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Contributions

1. non-trivial problem that deserves attention—and standard tools don’t apply
2. some early-stage ideas (collaborators welcome!)
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The Problem
coverage table:

planner A planner B planner C
tricky domain 3 3 3
normalized (%) 100 100 100

CPU times
planner A: 0.1, 0.2, 0.3
planner B: 1000, 2000, 3000
planner C: 0.01, 0.05, 0.3

#1: requires failures
B much slower:
#2: insensitive to magnitudes
C scales worst:
#3: insensitive to scaling

planner A planner B
tricky domain 1000 1001

reproducible with new instances?
#4: no measure of certainty
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Sign Test (Arbuthnot 1710)
� non-parametric: pair of CPU times → coin flip
� measure bias of coin: which planner faster more often

CPU times
planner A: 1, 2, 3
planner B: 1.01, 2.01, 3.01
planner B�: 1000, 2000, 3000

A vs B

1 < 1.01
2 < 2.01
3 < 3.01

P(A<B)
= 1

A vs. B�

1 < 1000
2 < 2000
3 < 3000

P(A<B�)
= 1

Sign Test result
“A is better than B and B�”
#1: insensitive to magnitudes

planner A: 0.9, 1.9, 3000
planner B: 1.1, 2.1, 3.1

A vs B
0.9 < 1.1
1.9 < 2.1

3000 > 3.1
P(A<B) = 2/3

“A is better than B”
but B obviously scales better
#2: insensitive to scaling
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Wilcoxon Rank-Sum (Deuchler 1914)
� non-parametric: rank CPU times, sum each algorithm’s ranks
� #1: assumes CPU time distributions have same shape and spread

CPU times
planner A: 1, 2, 3
planner B: 1.1, 2.1, 3.1
planner B�: 1.1, 2.9, 3000

A vs. B
1. 1
2. 1.1
3. 2
4. 2.1
5. 3
6. 3.1

A = 9
B = 12

A vs. B’
1. 1
2. 1.1
3. 2
4. 2.9
5. 3
6. 3000

A = 9
B’ = 12

Wilcoxon Rank-Sum result
“A is better than B and B�”

#2: insensitive to scaling
#3: insensitive to magnitudes

(#2 & #3 shared with sign test)
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Paired t-test (Gosset 1908)
� probability that mean difference is not zero
� #1: assumes paired runtime differences normally distributed
� but we expect differences to continue to grow
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two planners’ running times

even with Gaussian noise we don’t expect central tendency
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McNemar’s Test (McNemar 1947)

� contingency table = paired coverage table
� has been used in the planning literature

CPU times
planner A: 1, 2, 3
planner B: 1000, 2000, 3000

B+ B-
A+ 3 0
A- 0 0

McNemar’s Test result

“A = B”

� #1: insensitive to scaling
� #2: requires failures
� just codifies reasoning behind coverage table
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Desiderata

the community needs a metric that
� does not require failures
� is sensitive to scaling/magnitudes
� provides a measure of its certainty
� has assumptions that align with planning
� (see paper for more)
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New Approaches

these tests fail:
� Coverage Tables
� Sign Test
� Wilcoxon Rank-Sum Test
� Paired t-test
� McNemar’s Test

some works in progress:
� Bootstrapped Exponential Estimates (BEE)
� a Bayesian approach
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Bootstrapped Exponential Estimates (BEE)

fit m2kn to planner runtime data, use residuals for bootstrapping

� sensitive to scaling/magnitudes
� provides a measure of its certainty

� assumptions align with planning
� (more pros in paper)
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BEE Algorithm Sketch

1. fit m2kn to one planner’s running time data
2. estimate µ,σ2 of residuals in log-running time space
3. do r times:
4. hallucinate new residuals from µ,σ2

5. add to original fit to hallucinate new data
6. fit hallucinated data, record m, k
7. compare planners’ histograms of k → P(ki < kj)
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Another Approach: a Bayesian Model

� n: problem size (generator parameter)
� d: problem difficulty

� θ =

�
m
k

�
: planner parameters

� r : one CPU running time measurement

n

d θ1 θ2

r1 r2
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Conclusion

� planner comparison is central to our field
� running time data are rich
� coverage tables are not expressive enough

let’s develop appropriate measures
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Future Work

“which algorithm is better” → “which algorithm is better where/when/why”
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