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Contributions

1. new problem setting: tunable suboptimal heuristic search
▶ what practitioners really want?

2. new algorithm: Speed*
▶ complete

3. experimental survey of tunable setting
▶ Bead usually best but fails in domains with dead-ends
▶ Speed* best in domains with dead-ends
▶ best bounded-suboptimal ̸= best tunable
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Search Settings and Objectives

optimal: minimize solution cost

▶ A* (Hart, Nilsson, and
Raphael 1968, f = g + h)

greedy: minimize solving time

▶ GBFS (Michie and Ross 1969, h)

▶ Speedy (Ruml and Do 2007, d)

bounded suboptimal:
minimize time subject to relative cost bound

▶ wA∗ (Pohl 1970, f ′ = g + w · h)
▶ RR-d (Fickert, Gu, and Ruml 2022, d, f̂ , f)

new setting: tunable suboptimal:
best cost-time trade-off—no guarantees
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Pedagogical Example
bounded suboptimal:

▶ minimize time subject to relative
cost bound

▶ left is good

tunable:

▶ best cost-time trade-off

▶ down and left is good

best bounded suboptimal ̸= best
tunable!
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new algorithm: Speed*

▶ best-first on f †(n) = g(n) + h(n) + s′ · d(n)
▶ interpolates between A* and Speedy

▶ see paper for completeness proof, post hoc suboptimality bound

simple design expressly for tunable setting!
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Contributions

1. tunable suboptimal heuristic search

2. Speed*

3. experimental survey
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Algorithms Compared

1. wA∗: simple popular bounded suboptimal

2. RR-d: state-of-the-art bounded suboptimal

3. Bead: incomplete but fast and tunable

4. Rectangle: state-of-the-art anytime, terminated at solution k

5. Speed*: explicitly tunable

Reference algorithms:

6. GBFS: limit of wA∗ (big w)

7. Speedy: limit of Speed* (big s), RR-d (big w)

8. Hill-Climbing: limit of Beam search (b = 1)
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Problem Domains

no dead-ends:

1. sliding tiles (unit and non-unit cost)

2. blocks world

3. pancake (unit and non-unit cost)

dead-ends:

4. traffic

5. New Hampshire racetrack (crash is dead-end)
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tile unit, 85/100 commonly solved instances
bead 100000, 30000, 10000, 3000,
1000, 300, 100, 30, 10
Greedy
Rectangle 5, 4, 3, 2, 1
RR-d 1.1, 1.5, 2, 3, 5, 10, 100
Speed*-d 1.1, 1.5, 2, 3, 5, 10, 100
Speedy
wA*-d 1.1, 1.5, 2, 3, 5, 10, 100

Bead has best cost-time trade-off—Speed* outperforms RR-d
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tile inverse, 54/100 commonly solved instances
bead 100000, 30000, 10000, 3000,
1000, 300, 100, 30, 10
Greedy
Rectangle 5, 4, 3, 2, 1
RR-d 1.1, 1.5, 2, 3, 5, 10, 100
Speed*-d 1.1, 1.5, 2, 3, 5, 10, 100
Speedy
wA*-d 1.1, 1.5, 2, 3, 5, 10, 100

Speed* outperforms wA∗ on non-unit cost
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racetrack unit dijkstra, 70/125 commonly solved instances
bead 100000, 30000, 10000, 3000,
1000, 300
Greedy
Rectangle 5, 4, 3, 2, 1
Rectangle500 5, 4, 3, 2, 1
RR-d 1.01, 1.03, 1.1, 1.5, 2, 3, 5,
10, 100
Speed*-d 1.001, 1.01, 1.1, 1.5, 2, 3, 5,
10, 100
Speedy
wA*-d 1.001, 1.01, 1.1, 1.5, 2, 3, 5,
10, 100

Bead fails on dead-ends
Speed* robust to dead-ends
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Results: Summary

▶ Bead awesome on domains without dead-ends

▶ Speed* robust to dead-ends

▶ Speed* outperforms wA∗ and RR-d
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Contributions

1. new problem setting: tunable suboptimal heuristic search
▶ no guarantees, but what practitioners really care about?

2. new algorithm: Speed*
▶ complete

3. experimental survey of tunable setting
▶ Bead usually best but fails in domains with dead-ends (incompleteness)
▶ Speed* best in domains with dead-ends
▶ best bounded-suboptimal ̸= best tunable
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s′ computation for Speed*

▶ help account for inter-domain variation in relative magnitudes of d and h

▶ make Speed* behave like wA∗ for given value of s or w on unit cost

▶ computed once at start and held constant throughout search

f †(n) = g(n) + h(n) + s′ · d(n)

s′ = (s− 1) · h(ni)

d(ni)

s ∈ [1, inf)

initial state ni
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Speed*’s Post Hoc Suboptimality Bound

for solution cost C, min f value on frontier at termination, optimal cost C∗:

b :=
C

fmin
≥ C

C∗

borrows approach from anytime setting; can apply to Speed* too
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Why is searching on d faster than h?

hypothesis: number and size of local minima affect performance

▶ Pearl and Kim (1982)

▶ Thayer and Ruml (2009)

▶ Wilt and Ruml (2014)

▶ Cohen and Beck (2018)

many questions remain in use of distance in suboptimal search
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Limitations

▶ other settings convertible to tunable (like anytime/Rectangle):
▶ real-time search: return next action within absolute time bound

▶ really hard problems
▶ imposed 1 min solving time limit in experiments
▶ e.g. 81-puzzle (sliding tiles)
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Real-Time Search

▶ interpolates between A* and Hill-Climbing
▶ in each iteration: absolute time bound on selecting next action to commit

to
▶ tunable ‘knob’

▶ terminate at first solution

▶ Hill-Climbing is Real-Time with time bound of 0

▶ time bound similar to beam width but more robust

▶ notoriously subject to dead-ends like Beam search

▶ not commonly used in tunable setting
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Extending Previous Work

tunable setting implied in previous work:

▶ Wilt, Thayer, and Ruml (2010)

▶ Wilt, Thayer, and Ruml (2011)

present work (Wissow, Yu, and Ruml 2024) is first tunable survey to compare
state-of-the-art RR-d and Rectangle.
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Bounded Cost and Contract Search Settings

▶ bounded cost search: guarantee solution cost within absolute bound c of
optimal: C ≤ c+ C∗

▶ understanding effect of c on search behavior requires familiarity with range of
typical solution costs, including C∗

▶ units of absolute bound c vary across problem domains, impeding
interpretability

▶ e.g. Potential Search (Stern, Puzis, and Felner 2011)

▶ contract search: minimize solution cost subject to absolute bound on search
time
▶ requires reasoning about two uncertain values:

▶ how likely to find cheapest solution in subtree of given node
▶ how likely to find (any) solution in subtree of given node before deadline

▶ sparse previous work
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wA∗’s Pathological Behavior

Wilt and Ruml (2012):

▶ correlation between d∗(n) and h(n): varies by domain

▶ domains with low correlation → GBFS can fare poorly

▶ not h∗(n)–h(n) correlation

▶ not % error h∗(n)−h(n)
h∗(n)

▶ not local minima size
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wA∗ Bounded Suboptimality Proof Sketch
for returned solution s, and unexpanded p along an optimal solution path

f ′(s) ≤ f ′(p) s expanded before p

g(s) ≤ g(p) + w · h(p) definition of f ′, goal-aware h

≤ w · g(p) + w · h(p) algebra

= w · f(p) definition of f

≤ w · C∗ admissible h
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Problem Domain Citations

1. sliding tile puzzle: Korf (1985, ‘15-puzzle’)

2. blocks world: Slaney and Thiébaux (2001)

3. pancake: Helmert (2010), non-unit: Hatem and Ruml (2014)

dead-ends:

4. traffic: Kiesel, Burns, and Ruml (2015)

5. New Hampshire racetrack: variant of Gardner (1973) that adds dead-ends
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