Comparing Planners: Beyond Coverage Tables

Caleb Hill¹, Stephen Wissow², Wheeler Ruml²

¹Department of Mathematics and Statistics, ²Department of Computer Science University of New Hampshire, USA

Thanks to the NSF-BSF program for support via NSF grant 2008594.

Comparing Planners: Beyond Coverage Tables

The Problem

Solutions?

Sign Test Wilcoxon Rank-Sum Paired *t*-test McNemar's Test

Desiderata

New Approaches Bootstrapping Bayesian

Conclusion

Contributions

1. non-trivial problem that deserves attention—and standard tools don't apply

2. some early-stage ideas (collaborators welcome!)

The Problem

Solutions?

Sign Test Wilcoxon Rank-Sum Paired *t*-test McNemar's Test

Desiderata

New Approache Bootstrapping Bayesian

Conclusion

The Problem

coverage table:

		planner A	planner B	planner C		Solutions?
	tricky domain	2	2	2	_	Sign Test
		J	3	3	_	Paired <i>t</i> -test
	normalized (%)	100	100	100		McNemar's Test
#1, requires failures						Desiderata
CPU times		11	I. requires i	anures		New Approa
		В	much slowe	r:		Bootstrapping
planner A:	0.1, 0.2, 0.3	#	2: insensitiv	e to magnit	udes	Bayesian
planner B:	1000. 2000. 3000	C C	scales worst			Conclusion
planner C	0 01 0 05 0 3	#	3: insensitiv	e to scaling		Future Wor
	-, -, -, -, -, -, -, -, -, -, -, -, -, -					

	planner A	planner B			
tricky domain	1000	1001			
reproducible with new instances?					
#4: no measure of certainty					

Stephen Wissow (UNH)

Comparing Planners: Beyond Coverage Tables

3 / 14

Comparing

Planners: Beyond Coverage Tables

Sum

The Problem

Sign Test (Arbuthnot 1710)					
 non-parametric: pair of measure bias of coin: wl 	CPU times \rightarrow coin hich planner faster	flip more often	The Problem		
	Avs BAvs. B	1	Solutions? Sign Test Wilcoxon Rank-Sum		
CPU times planner A: 1, 2, 3	$1 < 1.01 \ 1 < 100$ $2 < 2.01 \ 2 < 200$	Paired <i>t</i> -test McNemar's Test Desiderata			
planner B: 1.01, 2.01, 3.01 planner B': 1000, 2000, 3000	3 < 3.01 $3 < 300$	New Approaches Bootstrapping Bayesian			
	$\begin{array}{rrr} P(A{<}B) & P(A{<}B) \\ = 1 & = 1 \end{array}$	')	Conclusion Future Work		
planner A: 0.9, 1.9, 3000	A vs B	"A is better than B"			
planner B: 1.1, 2.1, 3.1	0.9 < 1.1	but B obviously scales better			
	1.9 < 2.1	#2: Insensitive to scaling			
Stephen Wissow (UNH)	3000 > 3.1 P(A <b) 2="" 3<br="" =="">Comparing Planners: Beyond C</b)>	overage Tables 4 / 1	14		

Wilcoxon Rank-Sum (Deuchler 1914)

- non-parametric: rank CPU times, sum each algorithm's ranks
- ▶ #1: assumes CPU time distributions have same shape and spread

	A vs. B	A vs. B'		Sign Test	
CPU times	1. 1	1. 1	Wilcoxon Rank-Sum result	Paired <i>t</i> -test McNemar's Test	
planner A: 1, 2, 3	2. 1.1	2. 1.1	"A is better than B and B'"	Desiderata	
planner B: 1.1, 2.1, 3.1	3. 2	3. 2		New Approach Bootstrapping	
planner B': 1.1, 2.9, 3000	4. 2.1	4. 2.9		Bayesian	
•	5 . 3	5. 3		Future Work	
	6 . 3.1	6 . 3000			
	A = 9	A = 9			
	B = 12	B' = 12			
<pre>#2: insensitive to scaling #3: insensitive to magnitudes</pre>					
Stephen Wissow (UNH)	Comparing Planr	ners: Beyond Covera	age Tables 5 / 1	4	

Comparing

Planners: Beyond Coverage Tables

Paired *t*-test (Gosset 1908)

- probability that mean difference is not zero
- ▶ #1: assumes paired runtime differences normally distributed
- but we expect differences to continue to grow

Comparing Planners: Beyond Coverage Tables

The Problem

Solutions?

Sign Test Wilcoxon Rank-Sum

Paired *t*-test McNemar's Test

Desiderata

New Approaches Bootstrapping Bayesian

Conclusion

Future Work

even with Gaussian noise we don't expect central tendency

Stephen Wissow (UNH)

McNemar's Test (McNemar 1947)

- contingency table = paired coverage table
- has been used in the planning literature

CPU times planner A: 1, 2, 3 planner B: 1000, 2000, 3000 A-

- \blacktriangleright #1: insensitive to scaling
- ► #2: requires failures
- just codifies reasoning behind coverage table

McNemar's Test result

A = B

The Problem

Solutions?

Sign Test Wilcoxon Rank-Sum Paired *t*-test

McNemar's Test

Desiderata

New Approaches Bootstrapping Bayesian

Conclusion

Future Work

B+

3

0

B-

0

0

Desiderata

the community needs a metric that

- does not require failures
- is sensitive to scaling/magnitudes
- provides a measure of its certainty
- has assumptions that align with planning
- (see paper for more)

Comparing Planners: Beyond Coverage Tables

The Problem

Solutions?

Sign Test Wilcoxon Rank-Sum Paired *t*-test McNemar's Test

Desiderata

New Approache Bootstrapping Bayesian

Conclusion

New Approaches

these tests fail:

- Coverage Tables
- Sign Test
- Wilcoxon Rank-Sum Test
- Paired t-test
- McNemar's Test

some works in progress:

- Bootstrapped Exponential Estimates (BEE)
- a Bayesian approach

Comparing Planners: Beyond Coverage Tables

The Problem

Solutions?

Sign Test Wilcoxon Rank-Sum Paired *t*-test McNemar's Test

Desiderata

New Approaches

Bootstrapping Bayesian

Conclusion

Bootstrapped Exponential Estimates (BEE)

fit $m2^{kn}$ to planner runtime data, use residuals for bootstrapping

- sensitive to scaling/magnitudes
- provides a measure of its certainty

hallucinate bootstrapping data

assumptions align with planning

(more pros in paper)

compare distributions of k

Comparing Planners: Beyond Coverage Tables

The Problem

Solutions?

Sign Test Wilcoxon Rank-Sum Paired *t-*test McNemar's Test

Desiderata

New Approache

Bootstrapping Bayesian

Conclusion

Future Work

Stephen Wissow (UNH)

BEE Algorithm Sketch

- 1. fit $m2^{kn}$ to one planner's running time data
- 2. estimate μ, σ^2 of residuals in log-running time space
- 3. do r times:
- 4. hallucinate new residuals from μ, σ^2
- 5. add to original fit to hallucinate new data
- 6. fit hallucinated data, record m, k

7. compare planners' histograms of $k \rightarrow P(k_i < k_j)$

Comparing Planners: Beyond Coverage Tables

The Problem

Solutions?

Sign Test Wilcoxon Rank-Sum Paired *t*-test McNemar's Test

Desiderata

New Approache

Bootstrapping Bayesian

Conclusion

Another Approach: a Bayesian Model

- ► *d*: problem difficulty
- $\theta = \begin{bmatrix} m \\ k \end{bmatrix}$: planner parameters
- ► r: one CPU running time measurement

Comparing Planners: Beyond Coverage Tables

The Problem

Solutions?

Sign Test Wilcoxon Rank-Sum Paired *t*-test McNemar's Test

Desiderata

New Approaches Bootstrapping Bayesian

Conclusion

Future Work

Stephen Wissow (UNH)

Conclusion

- planner comparison is central to our field
- running time data are rich
- coverage tables are not expressive enough

let's develop appropriate measures

Comparing Planners: Beyond Coverage Tables

The Problem

Solutions?

Sign Test Wilcoxon Rank-Sum Paired *t*-test McNemar's Test

Desiderata

New Approaches Bootstrapping Bayesian

Conclusion

Future Work

Stephen Wissow (UNH)

Comparing Planners: Beyond Coverage Tables

13 / 14

Future Work

"which algorithm is better" \rightarrow "which algorithm is better where/when/why"

Comparing Planners: Beyond Coverage Tables

The Problem

Solutions?

Sign Test Wilcoxon Rank-Sum Paired *t*-test McNemar's Test

Desiderata

New Approaches Bootstrapping Bayesian

Conclusion

Future Work

Stephen Wissow (UNH)