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Abstract

Identifying shortest paths between nodes in a network is

an important task in many applications. Recent work has

shown that a malicious actor can manipulate a graph to

make traffic between two nodes of interest follow their target

path. In this paper, we develop a defense against such

attacks by modifying the edge weights that users observe.

The defender must balance inhibiting the attacker against

any negative effects on benign users. Specifically, the

defender’s goals are: (a) recommend the shortest paths

to users, (b) make the lengths of the shortest paths in

the published graph close to those of the same paths in

the true graph, and (c) minimize the probability of an

attack. We formulate the defense as a Stackelberg game

in which the defender is the leader and the attacker is

the follower. We also consider a zero-sum version of the

game in which the defender’s goal is to minimize cost while

achieving the minimum possible attack probability. We show

that the defense problem is NP-hard and propose heuristic

solutions for both the zero-sum and non-zero-sum settings.

By relaxing some constraints of the original problem, we

formulate a linear program for local optimization around

a feasible point. We present defense results with both

synthetic and real networks and show that our methods often

reach the lower bound of the defender’s cost.

1 Introduction

In numerous applications involving the routing of re-
sources through a network, finding the shortest path be-
tween two nodes is an important problem. A malicious
actor with the capacity to modify the graph could entice
users to follow a particular path that could put them at
risk. In cybersecurity, for example, an attacker could
convince users to use compromised routers to intercept
traffic and possibly steal resources [15]. To counter ad-
versarial activity, it is important to consider defensive
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measures against such behavior.
Recent work has proposed an algorithm to manip-

ulate the shortest path when the attacker is able to
remove edges [20]. In this paper, taking inspiration
from differential privacy, we propose a defense tech-
nique based on perturbing edge weights. Users are
presented an altered set of edge weights that aims to
provide the shortest paths possible while raising the
attacker’s cost. The contributions of this paper are
as follows: (1) We define a defender cost based on
the impact on user experience and probability of at-
tack. (2) We formulate a Stackelberg game to optimize
the defender’s expected cost. (3) In a zero-sum set-
ting, we show that this optimization is NP-hard. (4)
We propose PATHDEFENSE, a heuristic algorithm that
greedily increments edge weights until the user’s cost
is sufficiently low. (5) We present results on simulated
and real networks demonstrating the cost improvement
PATHDEFENSE provides.

2 Problem Definition

In our problem setting, a graph G has weights w, and
an attacker intends to remove edges to make a partic-
ular target path be the shortest between its endpoints.
The defender’s goal is to publish approximate weights
that provide users with short paths to their destinations
while also increasing the burden on the adversary, mak-
ing an attack less likely. This method is inspired by a
differential privacy technique for approximating short-
est paths without revealing true weights [22], though
here we consider the weight perturbations in an opti-
mization context. A simple example of this scenario
is shown in Figure 1, which demonstrates that the de-
fender can raise the attacker’s required budget and the
risk that there may be more disruption to the graph if
the attack still occurs. We refer to the problem of min-
imizing the defender’s cost in this context as the Cut
Defense problem. The analysis over the remainder of
the paper makes the following assumptions: (1) The at-
tacker has a single target path p∗ (not necessarily known
to the defender) and uses a method known to the de-
fender to optimize the attack. (2) If the optimization
method identifies an attack within the attacker’s bud-
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Figure 1: A simple example of the defense method.
With no perturbation (δ = 0), p∗ can become the
shortest path from s to t if only 1 edge is cut, whereas
for δ ≥ 2, 3 edges must be removed. If the attacker has
a budget of at least 3, however, the attack would cause
more disruption, and the resulting cost to the defender
would be higher. For example, if {s, v1}, {s, v3}, and
{s, v7} are cut, all traffic between s and v1 or v3 will
take a much longer path than it would have when δ = 0.

get b (not necessarily known to the defender), the attack
will occur. (3) True edge weights and removal costs are
known to the attacker.

2.1 Notation We consider a graph G = (V,E),
which may be directed or undirected. Each edge has a
nonnegative weight w : E → R≥0. The weights denote
true traversal distances. The defender publishes weights
w′ : E → R≥0, which may be different than w. For a
given source–destination pair s, t ∈ V , let p(G, ŵ, s, t)
be the shortest path in G from s to t using weights ŵ.
For a path p between two nodes, let ℓ(G, ŵ, p) be the
length of p in G using weights ŵ. We denote by p∗ and
b the attacker’s target path and budget, respectively.

When determining the impact on users, we consider
the distribution of source–destination pairs, D, as this
will help determine how often paths are disrupted. In
addition, we assume the defender has uncertainty about
p∗ and b. The defender considers a distribution P of
possible target paths and a distribution B of possible
budgets. These distributions result in a distribution
of user-observed graphs, G, which we describe in the
next section. The defender’s cost (loss) function is
denoted by L. A notation table is provided in our longer
manuscript [19].

2.2 Stackelberg Game We frame the attacker–
defender interaction as a Stackelberg game in which the
defender is the leader and the attacker is the follower.
The defender has full knowledge of the attacker’s action
set, and tries to choose the optimal defense given the
attacker’s assumed response.

Attacker The attacker will observe a graph G =
(V,E) with weights w′ published by the defender, and
may also know the true weights w. Each edge e ∈ E has

a removal cost c(e) > 0 that is known to the attacker.
The attacker has a target path p∗ from source s to
destination t, and a budget b specifying the greatest
edge removal cost the attacker can incur. The attacker
runs an algorithm, which is known to the defender, that
solves the Force Path Cut problem [20]: Find a set of
edges E′ where c(E′) :=

∑
e∈E′ c(e) ≤ b and p∗ is the

shortest path from s to t in G′ = (V,E \E′) (using the
published weights w′). If the attack algorithm yields
a solution with cost greater than b, the attack is not
worth the cost to the attacker, so G′ = G.

Defender The defender publishes a modified set of
weights w′. While the defender knows the method that
the attacker will use, we assume there is uncertainty
with respect to the attacker’s target path p∗ and budget
b. The defender has a distribution over both of these
variables, as defined above. The distributions P and
B combine with the published weights w′ to create a
distribution over graphs G as follows. For a given p∗ in
P, let E′ be the solution given by the attack algorithm
using the published weights, and assume it is a unique
solution across all target paths. (If multiple target
paths have the same solution, the probability of the
resulting graph integrates across those paths.) Then the
probability that users observe graph G′ = (V,E \E′) is

(2.1) Pr
G
[G′] = Pr

P∼P
[P = p∗] · Pr

B∼B
[c(E′) ≤ B].

The defender’s goal is to publish a set of weights
that has minimal expected cost, i.e.,

(2.2) ŵ′ = argmin
w′

E [L(G,w,w′,D,P,B)] .

There are several considerations when defining the
defender’s cost, which we discuss in detail next.

2.3 Defender’s Cost Function The attacker’s cost
function is simple: The goal is to execute the attack,
so after computing the set of edges to remove, if it
is within the attacker’s budget, the cost is 0 (attack
occurs), and otherwise the cost is 1 (attack does not
occur). When determining the best course of action,
the defender has three considerations. The first is the
cost incurred by users of the network: the distance
they must travel to get from their origin points to their
destinations. If the users must travel longer distances,
the cost to the defender is higher. Note that this is
the actual distance traveled: The user selects a path p
based on the perturbed weights w′, but the distance is
computed based the original weights w. There is also a
cost associated with users traveling a different distance
than advertised. If the length of p is ℓtrue, but the user
is told the length is ℓobs, this may negatively affect the
user’s experience. If ℓobs < ℓtrue, the user will likely
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be dissatisfied with traversing a longer distance than
advertised. The case where ℓobs > ℓtrue is less clear.
If the advertised distance is only slightly greater than
the true distance, the user may be happy to experience
a shorter distance than advertised. If, on the other
hand, the advertised distance is drastically larger, this
may induce an additional burden on users, and thus
additional cost for the defender.

Finally, there may be situations where there is
some additional cost to the defender if the adversary
is successful. This would be a cost in addition to
the cost due to longer distances experienced by users
after the attack. If, for example, the new traffic route
allows the adversary to gain a competitive advantage
over the defender, this would have a broader negative
consequence than the specific issue of users experiencing
longer distances. If this is an issue for the defender,
there will be another component to the cost function to
account for the expected cost of attacker success.

To formalize the cost function, we consider the three
costs described above:

1. Ld: The average distance traveled by users

2. Le: The average cost of the error between adver-
tised and true path distances

3. Ls: The expected cost of attacker success

Cost 1 takes the expected value across source–
destination pairs u, v ∼ D. While the path p from
u to v is determined using the observed weights w′,
the distance experienced by users is based on the true
weights w. Thus, for a user traveling from u to
v, we use the path p(G′, w′, u, v), which has length
ℓ(G′, w, p(G′, w′, u, v)). Aggregating across all pairs,
cost 1 is expressed as

(2.3) Ld(G,w,w′,B,D,P) = E
[
ℓ(G′, w, p(G′, w′, u, v))

]
,

where the expectation is taken over

(2.4) s, t ∼ D and G′ ∼ G(G,w′,B,P).

Cost 2 considers the same path as cost 1, but rather
than the distance traveled, the defender considers a
function cerr of the error between the advertised and
true path lengths. Then cost 2 is given by

(2.5) Le(G,w,w′,B,D,P) = E
[
cerr(ℓ

true, ℓobs)
]
,

where ℓtrue = ℓ(G′, w, p(G′, w′, u, v)) and ℓobs =
ℓ(G′, w′, p(G′, w′, u, v)), and the expectation is once
again taken over (2.4). The shape of cerr will vary based
on the defender’s belief about users’ degree of dissatis-
faction with errors in reported path lengths. Here we
use the following cerr function, where f+, f− > 0 denote

different marginal costs for over- or under-stating the
path length, respectively:

cerr(ℓ
true, ℓobs) =

{
f+(ℓ

obs − ℓtrue) if ℓobs ≥ ℓtrue

f−(ℓ
true − ℓobs) if ℓobs < ℓtrue

(2.6)

Finally, cost 3 occurs if the attack is successful. The
defender has a parameter λ ≥ 0 that denotes the cost of
attacker success. The cost to the defender is as follows,
where p∗ = p(G′, w′, sp∗ , tp∗) only if p∗ is the unique
shortest path from sp∗ to tp∗ :

Ls = λPr[p∗ = p(G′, w′, sp∗ , tp∗)].(2.7)

If the only cost of an attack is the direct disruption
to users accounted for in Ld and Le, then the defender
sets λ = 0. A pseudocode description of an algorithm
for computing the cost is in our longer manuscript [19].

3 Optimization

We begin by formulating the optimization to solve
Cut Defense. We then define a zero-sum version in
which the defender’s goal is to reduce cost given that
the probability of attack is minimized. We propose a
heuristic method that results in a feasible solution for
a single target path, then extend its usage to multiple
target paths. We finally derive a linear program for local
optimization around a feasible point.

3.1 Non-Convex Optimization Formulation We
optimize cost while varying perturbed weights. Let

w ∈ R|E|
≥0 be the vector of original edge weights, where

each edge is given an arbitrary index corresponding to
its vector entry. The vector w′ contains the perturbed
weights, c contains edge removal costs, and xp is a
binary indicator vector for path p, i.e., if the ith edge
is in path p, the ith entry in xp is 1, otherwise it is 0.
Let P (u, v) be the set of all paths from u to v, quv =
PrD∼D[D = (u, v)] be the probability that a randomly
selected user travels from u to v, Pt = support(P) be all
paths with nonzero probability of being the target, W
be a large value to denote edge removal, and X (G,w, p∗)
be the set of attacks against graph G with weights w
to make p∗ be the shortest path between its terminal
nodes. We solve Cut Defense by optimizing as follows:

ŵ′ =argmin
w′

λ (1− z∅) +
∑

u,v∈V

Ld(u, v) + Le(u, v)(3.8)

s.t. Ld(u, v) = quv ·
∑

p∗∈Pt∪{∅}

zp∗ · ℓtrueuv,p∗(3.9)

∀u, v ∈ V

Le(u, v) = quv ·
∑

p∗∈Pt∪{∅}

zp∗ · Le(u, v, p
∗)(3.10)

∀u, v ∈ V
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Le(u, v, p
∗) =

(
f+ · dposuv,p∗ + f− · dneguv,p∗

)
(3.11)

∀u, v ∈ V, p∗ ∈ Pt ∪ {∅}
∆p∗ ∈ X (G,w′, p∗) ∀p∗ ∈ Pt(3.12)

∆∅ = 0(3.13)

c⊤∆p∗ ≤ c⊤∆ ∀∆ ∈ X (G,w′, p∗), p∗ ∈ Pt(3.14)

zp∗ = Pr(p∗)
∑

i≥c⊤∆p∗

Pr
B∼B

[B = i] ∀p∗ ∈ Pt(3.15)

z∅ = 1−
∑

p∗∈Pt

zp∗(3.16)

zp∗ ≥ 0 ∀p∗ ∈ Pt ∪ {∅}(3.17)

puv,p∗ = argmin
p∈P (u,v)

x⊤
p (w

′ +W∆p∗)(3.18)

∀u, v ∈ V, p∗ ∈ Pt ∪ {∅}

ℓtrueuv,p∗ = x⊤
puv,p∗w ∀u, v ∈ V, p∗ ∈ Pt ∪ {∅}(3.19)

ℓobsuv,p∗ = x⊤
puv,p∗w

′ ∀u, v ∈ V, p∗ ∈ Pt ∪ {∅}(3.20)

dposuv,p∗ , d
neg
uv,p∗ ≥ 0 ∀u, v ∈ V, p∗ ∈ Pt ∪ {∅}(3.21)

dposuv,p∗ − dneguv,p∗ = ℓobsuv,p∗ − ℓtrueuv,p∗(3.22)

∀u, v ∈ V, p∗ ∈ Pt ∪ {∅}.

Note that puv,p∗ , defined in (3.18), is the shortest path
from u to v according to the published weights after
the attacker attacks when the target path is p∗. An
explanation of each constraint is provided in our longer
manuscript [19].

One potential concern when calculating the ex-
pected cost across pairs of nodes is the possibility that
the graph could become disconnected, leaving some
inter-node distances infinite. However, due to the fol-
lowing theorem, we do not need to be concerned about
this possibility. A proof and a discussion of practical
issues are provided in our longer manuscript [19].

Theorem 3.1. The optimal ∆p∗ in (3.14) will not
disconnect G.

3.2 Zero-Sum Formulation In the prior section,
we assumed a non-zero-sum game in which the optima
for the attacker and defender may coincide. We gain
additional insight into the problem by considering the
zero-sum version of the problem, in which the defender’s
primary goal is ensuring the attack does not occur. In
this case, we are given the same information as in Cut
Defense except the cost of attack success λ. Instead,
the defender manipulates the weights w′ to minimize
the probability of attack, i.e.,

zmin =min
w′

∑
p∗∈P

(
Pr

P∼P
[P = p∗](3.23)

· Pr
B∼B

[c(E′(G,w′, p∗)) ≤ B]
)
.

Within the minimized attack probability, however, the
defender wants the cost to be as low as possible. Thus,
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Figure 2: Reduction from Knapsack to Zero-Sum Cut
Defense. The ith item in the set corresponds to a
triangle {ui−1, ωi, ui}. All target paths go from s =
u0 to t = un. The target path p∗ traverses the
bottom edges on the figure, highlighted in red. Keeping
defender cost low while ensuring the probability of
attack is 0 is equivalent to keeping the knapsack’s weight
low while ensuring the value is sufficient.

the Zero-Sum Cut Defense problem is given by

ŵ′ =argmin
w′

Ld(G,w,w′,B,D,P)(3.24)

+ Le(G,w,w′,B,D,P)

s.t. zmin =
∑
p∗∈P

(
Pr

P∼P
[P = p∗](3.25)

· Pr
B∼B

[c(E′(G,w′, p∗)) ≤ B]
)
.

Note that Ls is not considered in the objective in this
formulation, since the attack probability is fixed at its
minimum possible value. We show that this version of
the problem is NP-hard.

Theorem 3.2. Zero-Sum Cut Defense is NP-hard.

Proof Sketch. We prove NP hardness via reduction from
the Knapsack problem. Given a set of n items with
values νi ∈ Z+ and weights ηi ∈ Z+, 1 ≤ i ≤ n,
and two thresholds U and H, the Knapsack problem
is to determine whether there is a subset of items with
total value at least U with weight no more than H.
For each item, we create a triangle in a graph, where
consecutive triangles share a node as shown in Fig. 2.
The ith triangle consists of the nodes ui−1, ui, and ωi.
Let s = u0 and t = un. We create a Zero-Sum Cut
Defense instance in which the support of P consists of
the single path from s to t that passes through no nodes
ωi for any 1 ≤ i ≤ n. For all i, edge {ui−1, ui} has
weight 1 and removal cost 1, {ui−1, ωi} has weight 1
and cost vi, and edge {ωi, ui} has weight wi and cost
vi. The adversary’s budget is U − 1 with probability 1.
The defender’s cost only considers traffic going from s
to t, i.e., Pr(x,y)∼D[(x, y) = (s, t)] = 1. Let f+ = 1 and
f− = H ′ =

∑n
i=1 wi.

Since the adversary’s budget is U − 1, in order to
minimize the attack probability (in this case, make it
0), the defender must force some subset of edges along
p∗ to have length at least the same as the two-hop
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paths running parallel to them. The removal costs on
the parallel paths of these edges must sum to at least
U : the defender’s “value” is an increased cost for the
attacker. The increase in distance traveled by the user
will be commensurate with the weights of the items
associated with the perturbed edges. This provides a
direct mapping between solving Knapsack and solving
Zero-Sum Cut Defense on the generated graph. A
detailed proof is provided in our longer manuscript [19].

Although the problem cannot be efficiently solved in
general, we find feasible points fairly easily by increasing
the length of p∗ until the cost of the attack is sufficiently
high. Starting with weights w′ initialized to the true
weights w, the procedure is as follows:

1. E′ ← attack(G,w′, p∗)

2. p← 2nd shortest path between the terminals of p∗,
if it exists

3. pick an edge e from Ep∗ \ Ep

4. increase w′(e) by δ = ℓ(G,w′, p)− ℓ(G,w′, p∗)

Here Ep is the set of edges on path p. This procedure
continues until either p∗ is the longest path between its
terminals or c(E′) exceeds the largest possible attack
budget. This procedure yields a feasible point given
the attacker’s algorithm. If we continue until p∗ is the
longest path, we must be at a feasible point: all other
paths that connect p∗’s endpoints need to be cut. This
observation yields the following theorem.

Theorem 3.3. When P consists of a single path p∗,
the procedure above yields a feasible point for Zero-Sum
Cut Defense.

While having multiple possible target paths compli-
cates the problem, we use a similar principle to reduce
the probability of attack. For each target path, we in-
crease the edge weights as described above. We then
apply the attack and use the number of edges removed
to calculate the attack probability. Then, starting from
the original graph, we consider the target paths in or-
der of increasing attack probability. We then increase
the edge weights on each target path again, accumu-
lating the new weights each time. This prioritizes the
path at the end of the sequence, which has the highest
probability of resulting in an attack.

3.3 Heuristic Method From the zero-sum case, we
see that increasing the weights on target paths is an ef-
fective strategy. Taking this as inspiration, we propose
a heuristic algorithm that iteratively chooses an edge

e from some target path p∗ and increments its weight
to add another path to Pp∗ . We call this algorithm
PATHDEFENSE (see Algorithm 2). At each iteration, the
algorithm considers edges on which the smallest possi-
ble weight increase will provide one target path with a
new competing path. For a given target path p∗, these
edges are identified by applying the attack and finding
the second-shortest path p between the source and des-
tination of p∗, if such a path exists. The edges in p∗ that
are not part of p may be incremented to add p as a com-
peting path that must be cut to make p∗ shortest (see
Algorithm 1). The attack probability is evaluated after
considering each possible perturbation, and whichever
perturbation results in the smallest attack probability
is kept. If multiple perturbations result in the same at-
tack probability, the edge is chosen that maximizes the
average length of p∗. This procedure continues until (1)
all target paths are the longest between their terminals,
or (2) a threshold is reached in terms of cost, attack
probability, or number of iterations.

Algorithm 1 get edge increments

Input: graph G = (V,E), perturbed weights w′, p∗ dist. P
Output: weight increment set R

1: R← ∅
2: for all p∗ ∈ Pt do
3: Etemp ← attack(G,w′, p∗)
4: G′ ← (V,E \ Etemp)
5: if p∗ is not the only path from s to t in G′ then
6: p← 2nd shortest path from s to t in G′ using w′

7: δ ← ℓ(G′, w′, p)− ℓ(G′, w′, p∗)
8: for all e ∈ Ep \ Ep∗ do
9: R← R ∪ {(e, δ)}

10: end for
11: end if
12: end for
13: return R

3.4 Local Optimization Around a Feasible
Point Once a feasible point is identified, we relax the
hardest constraints to formulate a linear program for
local optimization. In this case, we fix the attack that
occurs for each p∗, and ensure that the observed short-
est path between each pair of nodes remains the same
as the weights are varied. By fixing the attack, we are
given a value for ∆p∗ and zp∗ , thus removing constraints
(3.12)–(3.17) from the nonconvex optimization in Sec-
tion 3.1. By fixing the shortest path, we are given a
value for puv,p∗ , replacing constraint (3.18) with

ℓobsuv,p∗ ≤ x⊤
p (w′ +W∆p∗)(3.26)

∀u, v ∈ V, p∗ ∈ Pt ∪ {∅}, p ∈ P (u, v).
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Algorithm 2 PATHDEFENSE Heuristic Defense Algorithm

Input: graph G = (V,E), true weights w, budget dist. B,
p∗ dist. P, (u, v) pair dist. D, attack cost λ, cost threshold
ϵc, attack prob. threshold ϵa, max. iterations imax

Output: perturbed weights w′

1: w′ ← w
2: repeat
3: R← get edge increments(G,w′,P)
4: (emin, δmin, zmin, ℓmin)← (∅, 0, 2, 0)
5: for all (e, δ) ∈ R do
6: w′(e)← w′(e) + δ
7: z ← 0
8: for all p∗ ∈ Pt do
9: Etemp ← attack(G,w′, p∗)

10: z ← z + PrP∼P [P = p∗] PrB∼B[B ≥ c(Etemp)]
11: if z < zmin or (z = zmin and

EP∼P [ℓ(G,w′, P )] > ℓmin) then
12: emin ← e
13: δmin ← δ
14: zmin ← z
15: ℓmin ← EP∼P [ℓ(G,w′, P )]
16: end if
17: end for
18: w′(e)← w′(e)− δ
19: end for
20: w′(emin)← w′(emin) + δmin

21: Ld, Le, Ls ←cost(G,w,w′,B,P,D, λ)
22: i← i+ 1
23: until Ld + Le + Ls < ϵc or zmin < ϵa or |R| = 0 or

i ≥ imax

24: return w′

All remaining constraints in the nonconvex program
are linear. This is not, however, sufficient to locally
optimize: The attack ∆p∗ must be both necessary (not
cut superfluous edges) and sufficient (cut all paths that
compete with p∗). To optimize within this context, we
add the constraints

x⊤
p∗w′ ≤ x⊤

p (w
′ +W∆p∗)− ϵp∗(3.27)

∀p∗ ∈ Pt, p ∈ P (sp∗ , tp∗)

x⊤
p∗w′ ≥ x⊤

p w
′ p∗ ∈ Pt, p ∈ Pp∗(3.28)

Here Pp∗ is the set of paths competing with p∗ to be
the shortest path from sp∗ to tp∗ . To ensure sufficiency,
(3.27) constrains all paths between the terminals of a
target path p∗ to be strictly longer than p∗. The addi-
tional variables ϵp∗ may be measured based on the differ-
ence in lengths between p∗ and the second-shortest path
after the attack. Constraint (3.28) ensures necessity by
making all paths that competed with p∗ at the feasible
point remain competitive. Since all constraints are lin-
ear, we use constraint generation to explicitly state only
a subset of the necessary constraints [4].

4 Experiments

We demonstrate the optimization procedure with 4 syn-
thetic network generators and 4 real networks. All syn-
thetic networks have 250 nodes and an average degree of
approximately 12. We use Erdős–Rényi (ER) random
graphs, Barabási–Albert (BA) preferential attachment
graphs, Watts–Strogatz (WS) small-world graphs, and
stochastic blockmodel (SBM) graphs where nodes are
separated into communities of size 200 and 50. To pro-
vide some variation in edge weights, all edges are given
weights drawn from a Poisson distribution with rate pa-
rameter 20. Removal costs are set to 1 for all edges.

The real network datasets include 2 transportation
networks, 1 social network, and 1 computer network.
The transportation networks are United States airports
(USAIR), where edge weights are the number of seats
on flights between airports [9], and United Kingdom
metro stops (UKMET), where weights are travel times
between stops in minutes [13]. The social network
is attendees at the 2009 ACM Hypertext Conference
(HT), where weights are the number of face-to-face
interactions during the conference [16]. The computer
network is an autonomous system (AS) graph [17], with
weights from a Poisson distribution as in the synthetic
networks. Weights for USAIR and HT are inverted to
create distances rather than similarities. Statistics and
links to the datasets are in our longer manuscript [19].

4.1 Experimental Setup For each experiment on
a given dataset, to evaluate the effects of varying
the number of target paths, we choose 1, 2, 4, or
8 target paths. Source–destination pairs are chosen
uniformly at random and the target paths include the
5th shortest and every second path thereafter until the
desired number of targets is reached. In some cases, all
target paths have the same terminal nodes; in others,
we choose independently for each path. For SBM and
AS graphs, we also consider the case where the two
terminal nodes are from one community of nodes, but
the target path traverses nodes in another one. (We
call this an extra-community path.) This emulates a
scenario where an outside attacker wants the traffic to
take a relatively unnatural path, e.g., computer traffic
unnecessarily crossing national boundaries.

In each experiment, B is a Poisson distribution
whose rate parameter is the average number of edges
removed by the attack across all target paths. For
the attack, we use the version of PATHATTACK that
solves a relaxed linear program and randomly rounds
to get an integer solution [21]. The source–destination
distribution emphasizes the portions of the graph with
target paths: with probability 0.5, we draw two nodes
both either on a target path or on the true shortest
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Figure 3: Cost of PATHDEFENSE when all target paths share terminals. Lower cost is better for the defender.
Plots include the average cost (solid line) and the cost range across trials (shaded area). (a) Cost broken down
by component for BA, WS, and UKMET graphs with 4 target paths. There is a substantial reduction in cost
due to the probability of adversary success being reduced, and the cost due to errors in published distances is
minimal for BA and WS, whereas Le increases a substantial amount in the UKMET data, as it is difficult to avoid
traversing perturbed edges. (b) Defender costs, normalized by a lower bound, for ER (top), USAIR (middle), and
HT (bottom) graphs. Results are shown for the original budget and λ (left), when the attacker budget is doubled
(center), and when λ is reduced by five times (right). The average zero-sum result is also shown (dashed line).
As expected, increasing the adversary’s budget results in slower convergence, and decreasing the attack success
cost reduces the improvement provided by PATHDEFENSE.

path between its endpoints, and with probability 0.5
we do not. (Pairs are uniformly distributed within
each category.) For each setting, results are aggregated
across 10 trials. The cost of attacker success λ is set
to one half of the cost based on distances alone when
there is no attack. We used a CentOS Linux cluster
with 32 cores per machine for our experiments. Each
job was allocated 10 GB of memory. We used Python
3.8.1 with Gurobi 9.5.1 (https://www.gurobi.com) for
optimization and NetworkX 2.4 (https://networkx.
org) for graph analysis.

4.2 Results We first consider how the three com-
ponents of the defender’s cost vary when running
PATHDEFENSE. Representative results are shown in
Fig. 3(a). Cost is typically dominated by the true dis-
tance traveled by users. While the traffic is primarily
on the portion of the graph affected by the attack, the
impact of errors is negligible in comparison. One rea-
son for this phenomenon is that increasing edge weights

discourages their use: when a path looks longer, fewer
users will take it and it will not be considered in the
cost. In the UKMET case, however, this changes after
about 100 iterations, when the cost from errors drasti-
cally increases. The metro graph is somewhat tree-like,
making it difficult to avoid traversing perturbed edges.
In all cases, the overall reduction in cost comes from a
large reduction in the probability of attack and a small
increase in the average distance traveled.

The cost of PATHDEFENSE for three additional
datasets is shown in Fig. 3(b). The plots include cases
where the rate parameter of the budget distribution is
doubled and where the cost of adversary success is re-
duced by a factor of five. We report all costs as a pro-
portion of a lower bound: the cost when there is no
attack and no perturbation. When the attacker’s bud-
get is doubled, the initial defender cost is much larger,
but the cost eventually obtained by PATHDEFENSE is
very similar. It is typical for PATHDEFENSE to outper-
form the zero-sum case at an early iteration when there
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Figure 4: Results when the attacker targets an extra-
community path (left), in comparison to when targets
are incrementally longer short paths (right), in SBM
(top) and AS (bottom) graphs. Plots include the
average cost (solid line) and the cost range across trials
(shaded area), as well as the average zero-sum result
(dash line). (The zero-sum procedure is only reported
for SBM; it did not complete within 24 hours for AS.)
PATHDEFENSE yields lower relative cost in the case where
the target path is incrementally longer than the true
shortest path than in the extra-community case.

are few target paths, though this does not always hap-
pen. When there are 8 target paths in the HT graph,
the zero-sum procedure produces a better result than
PATHDEFENSE. This may be due to the clustering that
exists in the social network: it may promote oscilla-
tion between competing paths, whereas the zero-sum
method focuses on one path at a time. The results on
all datasets and the results that compare with a simple
baseline defense using alternative attack methods are
provided in our longer manuscript [19].

Fig. 4 shows results where the attacker targets
a path that exits and re-enters a community. The
lowest relative cost is higher in this case than when
paths are chosen by enumerating consecutive shortest
paths, which is consistent with intuition. In the SBM
graph with extra-community target paths, we again
see that the zero-sum method yields lower cost than
PATHDEFENSE, suggesting that optimizing each target
path in sequence is effective in this case as well.

5 Related Work

The problem of releasing a graph that can be useful
while not revealing sensitive information has received
much attention since the discovery of the problem of
deanonymization [3]. Much of this research has been
concerned with privacy-preserving release of social net-
work data, where nodes are anonymized w.r.t. topolog-
ical features such as degree [18], neighborhood [25], or

cluster [5]. Sharing of sensitive graph data has been
studied in the context of differential privacy [10]. Seal-
fon [22] applied differential privacy to graph weights
in the context of computing shortest paths. Other
methods have considered differential privacy for un-
weighted graphs. For example, a data-driven low-
dimensional projection [2] and random low-dimensional
projections [6] have been applied for cut queries, i.e.,
calculating the number of edges that must be removed
to disconnect two sets of vertices. Other work does not
necessarily preserve distances between pairs of nodes,
but maintains the distribution of distances [8].

Outside of differential privacy, there is work on
reliably finding shortest paths when a graph is located
on an untrusted server [14]. In other work, an actor
wants to “buy” a path from s to t, with the prices only
known to current owners [1]. In this setting, a buyer
can be forced to overpay for the path [11], which is
similar to the Cut Defense goal of forcing an attacker
to expend extra resources, though in a different data
access mechanism. Recent work in adversarial machine
learning has expanded to attacking graph structure
to alter vertex classification outcomes [26] or vertex
embeddings [7]. Other work has aimed to defend
against such attacks by, for example, using a low-rank
representation of the graph [12] or filtering based on
node attribute similarity [23].

6 Conclusion and Future Work

We present a framework and algorithms for defending
against shortest path attacks. We formulate the defense
as a Stackelberg game in which the defender alters
the weights of the graph before the attacker removes
edges to make the target path shortest. The defender’s
cost includes components to limit the average distance
traveled by users, the error in the published distances,
and the probability of attacker success. We show that
the zero-sum version of this problem is NP-hard and
provide a greedy edge weight increment procedure to
find a feasible point. Using this same procedure, we
propose the PATHDEFENSE algorithm and apply it to
several real and synthetic datasets. Across a wide set
of experiments, we observe that PATHDEFENSE reduces
the attack probability to a negligible level (typically less
than 10−6) while only slightly increasing the cost borne
by users (by less than 5% in over 87% of cases).

There is currently no performance guarantee for
PATHDEFENSE. Future work in this area should focus
on obtaining such a guarantee, perhaps by narrowing
the scope of the problem (e.g., single target path,
weights only increased). Lastly, using a parallel method
that exploits sparseness [24] could be key to applying
PATHDEFENSE at scale.
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