Character and String Representation

CS520

Department of Computer Science University of New Hampshire

CDC 6600

TABLE OF DISPLAY CODES

- 6-bit character encodings
- i.e. only 64 characters
- Designers were not too concerned about text processing!

The table is from *Assembly Language Programming for the Control Data 6000 series and the Cyber 70 series* by Grishman.

Character	Code	Character	Code
A BCDEFGHIJ	01 02 03 04 05 06 07 10 11 12	027 123 232 431 532 633 734 835 936	33 34 35 36 37 40 41 42 43 44
L I N I I S Y I S I U V W X Y Z	14 15 16 17 20 21 22 23 24 25 26 27 30 31 32	+ 37 + 37 + 37 + 37 + 37 + 37 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4	456 47 512 555 556 66 66 66 70 12 34 556 70 12 34 56 77 77 77 77 77 77 77 77 77 77 77 77 77

*Do not use the semicolon in COMPASS instructions

Decimal - Binary - Octal - Hex - ASCII Conversion Chart

Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII
0	00000000	000	00	NUL	32	00100000	040	20	SP	64	01000000	100	40	@	96	01100000	140	60	•
1	00000001	001	01	SOH	33	00100001	041	21	1	65	01000001	101	41	Α	97	01100001	141	61	а
2	00000010	002	02	STX	34	00100010	042	22	-	66	01000010	102	42	в	98	01100010	142	62	b
3	00000011	003	03	ETX	35	00100011	043	23	#	67	01000011	103	43	С	99	01100011	143	63	с
4	00000100	004	04	EOT	36	00100100	044	24	\$	68	01000100	104	44	D	100	01100100	144	64	d
5	00000101	005	05	ENQ	37	00100101	045	25	%	69	01000101	105	45	E	101	01100101	145	65	e
6	00000110	006	06	ACK	38	00100110	046	26	&	70	01000110	106	46	F	102	01100110	146	66	f
7	00000111	007	07	BEL	39	00100111	047	27		71	01000111	107	47	G	103	01100111	147	67	g
8	00001000	010	08	BS	40	00101000	050	28	(72	01001000	110	48	н	104	01101000	150	68	h
9	00001001	011	09	HT	41	00101001	051	29)	73	01001001	111	49	1	105	01101001	151	69	i
10	00001010	012	0A	LF	42	00101010	052	2A		74	01001010	112	4A	J	106	01101010	152	6A	i
11	00001011	013	0B	VT	43	00101011	053	2B	+	75	01001011	113	4B	к	107	01101011	153	6B	k
12	00001100	014	0C	FF	44	00101100	054	2C		76	01001100	114	4C	L	108	01101100	154	6C	1
13	00001101	015	0D	CR	45	00101101	055	2D	-	77	01001101	115	4D	M	109	01101101	155	6D	m
14	00001110	016	0E	SO	46	00101110	056	2E		78	01001110	116	4E	N	110	01101110	156	6E	n
15	00001111	017	OF	SI	47	00101111	057	2F	1	79	01001111	117	4F	0	111	01101111	157	6F	0
16	00010000	020	10	DLE	48	00110000	060	30	0	80	01010000	120	50	P	112	01110000	160	70	р
17	00010001	021	11	DC1	49	00110001	061	31	1	81	01010001	121	51	Q	113	01110001	161	71	q
18	00010010	022	12	DC2	50	00110010	062	32	2	82	01010010	122	52	R	114	01110010	162	72	r
19	00010011	023	13	DC3	51	00110011	063	33	3	83	01010011	123	53	S	115	01110011	163	73	s
20	00010100	024	14	DC4	52	00110100	064	34	4	84	01010100	124	54	т	116	01110100	164	74	t
21	00010101	025	15	NAK	53	00110101	065	35	5	85	01010101	125	55	U	117	01110101	165	75	u
22	00010110	026	16	SYN	54	00110110	066	36	6	86	01010110	126	56	V	118	01110110	166	76	v
23	00010111	027	17	ETB	55	00110111	067	37	7	87	01010111	127	57	W	119	01110111	167	77	w
24	00011000	030	18	CAN	56	00111000	070	38	8	88	01011000	130	58	х	120	01111000	170	78	x
25	00011001	031	19	EM	57	00111001	071	39	9	89	01011001	131	59	Y	121	01111001	171	79	У
26	00011010	032	1A	SUB	58	00111010	072	3A	1	90	01011010	132	5A	Z	122	01111010	172	7A	z
27	00011011	033	1B	ESC	59	00111011	073	3B	÷	91	01011011	133	5B	[123	01111011	173	7B	{
28	00011100	034	1C	FS	60	00111100	074	3C	<	92	01011100	134	5C	1	124	01111100	174	7C	1
29	00011101	035	1D	GS	61	00111101	075	3D	=	93	01011101	135	5D	1	125	01111101	175	7D	}
30	00011110	036	1E	RS	62	00111110	076	3E	>	94	01011110	136	5E	*	126	01111110	176	7E	~
31	00011111	037	1F	US	63	00111111	077	3F	?	95	01011111	137	5F	-	127	01111111	177	7F	DEL

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ ASCII Conversion Chart.doc Copyright © 2008, 2012 Donald Weiman 22 March 2012

C Strings

- Usually implemented as a series of ASCII characters terminated by a null byte (0x00).
- "abc" in memory is:

Unicode

- The space of values is divided into 17 *planes*.
- Plane 0 is the Basic Multilingual Plane (BMP).
 - Supports nearly all modern languages.
 - Encodings are 0x0000-0xFFFF.
- Planes 1-16 are supplementary planes.
 - Supports historic scripts and special symbols.
 - Encodings are 0x10000-0x10FFFF.
- Planes are divided into *blocks*.

Unicode and ASCII

- **ASCII is the bottom block in the BMP**, known as the Basic Latin block.
- So ASCII values are embedded "as is" into Unicode.
- i.e. 'a' is 0x61 in ASCII and 0x0061 in Unicode.

Special Encodings

- The Byte-Order Mark (BOM) is used to signal endian-ness.
- Has no other meaning (i.e. usually ignored).
- Encoded as OxFEFF.
- OxFFFE is a *noncharacter*.
 - Cannot appear in any exchange of Unicode.
- So file can be started with a BOM; the reader can then know the endian-ness of the file.
- In absence of a BOM, Big Endian is assumed.

Other Noncharacters

- There are a total of 66 noncharacters:
 - 0xFFFE and 0xFFFF of the BMP
 - Ox1FFFE and Ox1FFFF of plane 1
 - 0x2FFFE and 0x2FFFF of plane 2
 - etc., up to
 - 0x10FFFE and 0x10FFFF of plane 16
 - Also 0xFDD0-0xFDEF of the BMP.

UTF: UCS* Transformation Format

• UTF-8

- Encodes Unicode characters in 1-4 bytes.
- ASCII gets encoded as 1 byte.
- Dominant character encoding for the WWW.
- UTF-16
 - Encodes BMP characters in 2 bytes
 - Encodes non-BMP characters in 4 bytes.
- UTF-32

- Fixed-sized representation of Unicode.

*Universal Character Set.

UTF-8

- Take the Unicode character and throw away the leading zero bits.*
- Count the remaining number of bits.
- 7 bits: 0xxxxxx
- 11 bits: 110xxxxx 10xxxxxx
- 16 bits: 1110xxxx 10xxxxxx 10xxxxxx
- 21 bits: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

*Overlong encodings are forbidden. Therefore there is a unique UTF-8 encoding for each Unicode character.

Errors in UTF-8

- Overlong encodings.
- An unexpected continuation byte.
- A start byte not followed by enough continuation bytes.
- A 4-byte sequence starting with 0xF4 that decodes to a value greater than 0x10FFFF.
- A sequence that decodes to a noncharacter.
- A sequence that decodes to a value in range 0xD800-0xDFFF.

UTF-16

- 1 UTF-16 code unit (2 8-bit bytes) for each BMP character.
- 2 UTF-16 code units for each non-BMP character (4 bytes in total).
 - 0x10000 is subtracted from the value, leaving a 20-bit number in the range 0x00000-0xFFFF.
 - The top 10 bits are added to 0xD800 to give the first code unit, called the *lead surrogate*.
 - The low 10 bits are added to 0xDC00 to give the second code unit, called the *trail surrogate*.

Self-synchronizing

- 10 bits express values in the range 0x000-0x3FF.
- Lead surrogates will be in range 0xD800+0x000 to 0xD800+0x3FF (0xD800-0xDBFF).
- Trail surrogates will be in range 0xDC00+0x000 to 0xDC00+0x3FF (0xDC00-0xDFFF).
- Remember: values 0xD800-0xDFFF are not valid Unicode characters.
- UTF-16 BMP characters can be distinguished from UTF-16 non-BMP characters.
- So you can tell where the Unicode character boundaries are in a UTF-16 stream.

UTF-32

- Simply take the 21-bit Unicode value and add leading zero bits to extend it to 32 bits.
- Byte-order is an issue, like with UTF-16.