
Evaluating Distributional Predictions of Search Time: Put Up or Shut Up Games
Sean Mariasin1, Andrew Coles2, Erez Karpas3,

Wheeler Ruml4, Solomon Eyal Shimony1, Shahaf Shperberg1

1Ben-Gurion University,
2King’s College London,

3Technion,
4University of New Hampshire

seanmar@post.bgu.ac.il, andrew.coles@kcl.ac.uk, karpase@technion.ac.il
ruml@cs.unh.edu, shimony@cs.bgu.ac.il, shperbsh@bgu.ac.il

Abstract

Metareasoning can be a helpful technique for controlling
search in situations where computation time is an important
resource, such as real-time planning and search, algorithm
portfolios, and concurrent planning and execution. Metarea-
soning often involves an estimate of the remaining search
time of a running algorithm, and several ways to compute
such estimates have been presented in the literature. Many
applications actually require a full estimated probability dis-
tribution over the remaining time, rather than just a point es-
timate of expected search time. We study several methods for
estimating such distributions, including some novel adapta-
tions of existing schemes. To properly evaluate the estimates,
we introduce ‘put-up or shut-up games’, which probe the dis-
tributional estimates without requiring infeasible computa-
tion. Our experimental evaluation reveals that estimates that
are more accurate in expected value do not necessarily deliver
better distributions, yielding worse scores in the game.

Introduction
Problem-solving agents operating in the real world must be
able to handle the fact that, as the agent plans, time passes
in the real world, potentially affecting agent actions (Boddy
and Dean 1989; Russell and Wefald 1991; Shperberg et al.
2019). Such runtime and other computational resource con-
straints occur in numerous settings, such as robotics, algo-
rithm portfolios, and control of anytime algorithms.

What is common to all these cases is that some search
for a solution is performed and the time remaining until
the agent must act may or may not be sufficient to com-
plete the search, whether optimally or suboptimally. Know-
ing whether search failure is imminent is important, as this
allows any number of fallbacks to be employed: opting for a
suboptimal solution instead of an optimal solution, switch-
ing to another search algorithm (e.g. in an algorithm portfo-
lio), beginning to execute a partially developed plan while
continuing the search (a risky move, yet justifiable if fail-
ure is otherwise near-certain), or even declaring failure early,
hoping to ‘cut your losses’.

In order to manage such situations rationally, a metalevel
controller, or even a human-in-the-loop, can greatly benefit
from a reliable prediction of whether such a search effort

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is about to fail. While there has been quite a body of work
on attempting to predict the remaining amount of search ef-
fort (Thayer, Stern, and Lelis 2012; Sudry and Karpas 2022),
typically these methods deliver a single number correspond-
ing to the expected value, or other best estimate, of this quan-
tity. At best, some schemes provide a measure of variance of
the estimate. We argue that for most metareasoning appli-
cations this is insufficient, and that a distribution over the
search effort is needed. For example, situated planners (that
plan ‘online’ while time passes) must assess the probability
that a candidate partial plan will be executable at the time
the search will finish, thus requiring a cumulative distribu-
tion function (CDF) over remaining search time. Currently,
such planners use only rudimentary distribution estimates,
such as one based on one-step-error (Shperberg et al. 2021).

The project of developing distributional estimators imme-
diately raises the question of how such estimators should be
evaluated. Testing in the context of metalevel control is not
attractive, as most metareasoning control schemes are quite
complicated and hard to analyze, often requiring solving an
MDP or even POMDP based on the remaining-runtime dis-
tributions (Shperberg et al. 2019). Slightly easier to exam-
ine is the notion of a stopping criterion in metareasoning for
search (Hay et al. 2012; Russell and Wefald 1991), but even
this simpler notion requires, in addition to the distributions,
utilities of complicated scenarios and/or making unrealistic
assumptions (such as the ‘meta-greedy’ and ‘single step’ as-
sumptions). It is much easier to examine the accuracy of
the distribution estimate in isolation. Here we encounter a
difficulty, as a ground truth against which to measure such
a distribution is not available. That is because, with a de-
terministic algorithm solving a given problem instance, the
length of the remaining search is determined but unknown.
The distribution of the remaining search time that we wish
to model is, given the observations so far, over all possible
problem instances consistent with the observations, which is
not realistically obtainable.

Instead, the fundamental insight of this paper is to exploit
the subjectivist Bayesian interpretation of probability. That
is, a rational agent that believes with probability p that it
will complete the search within a given time t must be will-
ing to bet that it will do so just when it is presented with a
bet requiring any payment less than p to gain a reward of 1
if search indeed completes on or before t. Accordingly, our

first contribution is to introduce a simple ‘put up or shut up
game’ that embodies this notion at varying odds and exam-
ine existing schemes with respect to how well they perform
in this game. For concreteness, we examine in this paper
search effort predictors for the standard A∗ search algorithm
(Hart, Nilsson, and Raphael 1968).

Our second contribution is to show, by example and em-
pirically, the importance of modeling the entire remaining-
runtime distribution. In particular, we can see that in some
cases, runtime predictors that are more accurate in predict-
ing the expected value can perform worse than predictors
that are less accurate.

Our third contribution is to develop methods for creating
new distribution estimates using ideas from existing estima-
tors, and also adapting some standard learning schemes to
predict the distributions. The new predictors are evaluated
empirically on how they score in this game versus existing
predicting schemes and in most cases show a marked score
improvement compared to these baselines.

Put Up or Shut Up Games
Consider the following fundamental game, called ‘put up
or shut up’, designed to measure the correctness of a sub-
jectivist probability estimate delivered by a metareasoner. A
given search algorithm (such as A∗, with a known heuristic
h) runs on a given problem instance from a given domain. A
metareasoner observes the search algorithm run up to a cer-
tain point and then, given a deadline, has to bet whether to 1)
quit (shut up) or 2) pay a sum (put up) and collect a reward if
the search ends successfully before the deadline. Note that
this will not necessarily be an even bet, i.e. the gain is not
necessarily equal to the initial payment. We will demonstrate
that success hinges on having a reliable error model; merely
achieving a better prediction (e.g. lower root-mean-square
error (RMSE) on a numerical estimate) is insufficient.

Formally, we define the simplest game variant:

Definition 1 (BPSG). Basic put-up or shut-up game: given
a search algorithm A running on a problem instance I , some
observations O, a remaining time target t. Should we (shut
up) stop the computation, avoiding any cost or gain, or (put
up), by paying an ante of θ, get a known reward of R (thus
net gain R − θ) just when A solves instance I before t time
passes?

To play the game rationally, we must estimate the subjec-
tive probability p̂ = P (t(A, I) ≤ t|O), the probability that
algorithm A will solve instance I in remaining time t(A, I)
that is less than t, given our observations O. The rational
agent should not put up unless p̂ ≥ θ

R . The latter ratio is
also called betting odds of θ to R− θ.

Even BPSG can have several variants. We could be in a
situation where we have not started to run A at all, but have
been given some features of I . Or we could have already run
A for some time and made additional observations about the
search. We can also assume certain types of algorithms. An-
other dimension is the amount of information the estimator
can use: is it purely online, or is it allowed to learn algorithm
behavior from other instances in the same (or a different) do-
main?

We assume in this paper that we have an expansion-step-
based search algorithm and that time is in units of a single
expansion step. We examine scenarios in which A has al-
ready executed X expansion steps and we are asked for the
probability that it will conclude the search on or before some
given Y additional expansion steps.

As explained in the introduction, for many applications
it is important to have a realistic distribution estimate, as it
is even possible for a better predictor (lower error) to result
in worse performance than a higher-error predictor with a
realistic error model:
Theorem 1. There exist cases where a predictor more ac-
curate in expected error will perform on average worse in
BPSG than a predictor with a higher expected error.

Proof: It is sufficient to show an example, so consider
the following scenario: A has run on I for some number
of expansions and we are now asked whether it will finish
within 100 expansions. Suppose that the search algorithm
will run for another 100 or 101 expansions, each with prob-
ability 0.5. This information is unknown to the metareason-
ing agent, which thus relies on predictors to gauge the antici-
pated remaining search duration, thereby informing its deci-
sion on whether to prolong or terminate the search. Further
assume that we have two predictors: predictor a estimates
only the mean number of expansions, but does so rather ac-
curately, with an unbiased error of at most 1 (uniformly dis-
tributed). Importantly, the agent is unaware of the true un-
derlying error model, it receives only the estimation of the
mean number of expansions and assumes that predictor a
delivers exactly the correct number.1 That is, when the true
remaining number of expansions is 100, a will predict either
99, 100, or 101, each of these predictions having a proba-
bility of 1

3 of being made, and the agent will believe that
the predicted value is exact. Predictor b has an unbiased er-
ror of at most 2 expansions, uniformly distributed. Yet, un-
like a, predictor b outputs a distribution. The returned dis-
tribution results from randomly drawing a value uniformly
from within the range of ±2 expansions from the true value,
then constructing a uniform distribution within ±2 around
the predicted value. For instance, if the true expansion value
is 100, Predictor b would base its prediction around a value
v ∈ [98, 99, 100, 101, 102], each having a probability of be-
ing the base of 1

5 , and then b returns a uniform distribution
over the 5 values [v−2, v−1, v, v+1, v+2]. Below, we use
the term centered around v to refer to the latter distribution.

First, consider the case of even odds, i.e. the agent can
pay an ante θ = 1 to obtain a reward of R = 2 if the search
terminates before the target remaining time. The metarea-
soner, equipped with predictor a, will behave as follows. If
the true value is 100 (probability 0.5), a will predict 99 or
100 with probability total 2

3 in this case, and because it is
sure its prediction is correct, the metareasoner will decide to
ante up and collect the reward, gaining 1. If the true value
is 101 (probability 0.5), a will predict 100 with probability

1For simplicity, our exposition refers to predictor error mod-
els (that may be unrealistic) rather than a model over priors plus a
predictor sensor model.

1
3 , and the metareasoner, believing that the prediction is cor-
rect, will ante up and lose. So at even odds, using predictor
a, the metareasoner will gain 0.5(23 − 1

3) =
1
6 .

With predictor b, the agent will behave as follows. With a
true value of 100, b would return a uniform distribution over
[v−2, v−1, v, v+1, v+2] (with v ∈ [98, 99, 100, 101, 102]
each with probability 1

5). For v = 98, the probability of
timely completion (100 additional expansions or less) is
1. For v = 99, that probability is 0.8, etc. so all in all
for v ∈ [98, 99, 100, 101, 102] the corresponding proba-
bilities of timely completion are [1, 0.8, 0.6, 0.4, 0.2]. With
the true number of expansions being 101, we have v ∈
[99, 100, 101, 102, 103] and the corresponding probabilities
that the true number of expansions is 100 or less will be
[0.8, 0.6, 0.4, 0.2, 0]. The decision now depends on the bet-
ting odds. At even odds, the metareasoner using b will ante
up and collect in 3 cases (total probability 3

5) and will ante
up and lose in 2 cases, for a total expected gain of 1

10 .
As expected, at even odds using a the agent scores better

in expectation than using b. With different odds, say an ante
of θ = 5 and a reward R = 6 (again total gain 1), using
a the agent makes the same decisions but here gains 1 in 2
cases and loses 5 in one case, for a total expected loss of
1
2 . But using b the agent only antes up when its subjective
probability of winning is better than 5

6 , so refuses to ante
unless b’s prediction is 98, where it is certain that the true
value is no greater than 100; thus its total expected gain is
1
10 . Conversely, with an ante of θ = 1 and reward R = 6
(potential gain of 5), using a again the agent makes the same
decisions, so gains 5 in 2 cases (out of 3) and loses 1 in 1 case
(out of 3), a total expected gain of 9

6 . With these odds, the
metareasoner using b always antes up unless the probability
of reward is less than 1

6 , which occurs only when b predicts
103. So with b the gain is 5 in 5 cases (out of 5), and the loss
is 1 in 4 cases (out of 5), for a total expected gain of 21

10 and
again better than one using a.

Note that at uneven odds predictor b is better than a, de-
spite a being on the average closer than b to the true value.
That is because a’s error model was overly optimistic in the
quality of its estimate. Providing a reliable error model (a
distribution) allows an agent using predictor b to achieve a
higher expected gain at varied odds.

Background: Existing Estimation Methods
Several methods for predicting remaining search time have
been proposed. One approach involves the concept of ex-
pansion delay (Dionne, Thayer, and Ruml 2011), denoted
as texp, which represents the time (measured in expansion
or real-time units) between when a node is expanded and
when its parent was expanded. Let N denote the nodes that
have been expanded during a particular search process, and
consider texp as the anticipated average expansion delay of
the nodes on the path leading to the goal discovered by the
search algorithm. Let d∗ be the distance to the goal from
the most recently expanded node on that path. If that node
has just been expanded, then it is evident that the anticipated
number of future expansions in the search equals texp · d∗.
Obviously, neither texp nor d∗ are known until the conclu-

sion of the search, thus necessitating estimation during the
search process. Specifically, d∗ is estimated using the pro-
vided heuristic function, resulting in d̂∗, while texp is es-
timated based on the average time between the generation
and expansion of nodes in N , yielding ˆtexp. Consequently,
an estimate of the remaining search effort is derived by mul-
tiplying these two estimated quantities:

t̂ = d̂∗ · t̂exp (1)

Another scheme measures velocity, which is the expected
decrease of the minimum h value on the search’s open list
per expansion (Hiraishi, Ohwada, and Mizoguchi 1998).
Given the average future velocity of the search V , the overall
number of remaining expansions can be computed as hmin

V ,
where hmin is the minimal h-value in the open list. Similar
to the expansion delay, V is unknown during the search, but
it can be estimated. For example, one can count the number
of expansions n required to decrease the minimal heuristic in
the open list from the initial heuristic value h0 to its current
value hmin. Using this estimate, denoted as V̂ , the estimate
of the remaining search effort can also be estimated:

t̂ =
hmin

V̂
=

hmin
hmin−h0

n

=
n · hmin

hmin − h0
(2)

A third method attempts to estimate the current fraction
of the way through the total run time the search currently is
(measured in number of expansions again) using deep NN
learning (Sudry and Karpas 2022).

However, the above methods deliver only a single num-
ber, rather than a remaining runtime distribution. The only
scheme of which we are aware that does output a distribution
is based on the one-step error (Dionne, Thayer, and Ruml
2011; Shperberg et al. 2021). The one-step error is defined
as the difference between the heuristic value of a node and
the minimal heuristic value of its children:

ϵ(n) = min
n′∈Children(n)

(h(n′) + c(n, n′))− h(n), (3)

where c(n, n′) is the cost of the edge between n and n′. Sh-
perberg et al. (2021) collected statistics on the one-step error
during the search, creating an empirically obtained distribu-
tion denoted as the (iid) random variable(s) Xi. The empiri-
cal distribution was initialized with 1000 “ghost” samples of
value 0. Then, for a search node v, (assuming unit costs) the
estimated number of steps to the goal is the random variable:

Y = h(v) +

h(v)∑
i=1

Xi

Under the assumption that all the Xi are jointly indepen-
dent, so to get the PMF of Y requires convolution opera-
tions on the PMF of the Xi. The distribution of the remain-
ing number of expansions is the random variable texpY . The
intuition behind the one-step-error scheme is that greater
one-step-error entails greater overall heuristic error, and also
that the variance of the errors increases with h(v), which
has been observed in multiple domains. The one-step-error
scheme achieves these properties, so is intuitively appealing,
although not fully backed by theory.

Note that some offline methods for estimating the number
of search steps needed to solve a search problem have been
proposed (Everitt and Hutter 2015a,b). Other techniques try
to estimate the optimal solution cost (Lelis et al. 2016).
However, these techniques do not use information obtained
during search, and are thus less relevant to our work.

Proposed Distribution Estimators
In all cases, the semantics of the distribution we wish to
model is: what is the distribution of the target quantity
among problem instances randomly drawn from a set consis-
tent with the observations made before attempting the pre-
diction? This could be achieved by learning schemes, but
note that this is not necessarily the type of distribution we
see, e.g., by measuring the variance of these quantities as
the search progresses. For example, although a high vari-
ance between successive measurements of the expansion
delay might suggest a high variance in the future average
expansion delay across instances, this correlation is not al-
ways guaranteed. Likewise, an estimate of past heuristic er-
ror (such as a one-step error) does not inherently translate
into an accurate predictor of the variance of d∗ from h across
instances, even under the assumption of uniform cost. Still,
these variances could serve as additional parameters when
estimating or learning such distributions.

In order to estimate distributions on the remaining search
time, we begin by collecting data by performing search,
using some search algorithm A, on n problems uniformly
drawn from a domain D. During the search process on some
problem instance Ii, we store multiple examples, where
each example corresponds to a node n expanded during the
search. The information (features) stored for each node n is
as follows:

• g(n), the cost of the best-known path to node n.
• h(n), the heuristic estimate of the cost from n to the goal.
• f(n), the priority value for node n (which varies with the

search algorithm).
• b(n), the branching factor of n, that is, the number of

successors n has.
• N(n), the serial number of n, that is, how many nodes

were expanded before n.
• h0, the heuristic value of the initial state of the problem

being solved.
• hmin, the minimal h-value we have seen so far among the

expanded nodes.
• fmax, the maximum priority value seen so far.
• V (n), the search’s velocity estimation, that is, h0−hmin

N(n) .

• AverageV (n), the search’s average velocity while ex-

panding n, i.e.,
∑N(n)

n′=1
V (n′)

N(n) .

• texp(n), The expansion delay of node n, meaning, the
number of expansions between n’s expansion and its par-
ent’s expansion.

• Average texp, the average expansion delay over all expan-

sions,
∑N(n)

n′=1
texp(n

′)

N(n) .

• The one-step error, ϵ(n) (as per Eq. 3).

• Average ϵ, the average one-step error over all expansions,∑N(n)

n′=1
ϵ(n′)

N(n) .

The first eight features were used in the work of Sudry and
Karpas (2022), whereas the last six features were used in the
expansion delay and the velocity-based predictors.

In addition to the features, we also store the “ground-
truth” remaining search time for each node. Let A(Ii) rep-
resent the number of nodes expanded by algorithm A when
solving problem instance Ii. For each node n expanded dur-
ing the execution of A on Ii, we record the number of nodes
expanded after n during the search (“remaining time”), com-
puted as yirt = A(Ii) − N(n). Similarly, we also maintain
the ground-truth remaining average velocity, yiv = h0−hmin

yrt

and expansion delay, yied =
∑A(Ii)

j=N(n)
texp(j)

A(Ii)−N(n) . It is important to
note that yiv and yied are not used for prediction, since their
value is unknown until the search terminates; rather, they
serve as labels during training. We denote the dataset of ex-
amples by D = (Xi, Y i = (yirt, y

i
v, y

i
ed))

m

i=1, where Xi is
the set of feature values in example i, and yirt, y

i
v , and yied

are the ground-truth quantities for this example. Using this
dataset of examples D, we introduce several approaches to
obtain distributions over remaining search time.

Leveraging Existing Estimators
The approach involves considering texp, d∗, and V in equa-
tions (Eq.1 and Eq.2) as random variables, rather than as di-
rectly estimated values. Then it suffices to have a distribution
of these random variables (which is obtained by collecting
statistics over these quantities) in order to get a distribution
of the number of expansions remaining in the search. For in-
stance, when aiming to estimate the distribution over Tr, the
remaining search time, using the velocity estimator (Eq.2),
one can observe the current search status, denoted by a set
of features X . From this, a distribution estimate V is con-
structed to describe the probabilistic behavior of the average
velocity over future expansions, with the random variable V
following this distribution. Then Tr can be seen as a random
variable distributed as hmin

V .
Considering the current state of the search denoted by

X , we propose to estimate the probability Y concerning
the desired quantity (e.g., average velocity or expansion de-
lay), represented by the random variable Y , as follows. Ini-
tially, we extract from the dataset all training examples cor-
responding to the same number of expansions as the ongoing
search, i.e. DN = {(Xi, Y i)|(Xi, Y i) ∈ D and Xi

N(n) =

XN(n)}. Let Xj represent the value of the feature corre-
sponding to the quantity we aim to measure (e.g., average
expansion delay observed thus far), and yj denote the quan-
tity we aim to estimate (e.g., average velocity or expansion
delay across future expansions). We compute the relative er-

ror of yij to xi
j , denoted as zij =

yi
j−xi

j

xi
j

, for each example.
Subsequently, we construct a distribution Z , corresponding
to a random variable Z, by forming a histogram using the

values zij for all (Xi, yi) ∈ D . Consequently, given Xj , we
define Y = Z · (Xj + 1), as our distribution estimate.

In practice, the distribution Z was further preprocessed
by binning and smoothing. Specifically, we used 100 bins.
Smoothing was done by using a discrete linear convolution
of the Z distribution with an approximate one-dimensional
Gaussian kernel filter: a sequence of 15 elements with a stan-
dard deviation of 2 and an expected value of 0.06.

We obtained distributions as mentioned above for average
future expansion delay and for distance to get the expansion-
delay based distribution estimator, and a distribution over
future average velocity to get the velocity-based distribu-
tion estimator. In addition, we have a direct estimator which
computes the distribution of yrf from Dn and uses it directly.

Learning a Distribution Estimator

Another approach to estimating the probability of a sample
being solved within t remaining time is by treating the prob-
lem as a supervised learning task. In this context, we propose
to train a probabilistic binary classifier, denoted as f(X, t),
based on the dataset D. Here, f(X, t) represents a function
that takes as input a set of features corresponding to the cur-
rent state of the search and the remaining time as a query,
and outputs a probability estimate p that indicates whether
the search is expected to terminate within the next t expan-
sions. Unlike the estimation methods discussed earlier, here
we do not restrict our dataset to examples with the same
number of expansions. However, including all examples in
D can introduce a bias toward search processes that involve
more node expansions since each expansion corresponds to
an example in D. To mitigate this bias, we construct a new
training dataset D′ comprising 1000 random samples from
each search process in the original dataset. We utilize D′ to
train our classifiers.

To learn an effective classifier, we explored various classi-
fication algorithms, including the Adaptive Boost Classifier
(Freund and Schapire 1997) and Random Forest Classifier
(Ho 1995).

To select the best algorithm and hyperparameters, we em-
ployed Optuna (Akiba et al. 2019), a hyperparameter opti-
mization framework. Optuna’s objective was to identify the
learning algorithm and its configuration that maximized a
defined score, as in the “Put or Shut Up” game. In order to
maintain interpretability and keep complexity low, we re-
stricted the number of decision trees and their maximum
depths (regardless of the chosen learning algorithm) to 3 and
5, respectively.

Empirical Evaluation

As previously mentioned, while we want to estimate the dis-
tribution of remaining search time, that is infeasible to eval-
uate empirically. Therefore, we evaluate the performance of
the different estimators listed above on the basis of the “put
up or shut up” game, and compare it to their performance on
predicting remaining search effort.

Evaluation Scheme
For each predictor, we compute two values: its score on the
“put up or shut up game”, and the root mean squared error
(RMSE) of its ”progress bar” prediction (Sudry and Karpas
2022). For both of these, we vary Ncur – the “current” num-
ber of expansions at which we attempt to predict the remain-
ing search time. If a specific problem instance is finished
before some given expansion number, we skip that value for
that instance.

The progress-bar prediction works as follows: given Ncur

and a predicted number of remaining future expansions x,
the “progress-bar” prediction is Ncur

Ncur+x . This scheme, used
by Sudry and Karpas (2022), has the advantage that all
progress-bar predictions are in the range [0, 1] and are thus
naturally comparable. When using an estimator that returns
a distribution, we use the expected value of the predicted
distribution as our “progress-bar” prediction. To aggregate
errors on different problems and states, we use RMSE.

To compute a score for each predictor F on the “put up or
shut up” game, for each value of Ncur we also vary
t Remaining search time (measured in units of expansions).

We vary t between 100 and 1000000 (increasing by a
factor of 10 with each step), trying all possible values.

θ the probability threshold that indicates if the given pre-
dicted probability (in solving the sample in remaining
time t) is sufficient to ”put up” (and to verify if the
sample could be solved in remaining time t). We vary
θ between θmin = 0.05 and θmax = 0.95 in steps of
δθ = 0.01.

That is, given a predictor F , we run a search algorithm
for Ncur steps and predict whether the search will terminate
in t more steps. If the predictor estimates the probability of
this happening is greater than θ then we “put up”, and oth-
erwise we “shut up”. Since the important parameter is the
probability threshold θ, we set all rewards to 1.

This allows us to compute a Score function as follows:

Score(p̂, θ, y) =


1− θ if θ ≤ p̂, y = 1

−θ if θ ≤ p̂, y = 0

0 if p̂ < θ

where p̂ is the probability predicated by our estimator that
the search will finish within t steps, and y is an indicator
of whether search actually terminated within t steps or not.
That is, our score is always 0 when deciding to “shut up”,
which occurs when p̂ < θ. Otherwise, we ”put up” and make
a net gain of 1− θ when we win and a net loss of θ when we
lose.

Of course, the score above is for a fixed θ and t, so to
aggregate the results we average over the different values of
θ and t, as well as over the different problems instances and
different values of Ncur for each problem. The average score
is denoted as MeanScore.

However, the range of possible average scores does not
rely on the predictor’s performance alone. The number of in-
stances, each instance’s total number of expansions and the
given t values all have a significant impact on what would
be the optimal score (when every decision is correct using

hindsight) and the worst possible score (when every deci-
sion is wrong). In order to gain a consistent measure of
the performance across different settings, we compute the
RelativeScore as follows:

RelativeScore =
MeanScore−W

Opt−W

Where MeanScore is defined as before, Opt is the optimal
mean score, and W is the worst possible mean score.

Predictors Compared
We evaluate the performance of the proposed distribution es-
timators, based on the relative error distribution of 3 differ-
ent remaining search time estimators: expansion delay, ve-
locity, and direct, giving us 3 different predictors, which we
label deed, dev , and ded respectively.

As baselines, we take standard remaining search effort
predictors, and convert them to distribution predictors by
constructing a degenerate distribution which is certain the
prediction is absolutely correct. That is, if M is the expected
or predicted remaining number of steps, the predicted prob-
ability p̂ of concluding the search within t expansions or less
is p̂ = 1 if M ≤ t, and 0 otherwise. With this scheme
we used expansion delay (denoted ded), velocity (denoted
dv), and the expectation of the direct estimator (denoted
dd). We also used the neural network based predictor (Sudry
and Karpas 2022) (denoted dNN), and one learning random
forests (denoted dRF).

In addition, we compared to the distribution derived from
the one-step error combined with expansion delay, as sug-
gested by Shperberg et al. (2021) (denoted osed). For this
predictor, we used a moving average over the last 500 nodes
to estimate the distribution over the remaining search time.

For all of the predictors above, we compare their score
on the “put up or shut up” game and the RMSE of their
”progress bar” prediction.

We also compare to some baseline predictors, which can
only participate in the “put up or shut up” game, but do not
provide any remaining search effort predictions. These triv-
ial classifiers do not use any information about the search,
but some do use training set distribution data.

Positive always predicts timely completion, (Denoted +)
Negative predicts search never ends on time, (Denoted -)
Toss a fair coin Predicts 0 or 1 with probability 0.5, (De-

noted by .5)
Toss an odds based coin Given a classification threshold θ,

predicts failure with probability θ, and success with prob-
ability of 1− θ, (Denoted by θ)

Benchmarks
We now describe the search problem instances we used for
the empirical evaluation. A search problem instance is de-
fined by a search problem (state space), a heuristic, and a
search algorithm.

For search algorithms, we used A∗ . For the search prob-
lems, we used two different domains: the 15 puzzle and Pan-
cake sorting.

For the 15 puzzle, we used two different heuristics: the
Manhattan distance heuristic (MD) and Manhattan distance
with Linear conflicts heuristic (MD+LC). With the MD
heuristic, we have 104 solved instances, of which 33 are
from Korf’s 100 instanced (Korf 1985), and the rest are ran-
domly generated by sampling a random board configuration
for the initial state. With the MD+LC heuristic, we have 326
instances, of which 66 are from Korf’s 100 instances and the
rest are randomly generated.

For the Pancake sorting instances, the Gap heuristic func-
tion (Helmert 2010) was chosen. We have 498 instances of
the Pancake sorting puzzle, randomly generated by sampling
an initial state.

Experimental Setup
As learning methods, we used the scikit-learn library (Pe-
dregosa et al. 2011) to fit a classifier/regressor to the data
and for prediction. For the distribution estimators, we used
the average expansion delay texp and current average veloc-
ity V .

In each of the three domains, some instances were ran-
domly assigned to the training set, and the rest to the test
set. The training set sizes were as follows. 15 Puzzle (with
MD heuristic): 53, 15 Puzzle (with MD+LC heuristic): 136,
Pancake: 248.

In addition, since search runs on problem instances of dif-
ferent domains produced search histories whose statistics are
of different scales, different values for Ncur were used in
each domain. For the 15 Puzzle domains, Ncur was chosen
from the list [30000, 75000]. For the Sorting Pancake do-
main, Ncur was chosen from the list [100,250]. t was always
chosen from the list [100, 1000, 10000, 100000, 1000000].

In each setting, each method application provided pre-
dicted probabilities or labels that were used to compute the
score on the basis of the evaluation scheme.

Empirical Results
We now describe the results of our empirical evaluation.
First, Figure 1 shows, for each predictor, the RMSE of re-
maining search effort prediction on the x-axis and the av-
erage score in the “put up or shut up” game on the y-axis.
Subfigure (a) shows this for the tile puzzle with MD heuris-
tic, (b) for the tile puzzle with MD+LC heuristic, and (c) for
the Pancake puzzle with gap heuristic. Note that the trivial
estimators do not appear here, and neither do the machine-
learning-based estimators. That is because we do not have a
way to compute an estimate on remaining number of expan-
sions for these, and thus there is no RMSE.

In all 3 domains of search problem instances, the overall
picture is similar: the distribution-based schemes (other than
the velocity-based one) are the top contenders w.r.t. score,
especially the predictor based on the distribution from the
expansion delay (deed). This supports the premise of this
paper, which is that if we want to perform metareasoning, we
must use more than standard, single-number, search effort
predictors. In addition, we proved (Theorem 1) that there
exist cases where better value-prediction does not entail a
better score, for some betting odds θ to 1 − θ. In fact, this
also seems to occur w.r.t. score averaged over many values

Distribution Direct ML Trivial
Domain deed dev ded osed ded dv dd dNN dRF + - .5 θ
Pancake Gap 0.91 0.83 0.91 0.84 0.72 0.67 0.89 0.84 0.9 0.67 0.32 0.49 0.63
15 MD + LC 0.91 0.77 0.9 0.87 0.76 0.54 0.9 0.76 0.9 0.16 0.83 0.49 0.63
15 MD 0.93 0.77 0.93 0.89 0.71 0.5 0.87 0.72 0.92 0.12 0.87 0.52 0.63

Table 1: Mean Relative Score comparison for various benchmarks

of θ. This can be most markedly seen in the pancake domain,
where the NN scheme had the lowest RMSE but was not a
top contender w.r.t. score.

Second, we compare the performance of the different pre-
dictors on the “put up or shut up” game, including also
the trivial predictors and the ML-based predictors. Table 1
shows the mean relative score of each predictor in each of
our 3 domains, with the best (highest) score in each row
highlighted in bold.

Unsurprisingly, the trivial predictors we included as base-
lines perform poorly. Also not surprising is the fact that the
direct estimators did not perform very well either, with the
exception of dd which is close to the best. However, the di-
rect estimators (dd and ded) are not normalized to the scale
of the estimate, and thus are unlikely to generalize to search
problems of different difficulties. This is in contrast to some
other estimators, such as deed and deev .

Note that our distribution estimator based on expansion
delay (deed) has the best score, outperforming even the ML-
based estimators, despite the fact that it uses much less in-
formation about the state of the search in its prediction.

Finally, Figure 2 shows the relative score with different
values of θ. As the results show, the best estimator out of
the direct estimators changes for different thresholds. In par-
ticular, the NN-based predictor is among the best for some
betting odds, thus further confirming the results of Sudry
and Karpas (2022). However, as it does not deliver an er-
ror model (i.e. a distribution), the NN predictor seriously
degrades at other values of θ. Our new distribution estima-
tors (and especially the one based on expansion delay, which
is the best overall) do well and, in addition, are robust to
changes of θ, due to their rational modeling of the odds, as
expected.

Conclusion
Remaining search effort prediction is important in numer-
ous applications, such as real-time planning and search, al-
gorithm portfolio control, and other metareasoning tasks.
While there has been work on predicting this quantity, most
existing work delivers an expected value, while a full dis-
tribution or a probability of timely termination is needed.
Due to the lack of a ground truth of such distributions, in
order to evaluate such predictors we defined the put-up or
shut-up game, and showed that predictors providing better-
expected value prediction do not necessarily perform better
in this game.

We developed several new schemes for providing the
needed distributions, some based on general learning meth-
ods and others based on simpler collections of statistics.
In some cases, the learning-based schemes provide better

BPSG scores. Nevertheless, we observe that the intended
use of these remaining search-time distributions is metar-
easoning during search, where computing a value given a
complicated learned model, such as a NN or random forest,
may be too computationally intensive when decisions must
be made in real-time. At present, it seems that the simple
error-distribution-based schemes, especially those based on
expansion delay, were the best overall when also factoring in
their simplicity. Still, much work can be done to improve our
proposed predictors, such as checking whether it is sufficient
to obtain the error distributions based on much less data,
thereby allowing a quick-start based on only a few problem
instances in a new domain. It might also be desirable to con-
dition the future velocity, the future expansion rate, and the
future velocity variables on some features, without resorting
to full-blown learning, thus achieving some of the advan-
tages of the learning schemes without their complexity.

Examining additional settings of online information-
gathering would make our work apply to additional metar-
easoning schemes. BPSG, as stated, is a one-shot game,
where one must make only a single metareasoning decision.
A more realistic setting is where the search is ongoing, and
we must decide whether to continue for a few more search
steps or stop. Deciding to continue, we might still decide to
stop at some later time given additional observations. Note
that here we must have a measurement model that expresses
a distribution over future observations, and also how to up-
date the beliefs about runtime given the observations.

Extending this game to be fully sequential is non-trivial.
For example, it was shown by Hay et al. (2012) that even
given a very simple measurement model, it is possible for
an optimal stopping policy to be infinite. So, in general, op-
timally solving such a metareasoning problem is hopeless.
In our case, we are not even given the measurement model a
priori, making the problem even harder to handle.

Therefore the following two-shot PSG would be a natural
next step. The options are: a) Stop search immediately (“shut
up”) and b) Continue search to the bitter end (“put up”) as in
the BPSG, but also now c) Probe: search for some t time (or
expansions) for a given cost c, and only then make a (final)
stopping decision (only one probe allowed). We leave this
extension for future work.

Acknowledgements

This research was supported by Grant No. 2019730 from the
United States-Israel Binational Science Foundation (BSF)
and by Grant No. 2008594 from the United States National
Science Foundation (NSF).

(a) 15 Puzzle with MD Heuristic

(b) 15 Puzzle with MD+LC Heuristic

(c) Pancake Sorting with Gap Heuristic

Figure 1: Mean Relative Score vs. progress pred. RMSE

(a) 15 Puzzle with MD Heuristic

(b) 15 Puzzle with MD+LC Heuristic

(c) Pancake Sorting with Gap Heuristic

Figure 2: Plots of Relative Score vs. θ, varied benchmarks

References
Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; and Koyama, M.
2019. Optuna: A Next-generation Hyperparameter Opti-
mization Framework. In KDD, 2623–2631. ACM.
Boddy, M. S.; and Dean, T. L. 1989. Solving Time-
Dependent Planning Problems. In Sridharan, N. S., ed., Pro-
ceedings of the 11th International Joint Conference on Arti-
ficial Intelligence. Detroit, MI, USA, August 1989, 979–984.
Morgan Kaufmann.
Dionne, A. J.; Thayer, J. T.; and Ruml, W. 2011. Deadline-
Aware Search Using On-Line Measures of Behavior. In
SoCS.
Everitt, T.; and Hutter, M. 2015a. Analytical Results on
the BFS vs. DFS Algorithm Selection Problem. Part I: Tree
Search. In Pfahringer, B.; and Renz, J., eds., AI 2015: Ad-
vances in Artificial Intelligence - 28th Australasian Joint
Conference, Canberra, ACT, Australia, November 30 - De-
cember 4, 2015, Proceedings, volume 9457 of Lecture Notes
in Computer Science, 157–165. Springer.
Everitt, T.; and Hutter, M. 2015b. Analytical Results on the
BFS vs. DFS Algorithm Selection Problem: Part II: Graph
Search. In Pfahringer, B.; and Renz, J., eds., AI 2015: Ad-
vances in Artificial Intelligence - 28th Australasian Joint
Conference, Canberra, ACT, Australia, November 30 - De-
cember 4, 2015, Proceedings, volume 9457 of Lecture Notes
in Computer Science, 166–178. Springer.
Freund, Y.; and Schapire, R. E. 1997. A Decision-Theoretic
Generalization of On-Line Learning and an Application to
Boosting. J. Comput. Syst. Sci., 55(1): 119–139.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on System Science and Cybernet-
ics, SSC-4(2): 100–107.
Hay, N.; Russell, S. J.; Tolpin, D.; and Shimony, S. E. 2012.
Selecting Computations: Theory and Applications. In Pro-
ceedings of the Twenty-Eighth Conference on Uncertainty in
Artificial Intelligence, 346–355.
Helmert, M. 2010. Landmark Heuristics for the Pancake
Problem. In SoCS 2010, 109–110. SoCS Press.
Hiraishi, H.; Ohwada, H.; and Mizoguchi, F. 1998. Time-
Constrained Heuristic Search for Practical Route Finding.
In PRICAI. Springer.
Ho, T. K. 1995. Random decision forests. In ICDAR, 278–
282. IEEE Computer Society.
Korf, R. E. 1985. Depth-First Iterative-Deepening: An Op-
timal Admissible Tree Search. In Artificial Intelligence Vol-
ume 27, Issue 1, 97–109.
Lelis, L. H. S.; Stern, R.; Arfaee, S. J.; Zilles, S.; Felner, A.;
and Holte, R. C. 2016. Predicting optimal solution costs with
bidirectional stratified sampling in regular search spaces. Ar-
tificial Intelligence, 230: 51–73.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; VanderPlas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. J. Mach. Learn. Res.,
12: 2825–2830.

Russell, S. J.; and Wefald, E. 1991. Principles of Metarea-
soning. Artificial Intelligence, 49(1-3): 361–395.
Shperberg, S. S.; Coles, A.; Cserna, B.; Karpas, E.; Ruml,
W.; and Shimony, S. E. 2019. Allocating Planning Effort
When Actions Expire. In AAAI 2019, 2371–2378. AAAI
Press.
Shperberg, S. S.; Coles, A.; Karpas, E.; Ruml, W.; and
Shimony, S. E. 2021. Situated Temporal Planning Using
Deadline-aware Metareasoning. In ICAPS.
Sudry, M.; and Karpas, E. 2022. Learning to Estimate
Search Progress Using Sequence of States. In ICAPS.
Thayer, J.; Stern, R.; and Lelis, L. 2012. Are We There Yet?
—Estimating Search Progress. In SoCS.

