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Abstract

Monte-Carlo Tree Search (MCTS) combined with Multi-
Armed Bandit (MAB) has had limited success in domain-
independent classical planning until recently. Previous work
(Wissow and Asai 2023) showed that UCB1, designed for
bounded rewards, does not perform well when applied to
the cost-to-go estimates of classical planning, which are un-
bounded in R, then improved the performance by using a
Gaussian reward MAB instead. We further sharpen our un-
derstanding of ideal bandits for planning tasks by resolving
three issues: First, Gaussian MABs under-specify the support
of cost-to-go estimates as [−∞,∞]. Second, Full-Bellman
backup that backpropagates max/min of samples lacks the-
oretical justifications. Third, removing dead-ends lacks jus-
tifications in Monte-Carlo backup. We use Extreme Value
Theory Type 2 to resolve them at once, propose two bandits
(UCB1-Uniform/Power), and apply them to MCTS for classi-
cal planning. We formally prove their regret bounds and em-
pirically demonstrate their performance in classical planning.

1 Introduction
A recent breakthrough in Monte-Carlo Tree Search (MCTS)
combined with Multi-Armed Bandit (MAB) applied to clas-
sical planning demonstrated that a better theoretical under-
standing of bandit-based algorithms can significantly im-
prove search performance. Wissow and Asai (2023) showed
why UCB1 bandit (Auer, Cesa-Bianchi, and Fischer 2002)
does not perform well in classical planning: It assumes a re-
ward distribution with a known, fixed, finite support such
as [0, 1] that is shared by all arms, i.e., that the cost-to-go
estimates / heuristic functions would satisfy this. They then
proposed UCB1-Normal2 bandit that assumes Gaussian re-
wards, which has the support R = [−∞,∞] that is impossi-
ble to violate.

We continue this trend to improve the understanding
of heuristic search from the MAB standpoint. We aim to
resolve three theoretical issues that remain in the previ-
ous work: The first is the under-specification that assumes
cost-to-go estimates to be in [−∞,∞], which should in-
stead be [0,∞]. In relaxation heuristics, this can be tighter,
e.g., hmax ∈ [0, h+] and hFF ∈ [h+,∞]. The second
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is the correct statistical characterization of extrema (maxi-
mum/minimum): Schulte and Keller (2014) noted that the
use of averages in UCT is “rather odd” for optimization
tasks such as planning and tried to address it without bandit-
theoretic justification (Full Bellman backup that backpropa-
gates the smallest mean among the arms.) The third is the
dead-end removal. When a heuristic returns ∞ at a dead-
end, a single dead-end node in a tree makes the evaluation
of the root node ∞, because the average is ∞ if samples con-
tain an ∞. Schulte and Keller (2014) removed these dead-
end nodes from the tree, but it lacks statistical justification.

We introduce Extreme Value Theory (Fisher and Tip-
pett 1928; Balkema and De Haan 1974, EVT) as the sta-
tistical foundation for understanding general optimization
(minimization/maximization) tasks that resolves all issues
above. EVTs are designed to model the statistics of extrema
(minimum/maximum) of distributions using the Extremal
Limit Theorem, unlike most statistical literature that models
the average behavior based on the Central Limit Theorem
(Laplace 1812, CLT). Among branches of EVTs, we identi-
fied EVT Type 2 as our primary tool for designing new algo-
rithms, which leads to Generalized Pareto (GP) distribution,
which plays the same role as Gaussian distribution in CLT.

Based on this framework, we propose two novel MAB
algorithms, UCB1-Power and UCB1-Uniform, for heuristic
search applied to classical planning. Each of our novel ban-
dits models a special case of GP distribution to avoid the
numerical difficulty of estimating its parameters. We eval-
uate their performance over existing bandit-based MCTS,
traditional GBFS and state-of-the-art diversified search al-
gorithm called Softmin-Type(h) (Kuroiwa and Beck 2022).
On 772 IPC instances under the same evaluation budget of
104 nodes using hFF heuristics, GUCT-Power solved 55,
15.8, and 20 more instances than GBFS, GUCT-Normal2,
and Softmin-Type(h), and GUCT-Uniform solved 56.8, 13,
and 18.8 more instances, respectively.

2 Extreme Value Theory Type 2
CLT states that the average of i.i.d. RVs converges in distri-
bution to a Gaussian distribution. Extremal Limit Theorem
Type 1 (Fisher and Tippett 1928) similarly states that the
maximum of i.i.d. RVs converges in distribution to an Ex-
treme Value Distribution (EVD). It is used for predicting the
block maxima, such as the monthly maximum water level.
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Figure 1: (top) Generalized pareto distribution GP(0, 1, ξ).
(mid) Computing the average and the variance is seen as fit-
ting N (µ, σ); Computing the maximum and the shape of
the tail distribution is seen as fitting GP(µ, σ, ξ) with ξ < 0.
(bottom) Power distribution Pow(3, a).

Extremal Limit Theorem Type 2 (Balkema and De Haan
1974) states that the excesses of i.i.d. RVs over a sufficiently
high threshold θ converge in distribution to a Generalized
Pareto (GP) distribution. It is used in Peaks-Over-Threshold
analyses that predict exceedances over the safety limit.

GP(x | θ, σ, ξ) =

{
1
σ

(
1 + ξ x−θ

σ

)− ξ+1
ξ (ξ ̸= 0)

1
σ exp

(
− x−θ

σ

)
(ξ = 0)
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θ, σ and ξ are called the location, the scale, and the
shape parameter. It has a support x ∈ [θ, θ − σ

ξ ] when
ξ < 0 (a short-tailed distribution), otherwise x ∈ [θ,∞] (a
heavy-tailed distribution). Fig. 1 shows a conceptual illus-
tration of Peaks-Over-Threshold EVT. Given i.i.d. samples
x1, . . . , xN , extract a subset which exceeds a certain suffi-
ciently high threshold θ, such as the top 5% element, and fit
the parameters σ, ξ of GP(θ, σ, ξ) on this subset. Then, the
future exceeding data also follows GP(θ, σ, ξ).

The short-tailed GP perfectly matches our requirements.
Consider the maximization scenario, where the heuristic
value is negated into a reward −hFF ∈ [−∞,−h+]. A
short-tailed GP gives us an upper support θ − σ

ξ , which
is obtained by fitting σ and ξ to the data and works as an
estimate of −h+. GP also justifies discarding dead-ends
(−hFF = −∞) because GP is conditioned by x > θ. We
use −θ = h(I) + 1 for the initial state I .

Estimating the parameters of GP is known to be difficult.
Thus we focus on its two subclasses: Uniform distribution
U(l, u) with an unknown support [l, u], and Power distri-
bution (Dallas 1976) Pow(u, a) with an unknown support
[0, u] and an unknown shape a. The price we pay is one de-
gree of freedom in GP(θ, σ, ξ): U(l, u) has a fixed shape
ξ = −1, and Pow(u, a) has a fixed lower bound 0. Note that

GP models the maximum but Power models the minimum.
Pow(x|u, a) = axa−1

ua . (0 < x < u, 0 < a)

U(x|l, u) = 1
u−l . (l < x < u)

The expected values E[x] are ua
a+1 and l+u

2 , respectively.
We can safely assume that states with smaller heuristic val-
ues (closer to the goal) are hard to find and rare during the
search. Therefore, we assume a ≥ 1 for Pow.

We introduce the Maximum Likelihood Estimators for
Uniform and Power, then propose bandits that use these es-
timates, which are then used by MCTS for action selection.
Theorem 1. Given i.i.d. x1, . . . , xN ∼ Pow(x|u, a), the
MLEs are û = maxi xi and â =

(
log û− 1

N

∑
i log xi

)−1
.

Theorem 2. Given i.i.d. x1, . . . , xN ∼ U(x|l, u), the MLEs
are û = maxi xi and l̂ = mini xi.

Backpropagation for these estimates from the leaves to
the root uses existing backups. For l̂ and û we use Full-
Bellman backup (use the minimum/maximum among the
children). For â, we apply Monte-Carlo backup to the loga-
rithms of heuristic values, then compute â combining û and
the backed-up value. We propose two MABs that use them:
Theorem 3 (Main results). When ti-th reward riti of arm i
follows U(l, u) and Pow(u, a) with a ≥ 1, we respectively
define LCB1-Uniform and LCB1-Power as follows.

LCB1-Uniformi = ûi+l̂i
2 − (ûi − l̂i)

√
6ti log T

LCB1-Poweri = ûiâi

âi+1 − ûi

√
6ti log T

Let α ∈ [0, 1] be an unknown problem-dependent constant
and ui, li, ai be unknown ground-truth parameters of dis-
tributions of arm i. The cumulative regret is polynomially
bounded as follows, where β = (2− α)1/ai .

24(ui−li)
2(1−α)2 log T
∆2

i
+ 1 + 2C + (1−α)T (T+1)(2T+1)

3

6u2
i (3−β)2(β−1)2 log T

∆2
i

+ 1 + 2C + (1−α)T (T+1)(2T+1)
3
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