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Abstract. Heuristic search is a prominent method for plan genera-
tion in classical planning. Here we address its use for a new problem
that we baptize action optimality checking (AOC): checking whether
a given action ¢ is optimal in a given state s. AOC has various po-
tential uses, e.g. quality assurance for learned action policies through
checking example policy decisions. A vanilla algorithm for AOC s to
run two A* searches, on each of s and the outcome state s” of apply-
ing a. We show that one can do much better than this. We introduce
early termination criteria across multiple searches. Beyond this, we
introduce AOCA*, which performs a single search on s that gives
preference to paths going through s’. Our experiments show that
AOCA* is superior to the vanilla algorithm as well as other multiple-
search configurations, consistently across three different state-of-the-
art heuristic functions.

1 Introduction

Heuristic search is a prominent method for plan generation in Al
Planning. Here we consider classical planning, where the initial state
is fully known and the action outcomes are deterministic. The task of
plan generation is then to find an action sequence that leads from the
initial state to the goal, given the semantics of states and actions as
specified in the underlying PDDL model [11]. Prior work has come
up with a wealth of informative heuristic functions in this context
[e.g., 9, 2, 15, 4, 10, 13, 14, 17, 19], in particular with admissible
heuristics allowing to find optimal plans that minimize action cost.

Here we consider the use of heuristic search not for plan gener-
ation, but for a problem that has, to the best of our knowledge, not
been specifically considered in the planning literature before: action
optimality checking (AOC). Given a state s and an action a, does a
start an optimal plan for s?

Action optimality checking is natural if the action a was suggested
for the state s by some method that we do not have full trust in.
Learned action policies 7 fit this profile. An action policy is a func-
tion m: S — A from states to actions. If 7 is a machine learning
model, for example a neural action policy [8, 23, 20, 24], then 7
comes without any inherent guarantees, and it is unclear if we can
trust individual decisions 7(s) = a. AOC is a means for quality as-
surance in this context, e.g., applied to sampled states from smaller
domain instances where AOC is feasible.
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A specific use of AOC arises in the context of policy testing in
Al Planning [21, 5, 6]. Such testing methods find bug states ¢, from
which the policy run is sub-optimal. In particular, if the policy run
from ¢ reaches the goal but ¢ is a bug, then we know that 7 must take
at least one sub-optimal action decision below ¢. But which decision
is it? AOC along the policy path below ¢ provides the answer.

AOC may also have other uses. To give some examples, it could
be helpful for debugging and testing planning systems: If a suppos-
edly optimal planner outputs a sub-optimal plan, one may use AOC
along that plan to find a specific wrong decision. In the approach to
contrastive explanations by Krarup et al. [16], a user question “Why
is action b used in state s, rather than action a?” could be answered
by solving AOC for s and a. Similarly, there is a potential applica-
tion in the field of goal recognition, where agents are assumed to act
optimally towards achieving a certain goal, which an observer needs
to recognize based on this assumption: If an agent chooses an action
a in a state s that is sub-optimal for some goal G, then the observer
knows that the agent is not pursuing GG as otherwise it would not act
optimally. Generally, user-suggested actions can be verified by AOC.

One could also use approximations of AOC during search to
quickly prune, or commit to, an action. The methods we introduce
here can serve as quick approximations through early termination.
Torralba [22] introduces a sufficient criterion, based on dominance
functions, proving that a is optimal in s. As part of our experiments,
we design related criteria showing that a is sub-optimal.

Here we focus on the AOC problem per se, i.e., not in the context
of any specific application. Our contribution lies in the design and
analysis of algorithms dedicated to AOC, and in their empirical eval-
uation. Throughout, we assume s is solvable—the unsolvable case is
uninteresting as, there, it does not matter which action is applied. We
show that AOC is PSPACE-complete, even given this assumption.

A vanilla algorithm is to run two A* searches, on each of s and
the outcome state s’ of applying a. The optimal plan costs for s and
s’ determined this way tell us whether or not a is optimal in s. How-
ever, one can do much better than this. We introduce early termina-
tion criteria across multiple searches, in particular using the current
lower bound computed by A* on s’ against an upper bound com-
puted by another algorithm on s. Beyond this, we show that one can
decide AOC with a single search from s, through a variant of A* that
we baptize action-optimality-check A* (AOCA*). Within the search
space of AOCA*, s’ and its descendants are tagged. Ties are broken
in favor of tagged nodes. AOCA™ can terminate once the first goal



node is expanded, just as A*; and it can terminate early if the open
list contains only or no tagged nodes.

We run experiments on the International Planning Competition
(IPC) benchmarks, including all domains from the optimal classical
track without conditional effects after grounding. We construct two
AOC problem instances for the initial state of each IPC benchmark
instance. We run the vanilla algorithm, a range of more advanced al-
gorithms relying on multiple searches, and AOCA*. AOCA™ is supe-
rior to all the other algorithms, consistently across three state-of-the-
art heuristic functions, namely LM-cut [13], Cartesian abstractions
[19], and merge-and-shrink abstractions [14]. For further compari-
son, we run sufficient criteria based on dominance functions, includ-
ing Torralba’s [22] criterion and several related ones. These turn out
to be much worse in terms of coverage than using search.

2 Background

A STRIPS planning task Pisatuple P = (F, A, I, G), where Fisa
set of facts, and A is a set of actions. A state s C F is a set of facts,
I C F is the initial state and G C F is a goal specification. An
action a € A is defined by its precondition pre(a) C F, add effect
add(a) C F, delete effect del(a) C F and cost cost(a) € Qf.'
We denote by S := 27 the set of all states. An action a € A is
applicable in s € S if pre(a) C s, and we use A(s) C A to denote
the set of all actions applicable in s. The resulting state of applying
an applicable action a in a state s is the state af[s] = (s \ del(a)) U
add(a). A state s is called a goal state if G C s. A sequence of
actions T = (a1, ..., ax) is applicable in a state sy if there are states
S1,...,8Sn such that a; is applicable in s;—1, i.e., a; € A(si—1),
and s; = a;[si—1] fori € {1,...,n}. The resulting state of this
application is 7[so] = sn and cost(m) = >_7_; cost(a;) denotes
the cost of this sequence of actions.

A sequence of actions 7 is called an s-plan if it is applicable in
the state s and 7[[s] is a goal state. An I-plan is called simply a plan.
An s-plan (plan) 7 is called optimal if its cost is minimal among all
s-plans (plans). A state s is called solvable if there exists an s-plan.

We assume readers are familiar with the concept of heuristic
search and the A* algorithm in particular. We show pseudo-code for
A* as part of our pseudo-code for AOCA* in Section 5. In what fol-
lows, we introduce the basic terminology for heuristic search and A*.

Aheuristic h: S — QF U{oo} is a function estimating the cost of
optimal s-plans where oo indicates that s is not solvable. The perfect
heuristic, denoted by h*, is a heuristic mapping each state s to the
cost of the optimal s-plan or to oo if s is not solvable. A heuristic h
is called admissible if A(s) < h*(s) for all states s, and h is called
consistent if h(s) < h(a[s])+cost(a) for all states s and a € A(s).
For a state s during search, we use the g-value g(s) to denote the cost
of the current path to s, we call the heuristic value h(s) the h-value,
and we define the f-value as f(s) = g(s) + h(s).

In a nutshell, A* maintains a priority queue of states, called open
list, ordered by the f-values. In each iteration, a state s with the low-
est f-value is removed from the open list (if the open list is empty,
there exists no plan), and moved to the closed list. If s is a goal state,
an optimal plan is found. Otherwise, s is expanded and its non-closed
successor states s’ are inserted into the open list; if they already are
in the open list, their g-values are updated so that they are minimal.
For inconsistent heuristics h, the g-value can still decrease for closed
states, and hence we need to allow re-opening, inserting closed s’
into the open list in case the new path to s’ is cheaper.

1 Using rational instead of real numbers for action costs plays a role for our
complexity result in Section 3.

3 Action optimality checking

We focus on the AOC problem, deciding whether a given action a is
optimal in a given state s. We impose several restrictions. First, if a
is not applicable in s, the question becomes trivial and uninteresting.
Second, the same is true if s is a goal state. Third, allowing s to be
unsolvable would merely overload the AOC problem with the prob-
lem of deciding whether s is solvable—after all, if s is unsolvable
then it does not matter which action is applied and, again, AOC be-
comes trivial. Therefore, we restrict to solvable non-goal states s and
actions a € A(s) applicable in s.

Definition 1. Given a solvable non-goal state s and an action a €
A(s) applicable in s, we say that a is optimal in s if there exists an
optimal s-plan m = (a1, ..., axn) such that a1 = a.

Before we get to the discussion of techniques that can be used for
determining whether an action is optimal in a state s, we show that
this decision problem is PSPACE-complete, and hence as hard as
finding an optimal s-plan. This is so even when we already know
that an s-plan exists.

Definition 2. ACTION-OPTIMALITY-CHECK (AOC) decision prob-
lem: Given a planning task P, a solvable non-goal state s and an
action a € A(s) applicable in s, is a optimal in s?

Theorem 1. ACTION-OPTIMALITY-CHECK is PSPACE-complete.

Proof. Hardness: Let PLAN-SAT denote the decision problem decid-
ing whether a planning task P has a plan, which is a PSPACE-
complete problem [3]. To show that AOC is PSPACE-hard, we re-
duce PLAN-SAT to AOC as follows. Given a planning task P =
(F,A,1,G), we construct another planning task P’ = (F U
{z}, AU{a,d’'},I,G) where & F is a fresh fact, and a,a’ ¢ A
are two fresh actions such that pre(a) = pre(a’) = del(a) =
del(a’) = {zx}, add(a) = I, add(a’) = G, cost(a) = 0, and
cost(a’) = 271 maxye 4 cost(b) 4 1. Consider AOC for s := {x}
and a in P’. First, s is a solvable non-goal state in P’, and a is appli-
cable in s, so the problem instance is valid. Second, P has a plan if
and only if @ is optimal in s, because m = (a1, ..., ax,) is an optimal
plan for P if and only if 7’ = (a,a1,...,a,) is an optimal s-plan
in P’, and the cost of both 7 and 7’ is strictly smaller than cost(a’).

Membership: Consider the following procedure. As action costs
are rational, we can denote z;/y; = cost(b;) for b; € A, where
yi 7 0. Let k := 1/(Ily,c.ay:). Then cost(b;)/k is an integer for
all b; € A. We iterate over K € {0,k,2k,...} and for each K
we decide (P1) whether there exists an s-plan of cost < K when
enforcing the first action to be a, and (P2) whether there exists an
s-plan of cost < K when enforcing the first action to be # a. We
terminate when the answer for either (P1) or (P2) is “Yes”, at which
point K is the cost of an optimal s-plan. We return the (P1) answer,
which clearly is “Yes” if and only if a is optimal in s. Hence the
procedure decides AOC. It remains to prove that we can implement
the procedure in polynomial space. This is the case for (P1) and (P2)
as deciding whether a planning task has a plan of cost < K is in
PSPACE [3, 1]. We can also compute and represent k in polynomial
space as the number of digits required in a non-unary representation
of ITy, e 4y; grows linearly with that of the factors y;. This concludes
the proof. ([

Typically, irrational action costs are allowed in the literature, i.e.,
costs are not in Q7 butin R{". Hardness of AOC obviously still holds
then. For membership, we leave this question open (arguably, it has
limited practical relevance).



4 Multiple searches and early termination

We henceforth consider an AOC instance s, a, and we denote 8" =
a[s]. A straightforward way to decide AOC is to determine the costs
h*(s) and h*(s") of the optimal s-plan and s’-plan: a is optimal in
s if and only if h*(s) = h*(s’) + cost(a). There are many ways to
determine h*(s) and h*(s’). Here, we focus on the use of A*, which
means to simply run A* twice, once on s and once on s’. However,
there are several ways to improve this vanilla algorithm.

A first observation is that, in some special cases, one of the two
searches is enough to provide the desired answer. If A* from s gen-
erates a plan starting with a, then a is optimal in s. If A* from s’
finds that s is unsolvable, then a does not start any s-plan.

A more interesting method facilitating early termination is to com-
pute upper bounds u(s) on the cost of the optimal s-plan (i.e.,
u(s) > h*(s)), as well as lower bounds I(s’) on the cost of the
optimal s’-plan (i.e., I(s") < h*(s")). If, at some point during the
computation, u(s) < I(s") + cost(a), then a is not optimal in s. A
straightforward way to leverage this observation is to run A* from s
first, obtaining u(s) = h*(s) which can then be used for early termi-
nation in A* from s’, where we obtain the lower bound I(s’) as the
maximal f-value of any expanded node. As a more advanced option,
akin to finding initial upper bounds in branch-and-bound approaches,
we can also use a non-optimal (satisficing) planner to quickly find an
upper bound u(s) for use in A* from s’.

All algorithms in this design space run several searches, and early
termination depends on the order in which we run those. Rather than
fixing such a sequential order however, we can also leverage paral-
lelization. We can run A* from s and from s’ in parallel, terminating
early if we can do so based on either of the two searches individually.
If A* from s finishes first, we can use u(s) for early termination of
the still running A* from s’ as described above. Lastly, we can add
one or several satisficing planners to the pool of parallel searches,
to more quickly determine upper bounds u(s) that can be communi-
cated to the A* search from s’ for possible early termination.

5 Single search using AOCA*

So far, we discussed how to decide AOC using multiple searches.
Here, we show that we can solve this problem by a single search ex-
tending A*. We baptize this algorithm AOCA* (Action-Optimality-
Check A*). In what follows, we introduce and explain the algorithm,
prove its correctness, and discuss the issue of inconsistent heuristics
and re-opening.

5.1 Algorithm

As before, let s be a state, a € A(s) and s’ = a[s]. Algorithm 1
shows pseudo-code for AOCA™. The highlighted parts (in blue) show
the differences to A*.

Note that in our pseudo-code we do not use a closed list explicitly.
Instead, we use the convention that g(t) = oo for all states ¢ unless
g(t) was explicitly set (on line 19), i.e., a state ¢ is closed if g(¢) #
oo and t is not in the open list. This also means that lines 16 to 21
perform all of: (a) insertion of new states in the open list; (b) update
of states in the open list when their g-value is decreased; and (c) re-
opening of closed states (in case of inconsistent heuristic k) when we
find lower g-values for already closed states.

In contrast to A*, the AOCA* algorithm maintains an additional
tag T or L associated with each state ¢ (initialized on line 3). If a
state ¢ is tagged with T (tag(t) = T), then the cheapest path from

Algorithm 1: Pseudo-code of AOCA*

Input: A planning task P with actions .4, a solvable non-goal
state s, an action a € \A(s), and an admissible heuristic h
Output: T if a is optimal in s, otherwise L
1 5"+ als];
2 g+ {(s,0), (s, cost(a))}; // Mapping of states to g-values.
3 tag + {(s,1),(s', T} // Mapping of states to T/L tags.
/* Open list of triplets of the form (state, f-value, tag). */
4 open « {(s, h(s), tag(s)), (', g(s') + h(s'), tag(s) }:
/* From now on, we assume g(t) = oo if (¢t,_) & g. */
while open # () do
/* Early termination criteria: */
if tag(t) = T for all (¢, f(¢), tag(t)) € open then
‘ return T;
if tag(t) = L for all (¢, f(¢),tag(t)) € open then
‘ return | ;
/* Extract a node with the minimal f-value, breaking ties in
favor of states ¢ such that tag(t) = T. */
10 (t, f(t), tag(t)) + popMin(open);
1 if ¢ is a goal state then
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12 ‘ return tag(t)
13 for b € A(t) do
14 t' < b[t];
15 Gtmp < g(t) + cost(b);
/* Recall that g(t') = oo if g(¢') was not set yet. */
16 if gemp < g(t')
17 or (gemp = g(t') and tag(t)=T #tag(t')) then
18 open <+ open \ {(t',_, ) };
19 9(t') 4 Gemp;
20 tag(t') < tag(t);
21 open < open U {(t', g(t') + h(t), tag(t'))};

s to t found so far starts with the action a. The tag | indicates that
the cheapest path to ¢ found so far does not start with a. AOCA™ then
does not order the states in the open list just by their f-values, but
in case two states have the same f-value it prefers to pop first the
state with the tag T. That is, AOCA™ still searches for an optimal s-
plan (as A™), but it prefers optimal s-plans starting with the action a.
Therefore, the first goal state ¢ popped from the open list (i.e., the one
with the lowest f-value and therefore also g-value) is tagged with T
if and only if @ starts an optimal s-plan.

The correct tagging of states is ensured as follows. The first state
tagged with T is s’ because if a starts an optimal s-plan, then s’ =
a[s] is the first state visited by that s-plan. Then tags are inherited
from the cheapest predecessor states while preferring predecessors
tagged with T. That is, given a state ¢, applicable action b € A(t) and
the successor state ¢’ = b[t], we set g(t') = g(t) + cost(b) (line 19)
and consequently tag(t') = tag(t) (line 20) whenever either (a) ¢’
is generated for the first time as a successor of ¢, or (b) we found a
cheaper path to ¢ via ¢ (i.e., g(t) + cost(b) is strictly smaller than
the current value of g(t)), or (c) the path to ¢’ via ¢ has the same
cost (i.e., g(t) + cost(b) is equal to the current value of g(t')), but ¢
is tagged with T and ¢’ is tagged with L (see condition on line 17).
Cases (a) and (b) ensure that the tag is carried via the cheapest paths,
and the case (c) ensures that the tag T has precedence over the tag
L. Note that the case (c) can cause additional re-opening of states
that would not happen in the A* algorithm. Consider the example
in Figure 1 where the state s3 is inserted into the open list for the
second time with the same g-value when expanded from s’ to ensure
that the tag T is correctly assigned.



Moreover, since we are not interested in the resulting s-plan, we
can use an additional early termination criteria (lines 6 to 9): If all
states in the open list are tagged with T (lines 6 and 7), then we can
safely conclude that also all consecutively added states will be tagged
with T. Therefore, since the start state s is solvable, we can terminate
early with the output T. Analogously, if all states in the open list are
tagged with L (lines 8 and 9), we can immediately return L.

5.2 Correctness

Theorem 2. Let P be a planning task with actions A, let s be a
solvable non-goal state, let a € A(s), and let h be an admissible
heuristic. Then Algorithm 1 with inputs P, s, a and h terminates
with the output T if and only if a is optimal in s.

Proof. Observe that the early termination criteria (lines 6 to 9) do not
influence the output of Algorithm 1. If tag(¢t) = T (tag(¢t) = L) for
all states ¢ in the open list, then tag(t') = T (tag(t') = L) for all
states ¢’ that will be added to the open list from that point on (see
line 19). Therefore, if tag(t) = T (tag(t) = L) for all states ¢ in the
open list, then the output will eventually be T (). So, from now on,
we consider Algorithm 1 without lines 6 to 9.

Given (f,t), (f',t') € QF x{T, L}, wesay that (f,t) < (f',t)
if f < f,orf=fandt = T andt' = L. Analogously, we say
that (f,t) < (f',¢)if (f,t) < (f',t') or (f,t) = (f',t'). In other
words, we order pairs of numbers and tags element-wise so that T is
ordered before L.

Now, we have that:

(1) In every cycle, we pop (on line 10) the state with the minimum
(f(¢),tag(t)) pair, i.e., we pop a state ¢ such that (f(t), tag(t)) <
(f(t),tag(t)) forall (¢, f(t'),tag(t’)) € open.

(ii) The condition on lines 16 and 17 is satisfied for t' = b[[t] if
and only if (g(t) + cost(b), tag(t)) < (g(t'), tag(t")) with the con-
vention that g(t') = oo and tag(t') = L if g and tag is not defined
for t'. Therefore, g(t') and tag(t') is set to g(¢)+cost(b) and tag(t),
respectively (on lines 19 and 20), when (g(¢) + cost(b), tag(t)) <
(g9(t'), tag(t)) holds.

(iii) If there exists an optimal s-plan starting with a, then s’ =
a[ls] must be an intermediate state of that s-plan. The state s’ is
tagged with T (line 3) and added to the open list with the f-value
g(s") + h(s") = cost(a) + h(s") (line 4). Therefore, if a starts an
optimal s-plan, s’ remains tagged with T (as it follows from (ii) that
the tag cannot be changed).

So, it follows from (i), (ii) and (iii) that AOCA* is A* where f-
values (g-values) are replaced with pairs of f-values and tags (g-
values and tags). Therefore, a state ¢ is tagged with T if and only if
the cheapest path from s to ¢ found so far goes through s’. Since the
first goal state ¢ popped from the open list (line 10) has the minimum
(g(t), tag(t)) among all goal states, such goal state ¢ is tagged with
T if and only if there exists an optimal s-plan that goes through s’
(and therefore starts with the action a). Therefore, AOCA* outputs
(line 12) T if and only if a is optimal in s. O

5.3 Inconsistent heuristics and re-opening

Like for A*, re-opening is needed in AOCA* in case the heuristic is
inconsistent. However, the modified re-opening condition (line 17)
can lead to additional state re-openings. Figure 1 gives an example.
AOCA™ pops states from the open list (line 10) in the order s, s2,
83, ', 83, s4. In particular, s3 is only re-opened when expanding
s’ because, on the new path found to s3, it is tagged (line 17). The
algorithm correctly determines that a is optimal in s.

0

Figure 1. Example state space with an inconsistent heuristic h. Action
costs are cost(a) = 1 for all a.

Such additional re-openings can only occur if the heuristic is in-
consistent. With a consistent heuristic, as in A*, re-opening never
happens at all. In particular, condition on line 17 is never triggered.
The reason is that when there are multiple states with the same (low-
est) f-value, the states tagged with T are popped from the queue
before states tagged with L. In other words, where A* with a con-
sistent heuristic guarantees to pop states in non-decreasing order of
their f-values, AOCA™ with a consistent heuristic guarantees to pop
states in non-decreasing order of their f-values and tags, with T or-
dered before L.

6 Criteria based on dominance functions

As mentioned in the introduction, prior work has already come up
with a sufficient criterion for action optimality, which from the view-
point of our work here is a sufficient criterion for AOC. Specifi-
cally, Torralba [22] introduces dominance functions D: S x § —
R U {—o0} such that D(z,y) < h*(z) — h*(y) forall z,y € S
with h*(x) < oo. Intuitively, “state y is better than state = by at least
D(x,y)”, where “better” means smaller h*-value.”

As Torralba observed, if c(a) < D(s,s’) (i.e., s’ is better than
s by at least c(a)), then c(a) < h*(s) — h*(s") and therefore a is
optimal in s.

In our context, we can use three more criteria. We can swap the
roles of s and s’ to obtain an equally simple criterion for showing that
a is sub-optimal: If —D(s’, s) < c(a) (i.e., s is worse than s’ by less
than c(a), or s is better than s"), then a is not optimal in s. Moreover,
we can consider all other actions applicable in s: If, for every action
a' € A(s) suchthata’ # a, c(a) — c(a’) < D(a'[s],s) (e, s is
better than a'[[s] by at least the difference in action costs), then a is
optimal in s. Conversely, if there exists a’ € A(s) such that a’ # a
and c(a’) — c¢(a) < D(s',d'[s]) (i.e., a’[s] is better than s’ by more
than the difference in action costs), then a is sub-optimal in s.

Proposition 3. Let D be a dominance function, let s be a solvable
non-goal state, and let a € A(s) be an action applicable in s with
resulting state s’ = a[s]. Then the following claims hold:

(a) If c(a) < D(s, s'), then a is optimal in s.

(b) If =D(s', 5) < c(a), then a is sub-optimal in s.

(c)If c(a) — c(a’) < D(a'[s], s) forall a’ € A(s) \ {a}, then a
is optimal in s.

(d)If c(a’) — c(a) < D(s',d'[s]) for any a’ € A(s) \ {a}, then
a is sub-optimal in s.

Proof. We prove each claim individually:

(a) We have h*(s')+c(a) < h*(s")+D(s,s") < h*(s), therefore
a is optimal in s.

(b) If s’ is not solvable, a is not optimal in s (because s is solvable).
Otherwise, if s’ is solvable and —D(s’,s) < c(a), then h*(s) <
h*(s") — D(s',8) < h*(s") + c(a), therefore a is not optimal.

2 D(x,y) can be negative: if —oco < D(z,y) < 0, then h*(y) < h*(z) —
D(z,y) means that y could be worse than z, but only by at most —D(z, y).




(c) We show that c¢(a) + h*(s’) < c(a’) + h*
a' € A(s) \ {a}. If a'[s] is not solvable, then c(a
c(a") + h*(a'[s]) = oo. If '[s] is solvable and c(a) — c(a’) <
D(a'[s], '), then c(a)—c(a’) < h*(a'[s])—h*(s). As c(a), c(a’),
and h*(a'[[s]) are finite, we have c(a)+h*(s") < c(a’)+h*(a[s]).

(d) If s is not solvable, a is not optimal (since s is solvable). If s’
is solvable and c(a’) — c(a) < D(s’,d’[s]), then c(a’) — c(a) <
h*(s') — h*(a'[s]). As c(a), c(a’), and h*(s') are finite, we have
c(a") + h*(a'[s]) < c(a) + h*(s"). Thus a is not optimal in s. [

—

a'[s]) for all
PR <

~—

We have implemented Torralba’s criterion (a) together with our
new three criteria (b), (c) and (d), i.e., we always check all four cri-
teria. We henceforth denote this algorithm with D.

7 Experiments

We implemented our algorithms in the code-base of Fast Down-
ward [12]. Source code and benchmarks are publicly available [7].
We conducted broad experiments. In what follows, we describe our
benchmark design, and the search algorithms we compare. We then
discuss our results in terms of coverage and runtime, and we provide
a comparison of the most competitive algorithm (AOCA*) to A* to
gauge the practical effort for AOC compared to the standard optimal
planning problem.

7.1 Benchmarks

We evaluate our methods on all planning domains from the optimal
tracks of the International Planning Competitions (IPCs) from 1998
to 2023. We exclude domains containing conditional effects after
grounding with cpddl.> We merged, for each domain, all benchmark
suites across different IPCs, eliminating duplicate instances. We re-
moved benchmark tasks with only a single applicable action in the
initial state (as this case is uninteresting). For each of the remaining
1589 planning tasks, we designed two AOC problem instances, each
using the task’s initial state as the state s, and randomly selecting
two actions a applicable in s. We hence have a total of 3178 AOC
problem instances.

7.2 Compared algorithms

Our implementation of AOCA™ is directly based on Fast Down-
ward’s A* implementation and closely follows the pseudo-code
shown in Algorithm 1. In particular, we do not use separate search
queues for tagged and untagged states, instead all states are stored
in the same queue and the tag is stored for each state. The early ter-
mination criterion is efficiently implemented using two counters, for
both the number of tagged and untagged states in the open list. Ties
of f-value and tags are broken by lower h-values, which coincides
with the way f-value ties are broken in Fast Downward’s A*.

We compare AOCA* to the following multi-search algorithms
sketched in Section 4:

e SMS: sequential multi-search, which runs A* first from s and then
from s’, omitting A* from s’ if a plan starting with a is found with
A* from s,

o SMSREV: variant of SMS, which runs A* first from s’ and then
from s, omitting A* from s if s is found to be unsolvable,

o SMSEC: SMS with bounds check, which runs SMS with early ter-
mination based on u(s) and I(s”),

3 https://gitlab.com/danfis/cpddl

o PMSEC: parallel multi-search, which runs the two A* searches in
parallel (each in its own thread) and with all early termination
optimizations enabled,

o PMS"“*MA: PMSEC extended with an additional thread running the
anytime satisficing planner LAMA [18] from s, gradually improv-

ing u(s).

We perform this comparison for three different state-of-the-art
heuristic functions, namely LM-cut [13], Cartesian abstractions [19],
and merge-and-shrink [14]. The heuristics are based on the recom-
mendations made in Fast Downward as of Release 23.06. In particu-
lar, in merge-and-shrink, we limit the transition system size to 50 000
states, and for the additive Cartesian heuristic, we use a transitions
limit of one million. To ensure that the exact same heuristic is con-
structed across separate invocations of Fast Downward — and hence
to enable the direct comparison of performance across search algo-
rithms — we disabled time limits as well as an optimization allowing
the Cartesian heuristic to recover from out-of-memory cases.

The experiments were run on a cluster with AMD EPYC 7702 pro-
cessors. The time and memory limits were set to 30 minutes and 8 GB
for the sequential search variants, i.e., AOCA*, SMS, SMSREY and
SMSEC. For the parallel variants, i.e., PMSPC and PMS"MA e used
the same time limit for each parallel thread, and increased the shared
memory to 16 and 24 GB of memory, respectively. Hence, summed
up over the parallel threads, PMSBC (PMS M) enjoy twice (thrice)
the resources as the sequential variants. Our main motivation for this
is the comparison to AOCA*, which as we shall see is superior to
PMSEC and PMS'“M4 despite their generous allowances.

We also compare to the method utilizing a dominance function (D)
described in Section 6. To compute the dominance function (which
is done once per planning task) we used the same time and memory
limits (30 minutes and 8 GB) as for search. The time spent in the
evaluation of D was negligible.

7.3 Results: Number of solved tasks

Table 1 summarizes the number of solved AOC tasks (coverage), i.e.,
the number of tasks where the corresponding methods proved either
that the tested action is optimal or that it is not optimal. We provide
separate results for these two outcomes when reporting the overall
coverage (across all domains). The upper part of Table 2 shows the
the number of domains in which one method solved strictly more
tasks than the other. The lower part of Table 2 shows the number
of tasks solved by one method but not the other. That is, Table 2
shows domain and task dominance between the methods as well as
complementarity between them.

AOCA™ has significantly higher coverage than both vanilla base-
lines running two A* searches sequentially. While this is the case
for both optimal and sub-optimal actions, the advantage tends to
be greater if the action is sub-optimal. There are only very few do-
mains where using SMS or SMSREY is beneficial, and very few tasks
solved by SMS or SMS®EY but not by AOCA*. Thus, there is almost
no complementarity as AOCA* is clearly a better choice: AOCA*
dominates SMS or SMS®EY in 22 to 30 domains and it solves from
73 to 136 tasks not solved by SMS or SMS*®Y (depending on the
heuristic). The early termination criteria (SMS®®) are an improve-
ment over SMS and SMS®EY, and are rarely detrimental. AOCA* is
still clearly better than SMSEC though, both in total coverage and
per-domain/per-task dominance.

Consider now the parallel-search variant PMS®C. This turns out
to be highly complementary to AOCA* in terms of coverage, with



Table 1. Number of solved AOC tasks (consisting of state s and action a).

‘We show all domains where there is a difference of at least 6 for at least one

heuristic (excluding D). The last two rows indicate in how many of the solved AOC tasks, the action a is optimal in state s.

LM-cut Cartesian Merge & Shrink
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barman (68) 0 8 8 8 8 10 16 22 22 22 22 22 27 22 22 22 22 22 27
cavediving (40) 0 14 30 14 30 30 32 14 23 14 23 23 15 14 22 14 22 22 24
elevators (100) 1 78 78 80 80 80 81 76 76 79 82 83 85 66 66 66 67 67 70
freecell (160) 0 30 30 30 30 30 30 52 52 51 54 54 57 42 42 42 42 42 42
ged (40) 0 30 30 30 30 30 30 33 33 38 38 38 32 33 33 38 38 38 38
labyrinth (40) 0 3 10 2 10 11 10 3 10 4 11 11 11 7 10 8 10 10 9
parking (80) 0 11 10 12 14 14 13 6 6 6 7 8 12 12 12 14 14 14 14
p-net-align (40) 0 17 17 18 18 18 20 3 6 4 7 7 4 12 10 13 15 15 16
rico-robots (40) 0 6 6 8 8 8 20 16 15 17 21 23 30 2 2 2 4 4 2
scanalyzer(100) 8 46 45 57 62 62 60 42 42 42 42 42 42 46 46 46 50 50 48
snake (30) 0 10 10 11 10 10 12 18 17 18 18 18 21 13 10 13 16 16 17
termes (40) 0 8 8 8 12 12 40 24 22 23 24 24 40 26 26 26 26 28 40
tidybot (80) 2 60 60 60 60 60 60 65 64 66 66 66 65 58 57 56 62 64 62
others (2320) 303 | 1186 1186 1197 1222 1227 1216 | 1185 1184 1192 1219 1224 1207 | 1188 1187 1196 1214 1230 1207
total (3178) 314 | 1507 1528 1535 1594 1602 1640 | 1559 1572 1576 1634 1643 1648 | 1541 1545 1556 1602 1622 1616
optimal a 185 | 805 795 807 820 823 830 | 825 814 822 832 833 843 | 829 821 829 849 855 853
sub-optimala | 129 | 702 733 728 774 779 810 | 734 758 754 802 810 805 | 712 724 727 753 767 763

Table 2. Domain and task dominance. Upper part: the value in cell (z, y) is the number of domains where the algorithm in column y solves strictly more
tasks than the one in row . Lower part: the value in cell (z, y) is the number of tasks solved by y but not by z.

LM-cut Cartesian Merge & Shrink
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domain dominance

D 46 46 46 46 46 46 46 46 46 47 47T 46 47 41 41 41 4T 47
SMS 3 8 14 27 29 30| 3 7 12 27 28 25| 3 3 11 26 30 23
SMSREV 310 18 21 25 25| 3 10 18 27 28 24| 3 6 11 23 27 22
SMSBC 302 5 19 23 23| 3 3 8 2 24 21| 3 3 3 17 22 14
PMSBC 30 0 1 7 8 3 0 0 0 7 1413 0 0 0 9 7
PMSLAMA |3 ¢ 0 1 1 91 3 0 0 0 1 14 3 0 0 0 0 7

AOCA* 30 0 0 8 13 3 4 8 6 16 18 30 1 1 9 15

task dominance

D 1263 1284 1290 1347 1355 1396 1317 1330 1334 1390 1399 1407 1299 1303 1314 1360 1380 1374
SMS 70 35 32 88 95 136 |72 27 22 76 84 97|72 17 21 61 8 77
SMSREV [ 70 14 39 66 74 11272 14 32 62 71 10072 13 26 57 77 73
SMSBC 69 4 32 61 68 11072 5 28 58 67 8|72 6 15 46 66 63
PMSBC 67 1 0 2 10 58|70 1 0 0 10 5872 0 0 0 20 31
PMSLAMA 1 67 0 0 1 2 5870 0 0 0 1 54|72 0 0 0 0 29

AOCA* 70 3 0 5 12 20 73 8 24 13 44 49 72 2 2 3 17 35

a small advantage for AOCA™ in total coverage as well as per-task
dominance, but an almost even split and small advantages for PMSB¢
in terms of per-domain dominance. Recall here that PMSEC has twice
the time and memory resources across threads though; and we will
see below that, in the more detailed runtime view on performance,
AOCA* is superior.

When the satisficing planner LAMA is used for finding better
bounds in addition to two parallel A* searches (PMS""MA) "we can
still observe higher overall coverage of AOCA* for two out of three
tested heuristics. The difference is, as expected, smaller than between
PMSEC and AOCA* as even more computational resources are used
by PMS™*MA 1t is, however, still clear that there is a high degree of
complementarity between these methods.

Consider finally the dominance-based sufficient criteria D. These
are clearly not competitive with the search-based methods in terms
of coverage. There are only 70 tasks from three domains (pathways,

rovers, and satellite) where D performs well. Nevertheless, domi-
nance criteria could be useful as they offer very different computa-
tional trade-offs than search. The computation of D can be costly but
needs be done only once per task. So in settings where many AOC
problem instances need to be answered for the same task, dominance
criteria could be used as pre-checks to avoid costly calls to search.

7.4 Results: Runtime

Let us now consider runtime, for a more fine-grained view on per-
formance than coverage. Figure 2 compares AOCA™ with the multi-
search variants SMS®¢, PMSEC, and PMS™*M* | We specifically mea-
sure AOC decision time, the wall-clock time until the decision is
made (which in parallel searches means we stop when the first thread
has found the decision). We distinguish whether the action a under
consideration is optimal or not (which we know for all AOC decision
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Figure 2. Runtime comparison categorized by AOC result. For each search algorithm, we include the runs for all heuristics.

problems solved by at least one of the compared algorithms).

The results show at a glance that, overall, AOCA* outperforms
all competitors in terms of AOC decision time. For the best sequen-
tial multi-search variant (SMSE®), AOCA* dominates almost com-
pletely. The advantage is particularly pronounced in cases where the
tested action a was proved to be optimal. This is due to two fac-
tors. First, SMSE® terminates when it finds a plan whereas AOCA*
can terminate early if all open states are tagged with the same tag.
Second, the tie-breaking of AOCA* in the last f-layer favors plans
starting with a, which can be faster when a is, indeed, optimal. The
comparison to PMSE¢ and PMS'MA shows a similar advantage for
AOCA™ in the optimal cases. In the non-optimal cases, we see the
increased ability of PMSEC, and in particular PMS"MA for early ter-
mination, so that here performance is more complementary.

7.5 Comparison between AOCA* and A*

Let us finally gauge the practical effort for AOC compared to the
standard optimal planning problem. To this end, Figure 3 compares
AOCA* for s and a against A* from s. The results clearly indicate
that AOC is not harder in practice than optimal planning. In many
cases, AOCA™ is actually faster than A*, which is mainly due to early
termination. In fact, search time can be drastically reduced, e.g., for
LM-cut alone, there are 106 problem instances that AOCA* solves
in less than a tenth of a second while A* takes at least a minute (or
fails to solve the problem at all).

The theoretical weakness of additional state re-openings in
AOCA* for inconsistent heuristics does not appear to be an issue
in practice, i.e., re-openings can only occur when using LM-cut and,
in this setting, AOCA™ does not perform worse (relative to A*) than
with other heuristics.

8 Conclusion

Action optimality checking (AOC) arguably is relevant in several dif-
ferent application contexts in Al Planning, but has not been addressed
yet. Here we begin its investigation, focusing on heuristic search
as one state-of-the-art method for planning. We introduce AOCA*
which extends A* with maintenance of tags identifying the search

search time (seconds)
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Figure 3. Search time (without heuristic initialization) of AOCA* and A*
from s. All times below one millisecond are shown as 1 ms.

sub-tree below the action under scrutiny. We run broad experiments
including a range of other search configurations, showing the mer-
its of parallel searches and early termination criteria, and showing
AOCA* to be superior overall. AOCA* also compares quite favor-
ably to A*, suggesting that action optimality checking is not harder
in practice than optimal planning.

We believe that the further exploration of algorithms for, and ap-
plications of, AOC is an important direction for Al Planning. Re-
garding algorithms, optimal planning algorithms other than heuristic
search should be tried, and there presumably is room for further fast
under- or over-approximations of AOC. Regarding applications, for
example, the use in policy testing challenges scalability, and poses
opportunities for additional optimizations (e.g., the re-use of infor-
mation across AOC instances). There also are interesting extensions
of AOC, in particular to bounded sub-optimality, or deciding about
optimality of plan prefixes instead of single actions.
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