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Comparing

COntrlbUthnS Planners: Beyond

Coverage Tables

1. non-trivial problem that deserves attention—and standard tools don't apply

2. some early-stage ideas (collaborators welcome!)

Stephen Wissow (UNH) Comparing Planners: Beyond Coverage Tables 2 /14



The Problem

coverage table:

planner A planner B planner C
tricky domain 3 3 3
normalized (%) 100 100 100
CPU times #1: requires failures

B much slower:

planner A: 0.1, 0.2, 0.3 #2: insensitive to magnitudes
planner B: 1000, 2000, 3000 C scales worst:

planner C: 0.01, 0.05, 0.3 #3: insensitive to scaling
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The Problem

‘ planner A planner B
tricky domain | 1000 1001

reproducible with new instances?
#4: no measure of certainty
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Sign Test (Arbuthnot 1710) Planners, Beyond

Coverage Tables

» non-parametric: pair of CPU times — coin flip
» measure bias of coin: which planner faster more often

Avs B Avs. B Sign Tet.
CPU times
planner A: 1, 2, 3
planner B: 1.01, 2.01, 3.01
planner B’: 1000, 2000, 3000

1 <1.01 1 <1000 Sign Test result

2 <2.00 2 <2000 wp is petter than B and B'”
3 < 3.01 3 <3000 £1: insensitive to magnitudes

P(A<B) P(A<B')

=1 =1
planner A: 0.9, 1.9, 3000 Avs B “A is better than B”
planner B: 1.1, 2.1, 3.1 09<1.1 but B obviously scales better
1.9 < 2.1 #2: insensitive to scaling
3000 > 3.1
P(A<B) = 2/3
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Wilcoxon Rank-Sum (Deuchler 1914)

» non-parametric: rank CPU times, sum each algorithm’'s ranks
» 1. assumes CPU time distributions have same shape and spread

Avs.B Awvs. B

CPU times 1.1
planner A: 1, 2, 3 2. 1.1
planner B: 1.1, 2.1, 3.1 3.2
planner B: 1.1, 2.9, 3000 4. 2.1

5. 3
6. 3.1
A=9

1
2
3
4
5
6
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Wilcoxon Rank-Sum

-1 Wilcoxon Rank-Sum result
. 1.1  “Ais better than B and B’"

.2
.29
.3
3000

A=9

B=12 B =12
#2: insensitive to scaling

#3: insensitive to magnitudes
(#2 & #3 shared with sign test)
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Paired t-test (Gosset 1908)

» probability that mean difference is not zero
» #1: assumes paired runtime differences normally distributed

» but we expect differences to continue to grow
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N(0,1) two planners’ running times

even with Gaussian noise we don't expect central tendency
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McNemar's Test (McNemar 1947) Plamers. Bevond

Coverage Tables

» contingency table = paired coverage table

» has been used in the planning literature

McNemar's Test

CPU times | B+ | B-
planner A: 1, 2, 3 A+ 3 0
. A- 0 0

planner B: 1000, 2000, 3000

McNemar's Test result

“A — B”

» #1: insensitive to scaling
» #2: requires failures

» just codifies reasoning behind coverage table
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Desiderata

the community needs a metric that

» does not require failures

is sensitive to scaling/magnitudes

provides a measure of its certainty

>
>
» has assumptions that align with planning
>

(see paper for more)

Stephen Wissow (UNH)
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New Approaches

these tests fail:
» Coverage Tables
» Sign Test

» Wilcoxon Rank-Sum Test

» Paired t-test
» McNemar's Test

some works in progress:

» Bootstrapped Exponential Estimates (BEE)

» a Bayesian approach

Stephen Wissow (UNH)
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Comparing

Bootstrapped Exponential Estimates (BEE) e et

Coverage Tables
fit m2*" to planner runtime data, use residuals for bootstrapping

> sensitive to scaling/magnitudes » assumptions align with planning

» provides a measure of its certainty » (more pros in paper)

Bootstrapping

100
Problem size

fit original data hallucinate bootstrapping data compare distributions of k
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BEE Algorithm Sketch

fit m2*™ to one planner's running time data
estimate 1, 02 of residuals in log-running time space
do r times:

hallucinate new residuals from g, o2
add to original fit to hallucinate new data

fit hallucinated data, record m, k

N o s D=

compare planners’ histograms of k — P(k; < k;)
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Comparing

Another Approach: a Bayesian Model Planners. Beyond

Coverage Tables

» n: problem size (generator parameter) l
» d: problem difficulty

m

k

» r: one CPU running time measurement

> 0= [ ]: planner parameters

@ @ Bayesian
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Conclusion

» planner comparison is central to our field

» running time data are rich

» coverage tables are not expressive enough

Stephen Wissow (UNH)

let's develop appropriate measures
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Comparin
FUtU re WOI’k PIannersI? Besond

Coverage Tables

Sign Test
Wilcoxon Rank-Sum
Paired t-test

McNemar's Test

“which algorithm is better” — “which algorithm is better where/when /why" oA

Bayesian

Future Work
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