calculated
Q-value was compared with the actual Q-value and the Error
and Arrow was calculated.

Once the Error or Arrow was calculated, the prior was
used to adjust the weights. The weights were adjusted with
the help of the below mentioned mathematical equation.

θ0 ← θ0 − α(y′ − y)

θ1 ← θ1 − α(y′ − y)x1
θ2 ← θ2 − α(y′ − y)x2

This was experimented for a set of all the seen Q-values
and correct weights were calculated. The value approxima-
tion equation implemented to get Q-value of unseen data is

Q = w1 ∗ f1 + w2 ∗ f2 + w3 ∗ f3 + w4

where w1,w2,w3,w4 are the weights and f1,f2 f3 are the fea-
tures. The pseudopod of value approximation is in Algorithm
22

Algorithm 4 Value Approximation Approach Algorithm

f1 = x+ 10y
f2 = xd1+10xd1+100xd2+1000xd3+...+10nxdn

yd1+10yd1+100yd2+1000yd3+...+10nydn

f3 = 10a

procedure GET WEIGHT (s, a)
Weights[]W = w1, w2, w3, w4

q = w1 ∗ f1 + w2 ∗ f2 + w3 ∗ f3 + w4
for q∗ ∈ Set(q) do

δq = q∗ − q
w∗1 = w1 − δqf1
w∗2 = w2 − δqf2
w∗3 = w3 − δqf3
w∗4 = w4 − δqf4
w1 = (w1 + w∗1)/2
w2 = (w2 + w∗2)/2
w3 = (w3 + w∗3)/2
w4 = (w4 + w∗4)/2

return W
procedure GET QVALUE UNSEEN (s, a)

Weights[]W = NULL
W = GET WEIGHT(s, a)
Q = w1 ∗ f1 + w2 ∗ f2 + w3 ∗ f3 + w4
return Q

2) Model-based Approach: Another way to deal with the
uncertainty is directly estimate the transition model, then
apply MDP solver to update the policy until time limit. To
estimate the model uncertainty, we derive the transition prob-
ability from the movement prediction of obstacles. The prob-
ability matrices of each dynamic obstacle in the environment
can be used to compute the transition probability matrix.
The transition probability matrix is used in the model-based
stochastic approach to avoid the dynamic obstacles based
on the probabilities that the environment transitioned to
each possible state. The transition probabilities are computed
recursively based on the number of dynamic obstacles in the
grid world. The probabilities are computed by multiplying
all the probabilities of each dynamic obstacle at each state.

Algorithm 5 Monte Carlo tree search Algorithm

procedure SELECT ACTION (s, d)
loop

Simulate (s, d, π0)
return argmaxaQ(s, a)

procedure SELECT ACTION (s, d, π0)
if d = 0 then

return 0
if s 6∈ T then

for a ∈ A(s) do
(V (s, a), Q(s, a))← (N0(s, a), Q0(s, a))

T = T ∪ s
return Rollout (s, d, π0)

a← argmaxaQ(s, a) + c
√

logN(s)
N(s,a)

(s′, a) ∼ G(s, a)
q ← r + γSIMULATE(s′, d− 1, π0)
N(s, a)← N(s, a) + a

Q(s, a)← Q(s, a) + q−Q(s,a)
N(s,a)

return q

Algorithm 6 Rollout evaluation Algorithm

procedure ROLLOUT(s, d, π0)
if d = 0 then

return 0
a ∼ π0(s)
(s′, a) ∼ G(s, a)
return r + γRollout(s′, d− 1, π0)

Once we have the transition model, we can any of the
MDP solver to compute the policy. In our work, we use
UCT algorithm to solve the problem on-line because of its
remarkable ability of balancing between exploitation and
exploration, which is naturally adapt to real-time on-line
search scenario. The pesudocode of UCT is in Algorithm 18
and 6.

IV. EXPERIMENTS

A. Environment setting

We developed a grid world simulator to exam our path
planning algorithms. The world has one agent which we can
control, one static goal, and multiple random generated static
and dynamic obstacles. Typically, we set the total number of
obstacles to 10% of grid size. Every object has a unique
location in (x,y). Every moving object has 5 actions [stop,
up, down, right, left] and we encode them into integer [0-4]
for the ease of communication. All the dynamic obstacles
perform 2-dimensional random walk in each iteration.

1) Stucture: We decouple the path planning algorithm
and the simulator with a communication API. Simulator act
as a server and planning algorithms act as client in our
experiment. Simulator send two messages:

i. Locations of objects. At initialization stage the simulator
send locations of all objects. At update stage the simu-
lator only send the locations of agent and all dynamic
obstalces. For example in a world with 2 dynamic
obstacles, a typical space-seperated message is ”0 2 3 3
2 4”. This string is also used as state identifier in our
stochastic algorithms.

ii. Ending message. ”win” when the agent reaches the goal
/”lose” when agent crashes into an obstacle.

Planner send two messages:
i. Starting message. ”start” signals the simulator and get

initialization message.
ii. Actions: one action or a sequence of actions, such as ”2

3 0”.
2) Simulator: The real-time simulator we use for testing

all our path planning algorithms has the following setting:
i. The simulation starts with receiving a start message,

ends with sending a win/lose message.
ii. We assume that actions require time to perform in the

real world. Whenever the simulator receives an action
from planning algorithms, it will send back the current
location of all the moving objects.

iii. Simulator will wait for no more than 0.5 seconds for the
next action, once timeout it will send lose.

3) Trainer: We also develop a training module for the
stochastic algorithms. It is slightly different from the simu-
lator.

i. The training process will run indefinitely as long as the
planner wants to continue. Once it finished a start-¿end
cycle, it will immediately start a new one with the same
initialization message.

ii. The reward of an action is sent back immediately in the
training process.

B. Comparison

We run multiple experiments in our simulation framework.
Different map size vary from 6 by 6 to 10 by 10 are
compared. We compared two deterministic approaches: A*
and LSS-LRTA* as well as three stochastic approaches:
Q − learning, SARSA and UCT. For each map size

Fig. 7: We show the total computational time for each
map size. The bar here is the average over 10 problem
with different random seeds. Black line is the standard
deviation. LSS-LRTA* is faster than A*. The average total
computational time is less than 1000 milliseconds.

and each algorithm, 10 different random seeds are used to
generate problems. For the deterministic approach we have
one parameter α = 15 that’s work as a trade off between
the speed and the probability of collision with a obstacle.
For Q-learning and SARSA, we run 60,000 episode. For
UCT, we run 10,000 simulation with 100 step depth, and
constant in UCB is set to 1,000. Figure 7 shows the average
computational time for deterministic approaches to achieve
the goal. The CPU time is accumulate all search iterations.
Figure 8 shows the CPU time for stochastic approaches.
As we can see, deterministic approaches are much faster
than stochastic approaches. This is because we run off-line
learning for a very large number of episodes in order to
get a decent policy with Q-learning and SARSA. For UCT,
although it is on-line method, we still do a large number of
simulation in each step in the hope of get better Q value for
the state-action.

For the two deterministic approaches, we can see from the
figures that LSS −LRTA∗ is faster than A∗ that’s because
we don’t compute the complete path we only compute the
first three actions, which means the search frontier is always
three steps away from the root.

We also show successful rate of all those algorithms in
figure 9. As we can see, deterministic approaches also per-
form better than stochastic approaches. When the map size
is larger than 8, there is no success instance for stochastic
approaches within 60,000 episodes. So we do extra compute
the average steps for different episode numbers in each map
size. We observe that as it train longer, the agent survive
longer.

For the two deterministic approaches, successes rate for
A∗ are higher than LSS − LRTA∗. This is because of the
local look ahead for LSS-LRTA* is shorter than A* which
compute the complete path to guaranty optimality.

Fig. 8: We show the total computational time for each
map size. The bar here is the average over 10 problem with
different random seeds. Black line is the standard deviation.
SARSA and Q-learning takes less total cpu time than UCT
because they only involve off-line training while UCT train
a large number of simulation(10,000 here) for every step.
Q-learning and SARSA are look close because we use the
same training episode number for them (60,000 in this plot).

Fig. 9: We show the success rate for each map size. The
bar here is the number of win instance over total which is
10. A* performs best. For all map size, its success rate are
larger than 0.8. LSS-LRTA* is also not bad, it can achieve
high success rate even in map size 9 and 10. For Q-learning
and SARSA, they only work in small map size, and SARSA
performs even worse, it only win 1 instance in map size 6
by 6. The result of UCT is interesting, it lose all instance
in small map size 6 and 7, but start to win in larger map
size. We reason this is because as the map size increase, the
density of dynamic obstacle is decrease. Thus it increase the
chance for on-line approach like UCT to success.

V. DISCUSSION

In this section, we do the theoretically comparison be-
tween the deterministic approach and the stochastic ap-
proach.

In the deterministic model, the output of the model is fully
determined by the parameter values and the initial conditions.
But for the stochastic model, the same set of parameter
values and initial conditions will lead to an ensemble of
different outputs. Thus, in our project, the deterministic
method only has one plan while there is a fully policy in
the stochastic method. As a result, we found that these two
approaches are same in the first expansion, but they are
different in the further actions. The example that follows
will illustrate this notion.

First of all, the cost of deterministic can be defined as
follows

TotalCost =
∑
i

costiṖi

The reward function of stochastic can be computed with
the formula below

TotalReward =
∑
s′

P (s′|s, a)ṙ(s′)

App.A Fig. 10 shows the initial condition and the moving
direction of the agent and obstacles. The star is the goal
of agent and we have two dynamic obstacles (circle) now.
The probability of obstacle moving right is 0.8, and the
probability of staying in the same place is 0.2. We are talking
about the situation of the first expansion: the agent going up.
If there is a collision while moving, the cost or reward is -
1000; otherwise it is 0.

As we mentioned above, the deterministic method only
has one plan in the first expansion. Both obstacles move to
right. The collision happens, and the cost is 0.8 * 0 + 0.8
* -1000 = -800. The moving direction is shown as App.A
Fig. 11.

However, in terms of the stochastic method there are four
different transitions. The transition I is obstacles do not
move. The reward is 0.2 * 0.2 * 0 = 0, which means there
is no collision. In the transition II, the first obstacle moves
to right and the second obstacle stays in the same place.
The reward is still 0 calculated by 0.8 * 0.2 * 0. For the
third transition, the second obstacle goes to right and the first
obstacle does not move. In this scenario, collision happens
and the reward is 0.2 * 0.8 * -1000 = -160. The last condition
is both obstacles move right at the same time. There is a
collision as well; the reward is 0.8 * 0.8 * -1000 = -640.
The total reward is -800 (0 + 0 + -160 + -640). App.A
Fig. 12 indicates these four transitions respectively.

According to the above analysis results, when the agent is
tested in the first expansion the cost of deterministic is equal
to the reward of stochastic. Therefore, these two methods
are same in the first action. Nonetheless, it does not mean
they are always equal. When the agent take the second
and more actions, the deterministic approach will use the

Manhattan distance as the heuristic. But in the stochastic
approach the reward is accumulated by the subtree through
the Bellman equation. App.A Fig. 13 presents the difference.
In conclusion, these two methods are different in the second
expansion and subsequent actions.

VI. CONCLUSIONS

This paper study deterministic and stochastic approaches
to solve the dynamic obstacles avoidance problem for mo-
bile robots. Experiment results show that deterministic ap-
proaches work better for this problem. They are not only
faster but also robuster than stochastic approaches, and they
also scales up much better. However, we argue that off-line
stochastic approach still worth to apply in those problem
with relatively small state space, and we have considerable
off-line training time budget. Then once we finished off-line
training, the on-line running would be very efficient because
it will involves no computation effort.

In this project, We didn’t finish the value approximation.
We will keep doing that. There are also several improvement
can be done for the simulator such as support on-line object
mode update and better support on-line training. The theo-
retical proof is not sound. We basically just give a general
idea in this paper. We could also do more experiments that
enable tuning algorithm parameters.

For model the uncertainty of dynamic obstacles move-
ment, in a more realistic environment, the model of the
dynamic obstacles would not be known. Dynamic obstacles
could move in different directions with unknown probabili-
ties and unknown velocities. Inertia is the resistance for an
object to change its state of motion. Using the concept of
inertia, we know that obstacles in motion at high velocities
with high masses have a higher probability of not changing
their direction of movement. This concept could be used to
develop a method that can learn from an obstacles history
and estimate the obstacles next position. Given a history of
the dynamic obstacles positions and the timestamp of each
position record, we would like to estimate the probability of
the dynamic obstacles future locations.

The Kalman filter is a tried and true method used to
estimate a state using a series of observations recorded
over time. This method can estimate unknown variables
using a history of measurements containing noise and other
inaccuracies. The Kalman filter was introduced in 1960 by
Rudolf E. Klmn. The algorithm can predict an estimate
of the current state variables (position and velocity of the
dynamic obstacles) and the uncertainties of the estimates.
The subsequent observation can be used to update the
current estimation using a weighted average. Estimates with a
higher certainty are given more weight. The algorithm works
recursively and can be run in real time by using the current
observation, calculated state and uncertainty matrix. Using
a Kalman filter, we hope that we can accurately predict the
motion of the dynamic obstacles with unknown models. This
would allow the techniques presented in this paper to be
applied to a more realistic environment.

REFERENCES

[1] Georges S Aoude, Brandon D Luders, Joshua M Joseph, Nicholas
Roy, and Jonathan P How. Probabilistically safe motion planning to
avoid dynamic obstacles with uncertain motion patterns. Autonomous
Robots, 35(1):51–76, 2013.

[2] Andrew G Barto, Steven J Bradtke, and Satinder P Singh. Learning
to act using real-time dynamic programming. Artificial intelligence,
72(1-2):81–138, 1995.

[3] R Bellman. Dynamic programming. Princeton University Press
Princeton, 1957.

[4] Blai Bonet and Hector Geffner. Labeled rtdp: Improving the conver-
gence of real-time dynamic programming. In ICAPS, volume 3, pages
12–21, 2003.

[5] Steven J Bradtke and Andrew G Barto. Linear least-squares algorithms
for temporal difference learning. In Recent Advances in Reinforcement
Learning, pages 33–57. Springer, 1996.

[6] Rémi Coulom. Efficient selectivity and backup operators in monte-
carlo tree search. In International conference on computers and games,
pages 72–83. Springer, 2006.

[7] Finale Doshi-Velez, David Pfau, Frank Wood, and Nicholas Roy.
Bayesian nonparametric methods for partially-observable reinforce-
ment learning. IEEE transactions on pattern analysis and machine
intelligence, 37(2):394–407, 2015.

[8] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE transactions
on Systems Science and Cybernetics, 4(2):100–107, 1968.

[9] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli,
and Seth Teller. Anytime motion planning using the rrt. In Robotics
and Automation (ICRA), 2011 IEEE International Conference on,
pages 1478–1483. IEEE, 2011.

[10] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo
planning. In ECML, volume 6, pages 282–293. Springer, 2006.

[11] Sven Koenig and Xiaoxun Sun. Comparing real-time and incremental
heuristic search for real-time situated agents. Autonomous Agents and
Multi-Agent Systems, 18(3):313–341, 2009.

[12] Aleksandr Kushleyev and Maxim Likhachev. Time-bounded lattice
for efficient planning in dynamic environments. In Robotics and
Automation, 2009. ICRA’09. IEEE International Conference on, pages
1662–1668. IEEE, 2009.

[13] Yoshiaki Kuwata, Justin Teo, Gaston Fiore, Sertac Karaman, Emilio
Frazzoli, and Jonathan P How. Real-time motion planning with
applications to autonomous urban driving. IEEE Transactions on
Control Systems Technology, 17(5):1105–1118, 2009.

[14] Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration.
Journal of machine learning research, 4(Dec):1107–1149, 2003.

[15] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic
planning. The International Journal of Robotics Research, 20(5):378–
400, 2001.

[16] Jun Miura, Hiroshi Uozumi, and Yoshiaki Shirai. Mobile robot motion
planning considering the motion uncertainty of moving obstacles.
In Systems, Man, and Cybernetics, 1999. IEEE SMC’99 Conference
Proceedings. 1999 IEEE International Conference on, volume 4, pages
692–697. IEEE, 1999.

[17] M.L Puterman. Markov decision processes: discrete stochastic dy-
namic programming. New York: John Wiley & Sons, 1994.

[18] Howard R.A. Dynamic programming and markov processes. MIT
Press, Cambridge, Massachusetts, 1960.

[19] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning
using connectionist systems, volume 37. University of Cambridge,
Department of Engineering, 1994.

[20] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker,
Robert Bittner, MN Clark, John Dolan, Dave Duggins, Tugrul Galatali,
Chris Geyer, et al. Autonomous driving in urban environments: Boss
and the urban challenge. Journal of Field Robotics, 25(8):425–466,
2008.

[21] Jur P van den Berg and Mark H Overmars. Planning the shortest
safe path amidst unpredictably moving obstacles. In WAFR, pages
103–118, 2006.

[22] Christopher John Cornish Hellaby Watkins. Learning from delayed
rewards. PhD thesis, King’s College, Cambridge, 1989.

VII. APPENDIX A

Fig. 10: Initial Condition.

Fig. 11: Moving of Deterministic.

(a) (b) (c) (d)

Fig. 12: Four state transitions of action moving up with (a) 0.2*0.2=0.04, (b)0.2*0.8=0.16, (c) 0.8*0.2=0.16, (d)0.8*0.8=0.64

(a) (b)

Fig. 13: (a) Manhattan Distance, (b) Subtree

