<u>Final Exam</u>

12 December 2018, 120 minutes, 26 questions, 100 points

The exam is closed book and notes.

Please keep all electronic devices turned off and out of reach.

Note that a question may require *multiple* checked boxes for a correct answer. Checking *some* but not *all* of the required boxes will result in a *partial* answer worth only 2 of the 4 points. Checking any box that shouldn't be checked results in an *incorrect* answer, worth zero.

- 1. \bigcirc Return my exam to my Kingsbury mailbox.
 - $\bigcirc\,$ Hold my exam in your office. I will pick it up prior to February 15.
 - \surd Shred my exam. I never want to see it again.
- 2. Interpret OxODEFACED (shown in hexadecimal) as an IEEE single-precision floating-point value. Which of the [4 pts] following statements about this value are true?
 - \bigcirc It is negative.
 - \checkmark Its actual exponent is negative.
 - \bigcirc It is a denormalized value.
 - \bigcirc It is a NaN.
- 3. Concerning the reentrant readers-writers lock from the synchronizers assignment, which of the following [4 pts] statements are true:
 - \bigcirc Each readers-writers lock required two mutexes.
 - $\sqrt{}$ Each readers-writers lock required two condition variables.
 - $\bigcirc\,$ A reader always blocks when calling lock RLock function.
 - $\bigcirc\,$ A writer never blocks when calling lockWLock function.
- 4. Encode the following Unicode character (shown in hex) as UTF-8: 0xF303. The sequence of bytes (shown in [4 pts] hex) would be:
 - \bigcirc F3 03.
 - 🔾 03 F3.
 - \surd EF 8C 83.
 - F0 8F 8C 83.
 - $\bigcirc\,$ none of the above.

5. Which of the following statements about the Intel 64 are true?

- $\bigcirc\,$ All registers are 32 bits.
- $\sqrt{}$ The **rip** register points to the next instruction to execute.
- The runtime stack grows from lower address up towards higher address.
- $\bigcirc\,$ The ${\bf ret}$ instruction pops the top of the runtime stack into the ${\bf rax}$ register.

[0 pts]

[4 pts]

6. Consider the following C function:

```
int f(void)
{
    int x = -1;
    return *(signed char *) &x;
}
```

On a 2's complement machine with a byte-addressable memory and where an **int** is 32 bits, the function will:

- \bigcirc return 0 if the machine is little-endian and -1 otherwise.
- $\bigcirc\,$ return -1 if the machine is little-endian and 0 otherwise.
- $\bigcirc\,$ always return 255.
- $\sqrt{}$ always return -1.
- \bigcirc none of the above.

7. Consider the following assembly code fragment from the Java Virtual Machine program:

[4 pts]

```
top:
    ifle bottom
    iload_2
    iload_1
    iadd
    istore_2
    iinc 1, -1
    goto top
bottom:
```

What is the encoding of the two-byte address (offset) stored in the ifle instruction? (The iload_2, iload_1, iadd, and istore_2 instructions are one-byte instructions. The ifle instruction, iinc, and goto instructions are three-byte instruction.)

- 0x000C.
- $\sqrt{0x000D}$.
- 0x000E.
- \bigcirc 0xFFF3.
- $\bigcirc\,$ none of the above.
- 8. Consider how -39 (base 10) would be represented in the memory of a Little Endian machine as a 16-bit 2's [4 pts] complement integer. The two bytes, shown left to right in increasing memory address order, would be:
 - \bigcirc 0xFF 0xD9.
 - $\sqrt{$ 0xD9 0xFF.
 - 0x80 0x27.
 - \bigcirc 0x27 0x80.
 - \bigcirc none of the above.
- 9. The UTF-16 sequence (shown in hexadecimal) 0xDA22 0xDE22 is represented in UTF-32 (in hexadecimal) [4 pts] as:
 - \bigcirc two Unicode characters, 0x0000DA22 and 0x0000DE22.
 - \bigcirc two Unicode characters, 0x00000220 and 0x00000222.
 - \bigcirc a single Unicode character, 0x00088A22.
 - \sqrt{a} single Unicode character, 0x00098A22.
 - \bigcirc none of the above.

10. Which of the following statements about using a POSIX condition variable are true?	[4 pts]
\bigcirc If the caller of <i>pthread_cond_wait</i> holds the lock of the mutex passed as the second argument, then an error code is returned.	
$\sqrt{\text{The pthread}_cond_signal never causes its caller to block.}$	
\bigcirc If <i>pthread_cond_wait</i> is called when there are threads waiting on the condition variable, then an error code is returned.	
Multiple threads can be waiting on a condition variable at the same time.	
11. Which of the following statements about a POSIX mutex are true?	[4 pts]
\bigcirc Two threads can hold the lock of a mutex at the same time.	
○ A thread will block if the thread tries to unlock a mutex that is locked by another thread.	
\checkmark A critical section is protected by first locking a mutex, then executing the critical section, then unlocking the mutex.	
\bigcirc A thread cannot own the lock on two different mutexes at the same time.	
12. Which of the following are examples of a program exhibiting temporal locality:	[4 pts]
\bigcirc iterating through all members of an array in order.	
repeatedly incrementing a loop counter variable inside a loop.	
\bigcirc a sequence of instructions being executed in order without any branch or call instructions.	
repeatedly testing the same variable in the condition of a loop.	
13. Add together the following two 8-bit 2's complement integers (shown in hexadecimal): 0x7F and 0x7F. Which of the following are true statements about the result?	[4 pts]
The result (in hexadecimal) is $0xFE$.	
The result is negative.	
The result overflows.	
The result in decimal is -2 .	
14. Which of the following statements about virtual memory are true?	[4 pts]
\checkmark The translation look aside buffer (TLB) is a cache that stores recent virtual-to-physical page translations.	
The page table resides in memory.	
 If a virtual page does not have a TLB entry, then it cannot be in physical memory. 	
 A write of a word in virtual memory always causes the virtual memory to immediately perform a disk write. 	
15. Which of the following statements about the Java Virtual Machine are true?	[4 pts]
The instructions are of variable length.	
It is a stack-based architecture, in which most instruction operands are implicit, meaning they are values on top of the runtime stack.	
\bigcirc The RAX register is used to return values from functions.	
\checkmark It uses PC-relative addresses for its branch instructions.	
16. Which of the following statements about assemblers are true?	[4 pts]
They have two passes because the use of a label may come before its definition.	-
○ They translate machine code into human-readable form.	
On the second pass, if the assembler sees a reference to a label that is not defined, it is a fatal error and the assembler immediately aborts.	
They use a symbol table to store the address associated with each defined label.	

3 / 5

- 17. Which of the following statements about the Intel 64 CMPXCHG instruction are true?
 - $\sqrt{}$ It is used with the **LOCK** prefix to ensure that its memory actions are atomic.
 - It is a convenient way to swap the values of two memory locations in a single instruction.
 - $\sqrt{1}$ It is used when implementing mutexes in order to protect the contents of the struct implementing the state of the mutex from concurrent updates by two threads.
 - \bigcirc It can only be called once per program execution.
- 18. Which of the following statements about goroutine control blocks (GCBs) are true? [4 pts]
 - The GCBs for all blocked goroutines are linked together to form the ready list.
 - \sqrt{A} GCB is used to store the current state of a goroutine when the goroutine yields to another goroutine.
 - $\sqrt{}$ The GCB contains a pointer to the base of the goroutine's stack so that the memory for the stack can be freed after the goroutine finishes executing its work function.
 - $\sqrt{}$ The GCBs for all goroutines waiting to read from a channel are linked together to form a wait queue for the channel.
- 19. Add the following two IEEE single-precision floating-point values shown in hexadecimal: 0x80A00001 and [4 pts] 0x40A00001. The result in hexadecimal is:
 - 0x40000000.
 - 0xC1400002.
 - 0x40B00001.
 - $\sqrt{0x40A00001}$.
 - $\bigcirc\,$ none of the above.
- 20. In an implementation of an exception mechanism for C programs on the Intel 64, the **catchException** [4 pts] function:
 - $\sqrt{}$ pushes the current **rbp**, the saved **rbp** and the saved **rip** onto the "snapshot" stack.
 - \bigcirc puts the exception number into the **rax** register.
 - prints an "uncaught exception" message if the "snapshot" stack is empty.
 - \bigcirc none of the above.
- 21. Which of the following statements about a mark-and-sweep garbage collector are true?
 - The mark phase is responsible for marking all allocated blocks that are no longer accessible.
 - \checkmark The sweep phase considers all unmarked blocks to be garbage that can be reclaimed as free (no longer allocated).
 - $\sqrt{}$ The mark phase traverses the run-time stack in order to mark blocks pointed to by local variables, parameters and saved registers.
 - \bigcirc The sweep phase will combine adjacent marked blocks.
- 22. A memory cache with only one line per set is known as a:
 - $\sqrt{\text{direct-mapped cache.}}$
 - \bigcirc set-associative cache.
 - \bigcirc fully-associative cache.
 - \bigcirc translation lookaside buffer.
 - \bigcirc none of the above.

[4 pts]

[4 pts]

[4 pts]

23. Consider how the following two C loops would be accessed by the virtual memory system (with handle **h**) of [4 pts] Program 6 with 16 virtual pages, 4 physical pages, 2 TLB entries, and a page size of 4 words. Assume that the virtual memory system is initialized as in Program 6.

```
for (i = 0; i < 32; i++)
{
    writeInt(h, i, i);
}
for (i = 0; i < 32; i++)
{
    int tmp = readInt(h, i);
}</pre>
```

How many page faults and TLB misses will there be?

- $\sqrt{12}$ page faults and 14 TLB misses.
- $\bigcirc~12$ page faults and 12 TLB misses.
- \bigcirc 14 page faults and 12 TLB misses.
- $\bigcirc~14$ page faults and 14 TLB misses.
- $\bigcirc\,$ none of the above.

24. Which of the following statements about the IAS computer are true?	[4 pts]
--	----------

- \checkmark It was a stored-program computer.
- \checkmark Its memory consisted of 40-bit words.
- \bigcirc It had 16 registers, numbered r0 to r15.
- $\sqrt{1}$ It had two 20-bit instructions packed into each memory word.
- 25. Which of the following statements about the Control Data Corporation (CDC) 6600 are true? [4 pts]
 - It had a hardware run-time stack.
 - $\sqrt{1}$ It had 1's complement integer values.
 - $\sqrt{}$ Its memory consisted of 60-bit words.
 - $\sqrt{1}$ It was a stored-program computer.

```
26. Which of the following statements about the C programming language are true? [4 pts]
```

- \sqrt{A} union is like a struct except all members are allocated storage starting at the beginning of the union, meaning all members are overlaid in memory.
- $\sqrt{}$ The **static** keyword is used on global variables and functions to make those symbols not visible outside the file.
- $\sqrt{}$ The language supports pointers to functions.
- There is no difference between the & operator and the && operator.