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Abstract

Monte-Carlo Tree Search (MCTS) combined with Multi-
Armed Bandit (MAB) has had limited success in domain-
independent classical planning until recently. Previous work
(Wissow and Asai 2023) showed that UCBI, designed for
bounded rewards, does not perform well when applied to
the cost-to-go estimates of classical planning, which are un-
bounded in R, then improved the performance by using a
Gaussian reward MAB instead. We further sharpen our un-
derstanding of ideal bandits for planning tasks by resolving
three issues: First, Gaussian MABs under-specify the support
of cost-to-go estimates as [—o0o, 0o]. Second, Full-Bellman
backup that backpropagates max/min of samples lacks the-
oretical justifications. Third, removing dead-ends lacks jus-
tifications in Monte-Carlo backup. We use Extreme Value
Theory Type 2 to resolve them at once, propose two bandits
(UCBI1-Uniform/Power), and apply them to MCTS for classi-
cal planning. We formally prove their regret bounds and em-
pirically demonstrate their performance in classical planning.

1 Introduction

A recent breakthrough in Monte-Carlo Tree Search (MCTS)
combined with Multi-Armed Bandit (MAB) applied to clas-
sical planning demonstrated that a better theoretical under-
standing of bandit-based algorithms can significantly im-
prove search performance. Wissow and Asai (2023) showed
why UCBI bandit (Auer, Cesa-Bianchi, and Fischer 2002)
does not perform well in classical planning: It assumes a re-
ward distribution with a known, fixed, finite support such
as [0, 1] that is shared by all arms, i.e., that the cost-to-go
estimates / heuristic functions would satisfy this. They then
proposed UCB1-Normal2 bandit that assumes Gaussian re-
wards, which has the support R = [—o00, co] that is impossi-
ble to violate.

We continue this trend to improve the understanding
of heuristic search from the MAB standpoint. We aim to
resolve three theoretical issues that remain in the previ-
ous work: The first is the under-specification that assumes
cost-to-go estimates to be in [—o0,00], which should in-
stead be [0, oo]. In relaxation heuristics, this can be tighter,
e.g., hm® ¢ [0,h*] and W'Y € [hT,00]. The second
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is the correct statistical characterization of extrema (maxi-
mum/minimum): Schulte and Keller (2014) noted that the
use of averages in UCT is “rather odd” for optimization
tasks such as planning and tried to address it without bandit-
theoretic justification (Full Bellman backup that backpropa-
gates the smallest mean among the arms.) The third is the
dead-end removal. When a heuristic returns oo at a dead-
end, a single dead-end node in a tree makes the evaluation
of the root node co, because the average is oo if samples con-
tain an oco. Schulte and Keller (2014) removed these dead-
end nodes from the tree, but it lacks statistical justification.

We introduce Extreme Value Theory (Fisher and Tip-
pett 1928; Balkema and De Haan 1974, EVT) as the sta-
tistical foundation for understanding general optimization
(minimization/maximization) tasks that resolves all issues
above. EVTs are designed to model the statistics of extrema
(minimum/maximum) of distributions using the Extremal
Limit Theorem, unlike most statistical literature that models
the average behavior based on the Central Limit Theorem
(Laplace 1812, CLT). Among branches of EVTs, we identi-
fied EVT Type 2 as our primary tool for designing new algo-
rithms, which leads to Generalized Pareto (GP) distribution,
which plays the same role as Gaussian distribution in CLT.

Based on this framework, we propose two novel MAB
algorithms, UCB1-Power and UCB1-Uniform, for heuristic
search applied to classical planning. Each of our novel ban-
dits models a special case of GP distribution to avoid the
numerical difficulty of estimating its parameters. We eval-
uate their performance over existing bandit-based MCTS,
traditional GBFS and state-of-the-art diversified search al-
gorithm called Softmin-Type(h) (Kuroiwa and Beck 2022).
On 772 IPC instances under the same evaluation budget of
10* nodes using h*F heuristics, GUCT-Power solved 55,
15.8, and 20 more instances than GBFS, GUCT-Normal2,
and Softmin-Type(h), and GUCT-Uniform solved 56.8, 13,
and 18.8 more instances, respectively.

2 Extreme Value Theory Type 2

CLT states that the average of i.i.d. RVs converges in distri-
bution to a Gaussian distribution. Extremal Limit Theorem
Type 1 (Fisher and Tippett 1928) similarly states that the
maximum of i.i.d. RVs converges in distribution to an Ex-
treme Value Distribution (EVD). It is used for predicting the
block maxima, such as the monthly maximum water level.
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Figure 1: (top) Generalized pareto distribution GP(0, 1, &).
(mid) Computing the average and the variance is seen as fit-
ting A (1, 0); Computing the maximum and the shape of
the tail distribution is seen as fitting GP(u, o, &) with & < 0.
(bottom) Power distribution Pow (3, a).

Extremal Limit Theorem Type 2 (Balkema and De Haan
1974) states that the excesses of i.i.d. RVs over a sufficiently
high threshold 6 converge in distribution to a Generalized
Pareto (GP) distribution. It is used in Peaks-Over-Threshold
analyses that predict exceedances over the safety limit.

GP(xw,a,s){ fUHEFE) T 20 x>0

exp (—*%) (¢

0, o and & are called the location, the scale, and the
shape parameter. It has a support x € [0,0 — %] when
& < 0 (a short-tailed distribution), otherwise x € [0, ] (a
heavy-tailed distribution). Fig. 1 shows a conceptual illus-
tration of Peaks-Over-Threshold EVT. Given i.i.d. samples
r1,...,TN, extract a subset which exceeds a certain suffi-
ciently high threshold 6, such as the top 5% element, and fit
the parameters o, & of GP(6, 0, &) on this subset. Then, the
future exceeding data also follows GP (6, o, ).

The short-tailed GP perfectly matches our requirements.
Consider the maximization scenario, where the heuristic
value is negated into a reward —h*Y € [—o0o,—hT]. A
short-tailed GP gives us an upper support 6 — &, which
is obtained by fitting o and £ to the data and works as an
estimate of —h". GP also justifies discarding dead-ends
(—h¥Y = —o00) because GP is conditioned by x > 0. We
use —0 = h(I) + 1 for the initial state I.

Estimating the parameters of GP is known to be difficult.
Thus we focus on its two subclasses: Uniform distribution
U(l,u) with an unknown support [/, u], and Power distri-
bution (Dallas 1976) Pow(u,a) with an unknown support
[0, u] and an unknown shape a. The price we pay is one de-
gree of freedom in GP(0,0,¢): U(l,u) has a fixed shape
& = —1, and Pow(u, a) has a fixed lower bound 0. Note that
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GP models the maximum but Power models the minimum.

Pow(x|u,a) = a":; O0<z<u, 0<a)
U|l,u)= 5. (I<z<u)
The expected values E[x] are of1 and l+7“ respectively.

We can safely assume that states with smaller heuristic val-
ues (closer to the goal) are hard to find and rare during the
search. Therefore, we assume a > 1 for Pow.

We introduce the Maximum Likelihood Estimators for
Uniform and Power, then propose bandits that use these es-
timates, which are then used by MCTS for action selection.
Theorem 1. Given iid. x1,...,2n ~ Pow(x|u,a), the
MLEs are s = max; x; and a4 = (1ogﬁ — % >, log xi)f
Theorem 2. Giveni.id. xy,...,xn ~ U(x|l,u), the MLEs
are i = max; z; and | = min; ;.

Backpropagation for these estimates from the leaves to
the root uses existing backups. For [ and @ we use Full-
Bellman backup (use the minimum/maximum among the
children). For a, we apply Monte-Carlo backup to the loga-
rithms of heuristic values, then compute a combining @ and
the backed-up value. We propose two MABs that use them:
Theorem 3 (Main results). When t;-th reward r;:; of arm i
Sollows U(l,u) and Pow(u, a) with a > 1, we respectively
define LCB1-Uniform and LCB1-Power as follows.

LCB1-Uniform; = %+l — (a; — ;)\/6l;log T

LCB1-Power; ;il — U;+/6t; log T

Let o € [0, 1] be an unknown problem-dependent constant
and u;, l;, a; be unknown ground-truth parameters of dis-
tributions of arm 1. The cumulative regret is polynomially
bounded as follows, where 3 = (2 — a)'/%.

i — L4 2 —Q 2 O, —Q
24(u; zz)gg VlosT | 4 4 9cy (1 )T(T;rl)(2T+1)

6u; (3—8)*(8—1)log T (1—a)T(T+1)(2T+1)
A? + 1420+ —=
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