Robust Reinforcement Learning

Marek Petrik

Department of Computer Science University of New Hampshire

DLRL Summer School 2019

Adversarial Robustness in ML

[Kolter, Madry 2018]

Is this a problem?

Adversarial Robustness in ML

[Kolter, Madry 2018]

Is this a problem? Safety, security, trust

Are reinforcement learning methods robust?

Robustness

An algorithm is robust if it *performs well* even in the presence of *small errors* in inputs.

Robustness

An algorithm is robust if it *performs well* even in the presence of *small errors* in inputs.

Questions:

- 1. What does it mean to perform well?
- 2. What is a small error?
- 3. How to compute a robust solution?

Outline

- 1. Adversarial robustness in RL
- 2. Robust Markov Decision Processes: How to solve them?
- 3. Modeling input errors: What is a small error?
- 4. Other formulations: What is the right objective?

Model-based approach to reliable off-policy sample-efficient tabular RL by learning models and confidence

Adversarial Robustness in RL

Robustness Not Important When ...

- Control problems: inverted pendulum, ...
- Computer games: Atari, Minecraft, ...
- Board games: Chess, Go, ...

Because

- 1. Mostly deterministic dynamics
- 2. Simulators are fast and precise:
 - Lots of data is available
 - Easy to test a policy
- 3. Failure to learn a good policy is cheap

Robustness Matters In Real World

- 1. Learning from logged data (batch RL):
 - 1.1 No simulator
 - 1.2 Never enough data
 - 1.3 How to test a policy? No cross-validation in RL
- 2. High cost of failure (bad policy)

Important in Real Applications

Robustness Matters In Real World

- 1. Learning from logged data (batch RL):
 - 1.1 No simulator
 - 1.2 Never enough data
 - 1.3 How to test a policy? No cross-validation in RL
- 2. High cost of failure (bad policy)

Important in Real Applications

- Agriculture: Scheduling pesticide applications
- Maintenance: Optimizing infrastructure maintenance
- ▶ Healthcare: Better insulin management in diabetes
- Autonomous vehicles, robotics,

Example: Robust Pest Management

Agriculture: A challenging RL problem

- 1. Stochastic environment and delayed rewards
- 2. Must learn from data: No reliable, accurate simulator
- 3. One episode = one year
- 4. Crop failure is expensive

Example: Robust Pest Management

Agriculture: A challenging RL problem

- 1. Stochastic environment and delayed rewards
- 2. Must learn from data: No reliable, accurate simulator
- 3. One episode = one year
- 4. Crop failure is expensive

Simulator: Using ecological population P models [Kery and Schaub, 2012]:

$$\frac{dP}{dt} = r P \left(1 - \frac{P}{K} \right)$$

Growth rate $r,\, {\rm carrying}$ capacity $K,\, {\rm loosely}$ based on spotted wing drosophila

Pest Control as MDP

States: Pest population: [0, 50]

Actions:

- 0 No pesticide
- 1-4 Pesticides P1, P2, P3, P4 with increasing effectiveness

Transition probabilities: Pest population dynamics

Reward:

- 1. Crop yield minus pest damage
- 2. Spraying cost: P4 more expensive than P1

MDP Objective: Discounted Infinite Horizon

Solution: Policy π maps states \rightarrow actions **Objective**: Discounted return:

$$\operatorname{return}(\pi) = \mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^t \operatorname{\mathsf{reward}}_t\right]$$

Optimal solution: Optimal policy

$$\pi^{\star} \in \arg\max_{\pi} \operatorname{return}(\pi)$$

Value function: v maps $states \rightarrow expected return$ **Bellman optimality**:

$$v(s) = \max_{a} \left(r_{s,a} + \gamma \cdot p_{s,a}^{\mathsf{T}} v \right)$$

Transition Probabilities

Computing Optimal Policy

Algorithms: Value iteration, Policy iteration, Modified (optimistic) policy iteration, Linear programming

Optimal Management Policy

Simulated Optimal Policy

Is It Robust?

Is It Robust?

Adversarial Robustness for Reinforcement Learning

"An algorithm is robust if it performs well even in the presence of small errors in inputs. "

Robust optimization: Best π with respect to the inputs with all possible small errors:

$$\max_{\pi} \min_{\boldsymbol{P}, \boldsymbol{r}} \left\{ \operatorname{return}(\pi, \boldsymbol{P}, \boldsymbol{r}) : \begin{array}{l} \|\bar{\boldsymbol{P}} - \boldsymbol{P}\| \leq \operatorname{small} \\ \|\bar{\boldsymbol{r}} - \boldsymbol{r}\| \leq \operatorname{small} \end{array} \right\}$$

Adversarial nature chooses P, r

Adversarial Robustness for Reinforcement Learning

"An algorithm is robust if it performs well even in the presence of small errors in inputs. "

Robust optimization: Best π with respect to the inputs with all possible small errors:

$$\max_{\pi} \min_{\boldsymbol{P}, \boldsymbol{r}} \left\{ \operatorname{return}(\pi, \boldsymbol{P}, \boldsymbol{r}) : \begin{array}{l} \|\bar{\boldsymbol{P}} - \boldsymbol{P}\| \leq \operatorname{small} \\ \|\bar{\boldsymbol{r}} - \boldsymbol{r}\| \leq \operatorname{small} \end{array} \right\}$$

Adversarial nature chooses P, r

Related to regularization e.g. [Xu et al., 2010], risk [Shapiro et al., 2014], and is opposite of exploration (MBIE/UCRL2) e.g. [Auer et al., 2010]

Robust Representation

Nominal values \bar{P} , \bar{r}

Errors in rewards: e.g. [Regan and Boutilier, 2009]

$$\max_{\pi} \min_{\boldsymbol{r}} \left\{ \operatorname{return}(\pi, \bar{P}, \boldsymbol{r}) : \|\boldsymbol{r} - \bar{r}\| \le \psi \right\}$$

Errors in transitions: e.g. [lyengar, 2005a]

$$\max_{\pi} \min_{P} \left\{ \operatorname{return}(\pi, P, \bar{r}) : \|P - \bar{P}\| \le \psi \right\}$$

Robust Representation

Nominal values \bar{P} , \bar{r}

Errors in rewards: e.g. [Regan and Boutilier, 2009]

$$\max_{\pi} \min_{\mathbf{r}} \left\{ \operatorname{return}(\pi, \bar{P}, \mathbf{r}) : \|\mathbf{r} - \bar{r}\| \le \psi \right\}$$

Errors in transitions: e.g. [lyengar, 2005a]

$$\max_{\pi} \min_{P} \left\{ \operatorname{return}(\pi, P, \bar{r}) : \|P - \bar{P}\| \le \psi \right\}$$

Budget of robustness ψ is the error size

Reward Function Errors

Objective:

$$\max_{\pi} \min_{\boldsymbol{r}} \left\{ \operatorname{return}(\pi, \bar{P}, \boldsymbol{r}) : \|\boldsymbol{r} - \bar{r}\| \leq \psi \right\}$$

Reward Function Errors

Objective:

$$\max_{\pi} \min_{\boldsymbol{r}} \left\{ \operatorname{return}(\pi, \bar{P}, \boldsymbol{r}) : \|\boldsymbol{r} - \bar{r}\| \le \psi \right\}$$

Using MDP dual linear program: [Puterman, 2005]

$$\max_{u \in \mathbb{R}^{SA}} \min_{\substack{r \in \mathbb{R}^{SA} \\ \text{s.t.}}} \{r^{\mathsf{T}}u : ||r - \bar{r}|| \le \psi\}$$

s.t.
$$\sum_{a}^{(\mathbf{I} - \gamma P_{a}^{\mathsf{T}})u_{a} = p_{0}$$

$$u \ge \mathbf{0}$$

Reward Function Errors

Objective:

$$\max_{\pi} \min_{\boldsymbol{r}} \left\{ \operatorname{return}(\pi, \bar{P}, \boldsymbol{r}) : \|\boldsymbol{r} - \bar{r}\| \leq \psi \right\}$$

Linear program reformulation ($\|\cdot\|_{\star}$ is dual norm):

$$\max_{\substack{u \in \mathbb{R}^{SA} \\ \text{s.t.}}} \quad \bar{r}^{\mathsf{T}}u - \psi \|u\|_{\star}$$
$$\sum_{a} (\mathbf{I} - \gamma P_{a}^{\mathsf{T}})u_{a} = p_{0}$$
$$u \ge \mathbf{0}$$

No known VI, PI, or similar algorithms in general

Objective:

$$\max_{\pi} \min_{\boldsymbol{P}} \left\{ \operatorname{return}(\pi, \boldsymbol{P}, \bar{r}) : \|\boldsymbol{P} - \bar{P}\| \le \psi \right\}$$

Objective:

$$\max_{\pi} \min_{\boldsymbol{P}} \left\{ \operatorname{return}(\pi, \boldsymbol{P}, \bar{r}) : \|\boldsymbol{P} - \bar{P}\| \le \psi \right\}$$

▶ NP-hard to solve in general e.g. [Wiesemann et al., 2013]

▶ No known LP formulation, VI, PI possible

Objective:

$$\max_{\pi} \min_{\boldsymbol{P}} \left\{ \operatorname{return}(\pi, \boldsymbol{P}, \bar{r}) : \|\boldsymbol{P} - \bar{P}\| \le \psi \right\}$$

▶ NP-hard to solve in general e.g. [Wiesemann et al., 2013]

- ▶ No known LP formulation, VI, PI possible
- Ambiguity set (aka uncertainty set):

$$\left\{ \boldsymbol{P} : \|\boldsymbol{P} - \bar{\boldsymbol{P}}\| \le \psi \right\}$$

Objective:

$$\max_{\pi} \min_{\boldsymbol{P}} \left\{ \operatorname{return}(\pi, \boldsymbol{P}, \bar{r}) : \|\boldsymbol{P} - \bar{P}\| \le \psi \right\}$$

- ▶ NP-hard to solve in general e.g. [Wiesemann et al., 2013]
- ▶ No known LP formulation, VI, PI possible
- Ambiguity set (aka uncertainty set):

$$\left\{ \boldsymbol{P} : \|\boldsymbol{P} - \bar{\boldsymbol{P}}\| \le \psi \right\}$$

Focus of the remainder of tutorial

Robust Markov Decision Processes

History of Robustness for MDPs / RL

- 1. **1958**: Proposed to deal with imprecise MDP models in inventory management [Scarf, 1958]
- 2. Uncertain transition probabilities MDPs [Satia and Lave, 1973, White and Eldeib, 1994, Bagnell, 2004]
- 3. Competitive MDPs [Filar and Vrieze, 1997]
- 4. Bounded-parameter MDPs [Givan et al., 2000, Delgado et al., 2016]
- Rectangular Robust MDPs [Iyengar, 2005b, Nilim and El Ghaoui, 2005, Le Tallec, 2007, Wiesemann et al., 2013]
- 6. See [Ben-Tal et al., 2009] for overview of robust optimization

Ambiguity Sets: General

Nature is constrained globally

$$\max_{\pi} \min_{P} \left\{ \operatorname{return}(\pi, P, \bar{r}) : \|P - \bar{P}\| \le \psi \right\}$$

NP-hard problem to solve e.g. [Wiesemann et al., 2013]

Nature is constrained for each state separately $_{\rm e.g.~[Le~Tallec,~2007]}$

$$\max_{\pi} \min_{\boldsymbol{P}} \left\{ \operatorname{return}(\pi, \boldsymbol{P}, \bar{r}) : \|\boldsymbol{P}_{\boldsymbol{s}} - \bar{P}_{\boldsymbol{s}}\| \leq \psi_{\boldsymbol{s}}, \forall \boldsymbol{s} \right\}$$

Nature can see last state but not action Polynomial time solvable; Why? Nature is constrained for each state separately $_{\rm e.g.~[Le~Tallec,~2007]}$

$$\max_{\pi} \min_{\boldsymbol{P}} \left\{ \operatorname{return}(\pi, \boldsymbol{P}, \bar{r}) : \|\boldsymbol{P}_{\boldsymbol{s}} - \bar{P}_{\boldsymbol{s}}\| \leq \psi_{\boldsymbol{s}}, \forall \boldsymbol{s} \right\}$$

Nature can see last state but not action Polynomial time solvable; Why? Bellman Optimality
Nature is constrained for each state and action separately e.g. [Nilim and El Ghaoui, 2005]

$$\max_{\pi} \min_{P} \left\{ \operatorname{return}(\pi, P, \bar{r}) : \|P_{s,a} - \bar{P}_{s,a}\| \le \psi_{s,a}, \forall s, a \right\}$$

Nature can see last state and action Polynomial time solvable; Why?

Nature is constrained for each state and action separately e.g. [Nilim and El Ghaoui, 2005]

$$\max_{\pi} \min_{\boldsymbol{P}} \left\{ \operatorname{return}(\pi, \boldsymbol{P}, \bar{r}) : \|\boldsymbol{P}_{\boldsymbol{s}, \boldsymbol{a}} - \bar{P}_{\boldsymbol{s}, \boldsymbol{a}}\| \le \psi_{\boldsymbol{s}, \boldsymbol{a}}, \, \forall \boldsymbol{s}, \boldsymbol{a} \right\}$$

Nature can see last state and action Polynomial time solvable; Why? Bellman Optimality

SA-Rectangular Ambiguity

Example: For each state *s* and action *a*:

$$\left\{ p_{s,a} \ : \ \| p_{s,a} - \bar{p}_{s,a} \|_1 \le \psi_{s,a} \right\} = \left\{ p_{s,a} \ : \ \sum_{s'} | p_{s,a,s'} - \bar{p}_{s,a,s'} | \le \psi_{s,a} \right\}$$

Sets are rectangles over s and a:

S-Rectangular Ambiguity

Example: For each state *s*:

$$\left\{ p_{s,a} \ : \ \sum_{a} \| p_{s,a} - ar{p}_{s,a} \|_1 \le \psi_s
ight\} = \left\{ p_{s,a} \ : \ \sum_{a,s'} | p_{s,a,s'} - ar{p}_{s,a,s'}| \le \psi_s
ight\}$$

Sets are rectangles over s only:

Robust Markov decision process

Optimal Policy Classification

Nature can be: [lyengar, 2005a]

- 1. Static: stationary, same p in every visit to state and action
- 2. Dynamic: history-dependent, can change in every visit

Optimal Policy Classification

Nature can be: [lyengar, 2005a]

- 1. Static: stationary, same p in every visit to state and action
- 2. Dynamic: history-dependent, can change in every visit

Rectangularity	Static Nature	Dynamic Nature
None	HR	HR
State	H R	S R
State-Action	H R	S D

e.g. [Iyengar, 2005a, Le Tallec, 2007, Wiesemann et al., 2013]

 $\begin{array}{ll} H = history\mbox{-dependent} & R = randomized \\ S = stationary \medskip / Markovian & D = deterministic \end{array}$

Optimal Robust Value Function

Bellman optimality in MDPs:

$$\boldsymbol{v}(s) = \max_{a} \left(r_{s,a} + \gamma \bar{p}_{s,a}^{\mathsf{T}} \boldsymbol{v} \right)$$

Optimal Robust Value Function

Bellman optimality in MDPs:

$$\boldsymbol{v}(s) = \max_{a} \left(r_{s,a} + \gamma \bar{p}_{s,a}^{\mathsf{T}} \boldsymbol{v} \right)$$

Robust Bellman optimality: SA-rectangular ambiguity set

$$v(s) = \max_{a} \min_{\boldsymbol{p} \in \Delta^{S}} \left\{ r_{s,a} + \gamma \boldsymbol{p}^{\mathsf{T}} \boldsymbol{v} : \| \bar{p}_{s,a} - \boldsymbol{p} \|_{1} \le \psi_{s,a} \right\}$$

Optimal Robust Value Function

Bellman optimality in MDPs:

$$\boldsymbol{v}(s) = \max_{a} \left(r_{s,a} + \gamma \bar{p}_{s,a}^{\mathsf{T}} \boldsymbol{v} \right)$$

Robust Bellman optimality: SA-rectangular ambiguity set

$$\boldsymbol{v}(s) = \max_{a} \min_{\boldsymbol{p} \in \Delta^{S}} \left\{ r_{s,a} + \gamma \boldsymbol{p}^{\mathsf{T}} \boldsymbol{v} : \| \bar{p}_{s,a} - \boldsymbol{p} \|_{1} \le \psi_{s,a} \right\}$$

Robust Bellman optimality: S-rectangular ambiguity set

$$v(s) = \max_{d \in \Delta^A} \min_{p_a \in \Delta^S} \left\{ \sum_a d(s, a) (r_{s,a} + \gamma p_a^{\mathsf{T}} v) \right\}$$
$$\sum_a \|\bar{p}_{s,a} - p_a\|_1 \le \psi_s \right\}$$

Solving Robust MDPs

Robust Bellman operator is: e.g. [Iyengar, 2005a, Le Tallec, 2007, Wiesemann et al., 2013]

- 1. A contraction in L_{∞} norm
- 2. Monotone elementwise

Therefore:

- 1. Value Iteration converges to the single optimal value function.
- 2. But naive policy iteration may loop forever [Condon, 1993]
- 3. No known linear programming formulation

Optimal SA Robust Policy: $\psi = 0.05$

Optimal Nominal Policy

Nominal	\$8,820
SA-Robust	-\$7,961
S-Robust	-\$7,961

Optimal SA-Robust Policy

Nominal	\$7,125
SA-Robust	-\$27
S-Robust	-\$27

SA-Rectangular Error

Optimal S Robust Policy: $\psi = 0.05$

Optimal Nominal Policy

Nominal	\$8,820
SA-Robust	-\$7,961
S-Robust	-\$7,961

Optimal S-Robust Policy

Nominal | \$7,306 S-Robust | \$3,942

S-Rectangular Error: $\psi = 0.05$

Return: \$3,942

Solving Robust MDPs

Robust Bellman Optimality: SA-rectangular ambiguity set

$$v(s) = \max_{a} \min_{\boldsymbol{p} \in \Delta^{S}} \left\{ r_{s,a} + \boldsymbol{p}^{\mathsf{T}} v : \| \bar{p} - \boldsymbol{p} \|_{1} \le \psi \right\}$$

▶ How to solve for *p*?

Solving Robust MDPs

Robust Bellman Optimality: SA-rectangular ambiguity set

$$v(s) = \max_{a} \min_{\boldsymbol{p} \in \Delta^{S}} \left\{ r_{s,a} + \boldsymbol{p}^{\mathsf{T}} v : \| \bar{p} - \boldsymbol{p} \|_{1} \le \psi \right\}$$

How to solve for p?

Linear programming is polynomial time for polyhedral sets
Optimal policy using value iteration in polynomial time

Is it really tractable?

Benchmarking Robust Bellman Update

Bellman update: Inventory optimization, 200 states and actions, $\psi = 0.25$

$$r_{s,a} + p^{\mathsf{T}}v$$

Time: 0.04s

Benchmarking Robust Bellman Update

Bellman update: Inventory optimization, 200 states and actions, $\psi = 0.25$

$$r_{s,a} + p^{\mathsf{T}}v$$

Time: 0.04s

Robust Bellman update: Gurobi LP

$$\min_{\boldsymbol{p}\in\Delta^S}\left\{r_{s,a}+\boldsymbol{p}^{\mathsf{T}}\boldsymbol{v} : \|\bar{p}-\boldsymbol{p}\|_1 \leq \psi\right\}$$

	Distance Metric	
Rectangularity	L_1 Norm	w- L_1 Norm
State-action	1.1 min	1.2 min
State	16.7 min	13.4 min

LP scales as $\geq O(n^3)$.

Benchmarking Robust Bellman Update

Bellman update: Inventory optimization, 200 states and actions, $\psi = 0.25$

$$r_{s,a} + p^{\mathsf{T}}v$$

Time: 0.04s

Robust Bellman update: Gurobi LP

$$\min_{\boldsymbol{p}\in\Delta^S}\left\{r_{s,a}+\boldsymbol{p}^{\mathsf{T}}\boldsymbol{v} : \|\bar{p}-\boldsymbol{p}\|_1 \leq \psi\right\}$$

	Distance Metric	
Rectangularity	L_1 Norm	w- L_1 Norm
State-action	1.1 min	1.2 min
State	16.7 min	13.4 min

LP scales as $\geq O(n^3)$. There is a better way!

Robust Bellman Update in $O(n \log n)$

Quasi-linear time possible for many types of ambiguity sets

Metric	SA-Rectangular	S-Rectangular
L_1	e.g. [Iyengar, 2005a]	[Ho et al., 2018]
weighted L_1	[Ho et al., 2018]	[Ho et al., 2018]
L_2	[Iyengar, 2005a]	**
L_{∞}	e.g. [Givan et al., 2000], *	**
KL-divergence	[Nilim and El Ghaoui, 2005]	**
Bregman div	**	**

* proof in [Zhang et al., 2017], ** = unpublished result

Fast Robust Bellman Updates [Ho et al., 2018]

	Distance Metric	
Rectangularity	L_1 Norm	w- L_1 Norm
SA	$O(n \log n)$	$O(k n \log n)$
S	$O(n\log n)$	$O(k n \log n)$

Problem size: $n = \text{states} \times \text{actions}$

- 1. Homotopy Continuation Method: use simple structure
- 2. Bisection + Homotopy Method: randomized policies in combinatorial time

Fast Robust Bellman Updates [Ho et al., 2018]

	Distance Metric	
Rectangularity	L_1 Norm	w- L_1 Norm
SA	$O(n \log n)$	$O(k n \log n)$
S	$O(n\log n)$	$O(k n \log n)$

Problem size: $n = \text{states} \times \text{actions}$

- 1. Homotopy Continuation Method: use simple structure
- 2. Bisection + Homotopy Method: randomized policies in combinatorial time

Optimization: $\min_{p} \left\{ p^{\mathsf{T}} v : \| p - \bar{p} \|_{1} \leq \xi \right\}$

Optimization: $\min_{p} \left\{ p^{\mathsf{T}} v : \| p - \bar{p} \|_{1} \leq \xi \right\}$

Lift to get a linear program:

$$\begin{array}{ll} \min_{p,l} & p^{\mathsf{T}}v \\ \text{s.t.} & p_i - \bar{p}_i \leq l_i \\ & \bar{p}_i - p_i \leq l_i \\ & p_i \geq 0 \\ & \mathbf{1}^{\mathsf{T}}p = 1, \ \mathbf{1}^{\mathsf{T}}l = \xi \end{array}$$

Optimization: $\min_{p} \left\{ p^{\mathsf{T}} v : \| p - \bar{p} \|_{1} \leq \xi \right\}$

Lift to get a linear program:

$$\min_{\substack{p,l\\ p,l}} p^{\mathsf{T}}v \\ \text{s.t.} \quad p_i - \bar{p}_i \leq l_i \\ \bar{p}_i - p_i \leq l_i \\ p_i \geq 0 \\ \mathbf{1}^{\mathsf{T}}p = 1, \quad \mathbf{1}^{\mathsf{T}}l = \xi$$

Observation: In basic solution at most <u>two</u> *i*: $p_i \neq 0$ and $p_i \neq \bar{p}_i$

Optimization: $\min_{p} \left\{ p^{\mathsf{T}} v : \| p - \bar{p} \|_{1} \leq \xi \right\}$

Lift to get a linear program:

$$\min_{\substack{p,l\\ \text{s.t.}}} p^{\mathsf{T}} v \\ \text{s.t.} p_i - \bar{p}_i \leq l_i \\ \bar{p}_i - p_i \leq l_i \\ p_i \geq 0 \\ \mathbf{1}^{\mathsf{T}} p = 1, \ \mathbf{1}^{\mathsf{T}} l = \xi$$

Observation: In basic solution at most two *i*: $p_i \neq 0$ and $p_i \neq \overline{p}_i$ Therefore:

- 1. At most S^2 basic solutions (S with no weights)
- 2. At most two p_i depend on budget ξ

SA-Rectangular: Homotopy Method

$$\min_{\mathbf{p}\in\Delta^S} \left\{ \mathbf{p}^{\mathsf{T}} v : \|\mathbf{p} - \bar{p}\|_1 \le \xi \right\}$$

Trace optimal solution with increasing ξ

SA-Rectangular: Plain L_1

$$\bar{p} = [0.2, 0.3, 0.4, 0.1]$$
 $v = [4, 3, 2, 1]$

SA-Rectangular: Weighted L_1

$$\bar{p} = [0.2, 0.3, 0.3, 0.2]$$
 $v = [2.9, 0.9, 1.5, 0.0]$ $w = [1, 1, 2, 2]$

S-Rectangular Optimization

Optimization problem: Linear program

$$\max_{d \in \Delta^{A}} \min_{\boldsymbol{p_{a}} \in \Delta^{S}} \sum_{a} d(s, a) (r_{s,a} + \gamma \boldsymbol{p_{a}}^{\mathsf{T}} v)$$

s. t.
$$\sum_{a} \| \bar{p}_{s,a} - \boldsymbol{p_{a}} \|_{1} \leq \psi_{s}$$

S-Rectangular Optimization

Optimization problem: Linear program

$$\max_{d \in \Delta^{A}} \min_{\boldsymbol{p_{a}} \in \Delta^{S}} \sum_{a} d(s, a) (r_{s,a} + \gamma \boldsymbol{p_{a}}^{\mathsf{T}} v)$$

s. t.
$$\sum_{a} \| \bar{p}_{s,a} - \boldsymbol{p_{a}} \|_{1} \leq \psi_{s}$$

Why should it be easy to solve?

- 1. Use $\|\cdot\|_1$ structure from SA-rectangular formulation
- 2. Constraint is a sum: Decompose!

S-Rectangular Optimization

Optimization problem: Linear program

$$\max_{d \in \Delta^{A}} \min_{\boldsymbol{p_{a}} \in \Delta^{S}} \sum_{a} d(s, a) (r_{s,a} + \gamma \boldsymbol{p_{a}}^{\mathsf{T}} v)$$

s. t.
$$\sum_{a} \| \bar{p}_{s,a} - \boldsymbol{p_{a}} \|_{1} \leq \psi_{s}$$

Why should it be easy to solve?

- 1. Use $\|\cdot\|_1$ structure from SA-rectangular formulation
- 2. Constraint is a sum: Decompose!

Special S-rectangular formulation, does not work in general

Bisection to Decompose Optimization

1. Objective with $q_a(\xi) = SA$ -rectangular update:

$$\max_{d \in \Delta^{A}} \min_{\boldsymbol{\xi} \in \mathbb{R}^{A}_{+}} \left\{ \sum_{a \in \mathcal{A}} d_{a} \cdot q_{a}(\boldsymbol{\xi}_{a}) : \sum_{a \in \mathcal{A}} \boldsymbol{\xi}_{a} \leq \kappa \right\}$$

Bisection to Decompose Optimization

1. Objective with $q_a(\xi) = SA$ -rectangular update:

$$\max_{d \in \Delta^A} \min_{\boldsymbol{\xi} \in \mathbb{R}^A_+} \left\{ \sum_{a \in \mathcal{A}} d_a \cdot q_a(\boldsymbol{\xi}_a) : \sum_{a \in \mathcal{A}} \boldsymbol{\xi}_a \leq \kappa \right\}$$

2. Swap min and max (which becomes deterministic):

$$\min_{\boldsymbol{\xi} \in \mathbb{R}^A_+} \left\{ \max_{a \in \mathcal{A}} q_a(\boldsymbol{\xi}_a) : \sum_{a \in \mathcal{A}} \boldsymbol{\xi}_a \le \kappa \right\}$$

Bisection to Decompose Optimization

1. Objective with $q_a(\xi) = SA$ -rectangular update:

$$\max_{d \in \Delta^{A}} \min_{\boldsymbol{\xi} \in \mathbb{R}^{A}_{+}} \left\{ \sum_{a \in \mathcal{A}} d_{a} \cdot q_{a}(\boldsymbol{\xi}_{a}) : \sum_{a \in \mathcal{A}} \boldsymbol{\xi}_{a} \leq \kappa \right\}$$

2. Swap min and max (which becomes deterministic):

$$\min_{\boldsymbol{\xi} \in \mathbb{R}^A_+} \left\{ \max_{a \in \mathcal{A}} q_a(\boldsymbol{\xi}_a) : \sum_{a \in \mathcal{A}} \boldsymbol{\xi}_a \le \kappa \right\}$$

3. Turn objective to constraint:

$$\min_{u \in \mathbb{R}} \min_{\boldsymbol{\xi} \in \mathbb{R}^A_+} \left\{ u : \sum_{a \in \mathcal{A}} \boldsymbol{\xi}_a \leq \kappa, \ \max_{a \in \mathcal{A}} q_a(\boldsymbol{\xi}_a) \leq u \right\}$$
Bisection to Decompose Optimization

1. Objective with $q_a(\xi) = SA$ -rectangular update:

$$\max_{d \in \Delta^A} \min_{\boldsymbol{\xi} \in \mathbb{R}^A_+} \left\{ \sum_{a \in \mathcal{A}} d_a \cdot q_a(\boldsymbol{\xi}_a) : \sum_{a \in \mathcal{A}} \boldsymbol{\xi}_a \le \kappa \right\}$$

2. Swap min and max (which becomes deterministic):

$$\min_{\boldsymbol{\xi} \in \mathbb{R}^A_+} \left\{ \max_{a \in \mathcal{A}} q_a(\boldsymbol{\xi}_a) : \sum_{a \in \mathcal{A}} \boldsymbol{\xi}_a \le \kappa \right\}$$

3. Turn objective to constraint:

$$\min_{u \in \mathbb{R}} \min_{\boldsymbol{\xi} \in \mathbb{R}^A_+} \left\{ u : \sum_{a \in \mathcal{A}} \boldsymbol{\xi}_a \leq \kappa, \ \max_{a \in \mathcal{A}} q_a(\boldsymbol{\xi}_a) \leq u \right\}$$

4. For given u, independently minimal ξ_a such that $q_a(\xi_a) \leq u$

Bisection to Decompose Optimization

1. Objective with $q_a(\xi) = SA$ -rectangular update:

$$\max_{d \in \Delta^A} \min_{\boldsymbol{\xi} \in \mathbb{R}^A_+} \left\{ \sum_{a \in \mathcal{A}} d_a \cdot q_a(\boldsymbol{\xi}_a) : \sum_{a \in \mathcal{A}} \boldsymbol{\xi}_a \le \kappa \right\}$$

2. Swap min and max (which becomes deterministic):

$$\min_{\boldsymbol{\xi} \in \mathbb{R}^A_+} \left\{ \max_{a \in \mathcal{A}} q_a(\boldsymbol{\xi}_a) : \sum_{a \in \mathcal{A}} \boldsymbol{\xi}_a \le \kappa \right\}$$

3. Turn objective to constraint:

$$\min_{u \in \mathbb{R}} \min_{\boldsymbol{\xi} \in \mathbb{R}^A_+} \left\{ u : \sum_{a \in \mathcal{A}} \boldsymbol{\xi}_a \leq \kappa, \ \max_{a \in \mathcal{A}} q_a(\boldsymbol{\xi}_a) \leq u \right\}$$

4. For given u, independently minimal ξ_a such that $q_a(\xi_a) \le u$ Bisect on u: $O(n \log n)$ combinatorial complexity

S-Rectangular: Bisection Method

$$\min_{\boldsymbol{u} \in \mathbb{R}} \min_{\boldsymbol{\xi} \in \mathbb{R}^A_+} \left\{ \boldsymbol{u} : \sum_{a \in \mathcal{A}} \boldsymbol{\xi}_a \leq \kappa, \ \max_{a \in \mathcal{A}} q_a(\boldsymbol{\xi}_a) \leq \boldsymbol{u} \right\}$$

Numerical Time Complexity

Timing Robust Bellman Updates: Inventory optimization, 200 states and actions, $\psi = 0.25$, Gurobi LP solver / Homotopy + Bisection

	Distance Metric		
Rectangularity	L_1 Norm	w- L_1 Norm	
State-action	1.1 min / 0.6s	1.2 min / 0.8s	
State	16.7 min / 0.7s	13.4 min / 1.2s	

Bellman update: 0.04s

Partial Policy Iteration: S-Rectangular RMDPs

While Bellman residual of v_k is large:

- 1. Policy evaluation: Compute v_k for policy π_k with precision ϵ_k (RMDP with fixed π is MDP)
- 2. Policy improvement: Get π_{k+1} by greedily improving policy
- 3. $k \leftarrow k+1$

Partial Policy Iteration: S-Rectangular RMDPs

While Bellman residual of v_k is large:

- 1. Policy evaluation: Compute v_k for policy π_k with precision ϵ_k (RMDP with fixed π is MDP)
- 2. Policy improvement: Get π_{k+1} by greedily improving policy
- 3. $k \leftarrow k+1$

Theorem: Converges fast as long as $\epsilon_{k+1} \leq \gamma^c \epsilon_k$ for c > 1

Numerical Time Complexity

Timing Robust Bellman updates: Inventory optimization, 200 states and actions, $\psi = 0.25$, Gurobi LP solver / Homotopy + Bisection

	Distance Metric		
Rectangularity	L_1 Norm	w- L_1 Norm	
State-action	1.1 min / 0.6s	1.2 min / 0.8s	
State	16.7 min / 0.7s	13.4 min / 1.2s	

Bellman update: 0.04s

Policy Iteration for Robust MDPs

- ► Value Iteration: Works as in MDPs
- ► Naive policy iteration may cycle forever [Condon, 1993]
- ▶ Policy iteration with LP as evaluation [lyengar, 2005a]
- Modified Robust Policy Iteration [Kaufman and Schaefer, 2013]
- Partial Policy Iteration: Approximate policy evaluation [Ho et al. 2019]

Benchmarks: Scaling with States

Time in seconds, 300 second timeout, S-rectangular

	MDP	RMDP	Gurobi	RMDP	Bisection
States	PI	VI	PPI	VI	PPI
12	0.00	0.36	0.01	0.00	0.00
36	0.00	>300	0.22	0.03	0.00
72	0.00		>300	0.13	0.01
108	0.00			0.31	0.03
144	0.01		—	0.60	0.05
180	0.02		—	0.93	0.08
216	0.03		—	1.38	0.14
252	0.04			1.84	0.20
288	0.06			2.46	0.27

Beyond Plain Rectangularity

- S- and SA-rectangularity are:
- [+] Computationally convenient
- [-] Practically limiting

Extensions: Most based on state augmentation

- k-rectangularity: [Mannor et al., 2012] Upper limit on the number of deviations from nominal
- r-rectangularity: [Goyal and Grand-Clement, 2018]
- other approaches: Distributionally robust constraints [Tirinzoni et al., 2018]

Modeling Errors in RL

What Is Small Error?

What Is Small Error?

Optimize $\psi = 0.0$

Evaluate		
$\psi = 0$	8,850	
$\psi = 0.05$	-6,725	
$\psi = 0.4$	-60,171	

Optimize $\psi = 0.05$

Evaluate

$\psi = 0$	7,408
$\psi = 0.05$	-25
$\psi = 0.4$	-46,256

What Is Small Error?

Optimize $\psi = 0.0$

 $\begin{tabular}{c|c} Evaluate \\ \hline $\psi = 0$ & 8,850 \\ $\psi = 0.05$ & -6,725 \\ $\psi = 0.4$ & -60,171 \end{tabular}$

Optimize $\psi = 0.05$

Evaluate

7,408

-46.256

-25

 $\psi = 0$

 $\psi = 0.05$

 $\psi = 0.4$

Optimize
$$\psi = 0.4$$

Which ψ to optimize for?

Choosing Level Robustness (Ambiguity Set)

- 1. What is the right size ψ of the ambiguity set?
- 2. Should $\psi_{s,a}$ be the same for each state and action?
- 3. Why use the L_1 norm? What about $L_\infty,$ KL-divergence, Others?
- 4. Which rectangularity to use (if any)?

Choosing Level Robustness (Ambiguity Set)

- 1. What is the right size ψ of the ambiguity set?
- 2. Should $\psi_{s,a}$ be the same for each state and action?
- 3. Why use the L_1 norm? What about $L_\infty,$ KL-divergence, Others?
- 4. Which rectangularity to use (if any)?

Depends on why there are errors!

Sample-efficient Batch Model-based RL

No simulator, off-policy, just compute policy (Doina's talk)

Logged data: Population (biased), actions, rewards

Simulated Population and Actions Action Population Time Step

Model-Based Reinforcement Learning

Use Dyna-like approach: (Martha's Talk)

- 1. Collect transition data
- 2. Use ML to build transition model
- 3. Solve MDP model to get π
- 4. Deploy policy π (with crossed fingers)

The model can be wrong. Why?

Sources of Model Error

- Model simplification: Value function approximation / simplified simulator [Petrik, 2012, Petrik and Subramanian, 2014, Lim and Autef, 2019]
- 2. Limited data: Not enough data; batch RL $_{e.g.}$ [Petrik et al., 2016,

Laroche et al., 2019, Petrik and Russell, 2019]

- 3. Non-stationary environment: [Derman et al., 2019]
- 4. Noisy observations: Like POMDPs but simpler e.g. [Pattanaik et al., 2018]

Each error source requires different treatment

Robust Model-Based Reinforcement Learning

Standard approach:

- 1. Collect transition data
- 2. Use ML to build transition model
- 3. Solve MDP to get π
- 4. Deploy policy π (with crossed fingers)

Robust approach:

- 1. Collect transition data
- 2. Use ML to build transition model and confidence
- 3. Solve Robust MDP model to get π
- 4. Deploy policy π (with confidence)

Error 1: Model Simplification [Petrik and Subramanian, 2014]

State aggregation: Piece-wise constant linear value function approximation

Performance loss for $\tilde{\pi}$

 $\operatorname{return}(\pi^{\star}) - \operatorname{return}(\tilde{\pi}) = \operatorname{return}(\operatorname{optimal}) - \operatorname{return}(\operatorname{approximated})$

Loss bound [Gordon, 1995, Tsitsiklis and Van Roy, 1997]

$$\operatorname{return}(\pi^{\star}) - \operatorname{return}(\tilde{\pi}) \le \frac{4\gamma}{(1-\gamma)^2} \min_{v \in \mathbb{R}^{\mathcal{S}}} \|v^{\star} - \Phi v\|_{\infty}$$

Robustness for State Aggregation

Transition probabilities:

	s_3	s_4
s_1	1/4	3/4
s_2	2/3	1/3

Aggregate s_1 and s_2 with weights α_1 and α_2 into s

Standard: arbitrary (wrong) α 's: $\alpha_1 = 0.4, \alpha_2 = 0.6$

$$v(s) = (0.4 \cdot 1/4 + 0.6 \cdot 2/3)v(s_3) + (0.4 \cdot 3/4 + 0.6 \cdot 1/3)v(s_4)$$

Robust: adversarial α 's

$$v(s) = \min_{\alpha \in \Delta^2} (\alpha_1 \cdot 1/4 + \alpha_2 \cdot 2/3)v(s_3) + (\alpha_1 \cdot 3/4 + \alpha_2 \cdot 1/3)v(s_4)$$

Reducing Performance Loss

Standard aggregation

$$\operatorname{return}(\pi^{\star}) - \operatorname{return}(\tilde{\pi}) \le \frac{4\gamma}{(1-\gamma)^2} \min_{v \in \mathbb{R}^{\mathcal{S}}} \|v^{\star} - \Phi v\|_{\infty}$$

 ${\sf Uniform\ weights\ incorrect} = {\sf large\ error}$

Robust aggregation

$$\operatorname{return}(\pi^{\star}) - \operatorname{return}(\tilde{\pi}) \le \frac{2}{1 - \gamma} \min_{v \in \mathbb{R}^{\mathcal{S}}} \|v^{\star} - \Phi v\|_{\infty}$$

Reducing Performance Loss

Standard aggregation

$$\operatorname{return}(\pi^{\star}) - \operatorname{return}(\tilde{\pi}) \leq \frac{4\gamma}{(1-\gamma)^2} \min_{v \in \mathbb{R}^{\mathcal{S}}} \|v^{\star} - \Phi v\|_{\infty}$$

Uniform weights incorrect = large error

Robust aggregation

$$\operatorname{return}(\pi^{\star}) - \operatorname{return}(\tilde{\pi}) \le \frac{2}{1 - \gamma} \min_{v \in \mathbb{R}^{\mathcal{S}}} \|v^{\star} - \Phi v\|_{\infty}$$

Reducing Performance Loss

Standard aggregation

$$\operatorname{return}(\pi^{\star}) - \operatorname{return}(\tilde{\pi}) \leq \frac{4\gamma}{(1-\gamma)^2} \min_{v \in \mathbb{R}^{\mathcal{S}}} \|v^{\star} - \Phi v\|_{\infty}$$

Uniform weights incorrect = large error

Robust aggregation

$$\operatorname{return}(\pi^{\star}) - \operatorname{return}(\tilde{\pi}) \le \frac{2}{1 - \gamma} \min_{v \in \mathbb{R}^{\mathcal{S}}} \|v^{\star} - \Phi v\|_{\infty}$$

Bound constant γ standard robust 0.9 360 20 0.99 36,000 200 0.999 4,000,000 2,000

Numerical Simulation: Inverted Pendulum

Inverted pendulum with additional reward for off-balance

Error 2: Limited Data Availability

What is missing in this data?

Simulated Population and Actions

Error 2: Limited Data Availability

Learn model and confidence: Uncertain values of P

Percentile criterion: Confidence level: δ , e.g. $\delta = 0.1$ [Delage and Mannor, 2010, Petrik and Russell, 2019]

$$\max_{\pi,y} y \text{ s.t. } \mathbf{P}_{P^{\star}} \left[\operatorname{return}(\pi, P^{\star}, r) \geq y \right] \geq 1 - \delta$$

Risk aversion: same formulation, risk-averse to epistemic uncertainty

$$\max_{\pi} \mathrm{V}@\mathrm{R}^{1-\delta}_{P^{\star}}[\mathrm{return}(\pi, P^{\star}, r)]$$

Why this objective?

Error 2: Limited Data Availability

Learn model and confidence: Uncertain values of P

Percentile criterion: Confidence level: δ , e.g. $\delta = 0.1$ [Delage and Mannor, 2010, Petrik and Russell, 2019]

$$\max_{\pi,y} y \text{ s.t. } \mathbf{P}_{P^{\star}} \left[\operatorname{return}(\pi, P^{\star}, r) \geq y \right] \geq 1 - \delta$$

Risk aversion: same formulation, risk-averse to epistemic uncertainty

$$\max_{\pi} \mathrm{V}@\mathrm{R}^{1-\delta}_{P^{\star}}[\mathrm{return}(\pi, P^{\star}, r)]$$

Why this objective? Robust, guarantees, know when you fail

Percentile Criterion as RMDP

Percentile criterion [Delage and Mannor, 2010, Petrik and Russell, 2019]

 $\max_{\pi,y} y \text{ s.t. } \mathbf{P}_{P^{\star}}\left[\operatorname{return}(\pi, P^{\star}, r) \geq y\right] \geq 1 - \delta$

Ambiguity set \mathcal{P} designed such that:

$$\mathbf{P}_{P^{\star}}\left[\operatorname{return}(\pi, P^{\star}, r) \geq \min_{P \in \mathcal{P}} \operatorname{return}(\pi, P, \bar{r})\right] \geq 1 - \delta$$

Robustness in face of limited data

Frequentist framework

- [+] Few assumptions
- [+] Simple to implement
- [-] Too conservative / useless?
- [-] Cannot generalize

Robustness in face of limited data

Frequentist framework

- [+] Few assumptions
- [+] Simple to implement
- [-] Too conservative / useless?
- [-] Cannot generalize

Bayesian framework

- [-] Needs priors
- [+] Can use priors
- [-] Computationally demanding
- [+] Good generalization

Frameworks have different types of guarantees e.g. [Murphy, 2012]

Frequentist Ambiguity Set

Few samples \longrightarrow large ambiguity set

Hoeffding's Ineq.: For true p^{\star} with prob. $1-\delta:$ e.g. [Weissman et al., 2003,

Jaksch et al., 2010, Laroche et al., 2019, Petrik and Russell, 2019]

$$\|p_{s,a}^{\star} - \bar{p}_{s,a}\|_{1} \leq \underbrace{\sqrt{\frac{2}{n}\log\left(\frac{SA\,2^{S}}{\delta}\right)}}_{\psi_{s,a}}$$

Ambiguity set for s and a:

$$\mathcal{P} = \{ p : \| p - \bar{p}_{s,a} \|_1 \le \psi_{s,a} \}$$

Very conservative ... can use bootstrapping?

Bayesian Models for Robust RL

1. **Uninformative models**: Dirichlet prior for the probability distribution for each state and action. Dirichlet posterior.

 $p_{s,a} \sim \text{Dirichlet}(\alpha_1, \ldots, \alpha_S)$

2. Informative models: A parametric hierarchical Bayesian model. Population at time t is x_t :

$$x_{t+1} = \boldsymbol{\alpha} \cdot x_t + \boldsymbol{\beta} \cdot x_t^2 + \mathcal{N}(1, 10)$$

MCMC to sample from posterior over α, β Generalize to infinite state space

Hierarchical Bayesian Models: Factored Models

MCMC using Stan, JAGS, PyMC3/4, Edward, ... to model population at time t is x_t :

$$x_{t+1} = \boldsymbol{\alpha} \cdot x_t + \boldsymbol{\beta} \cdot x_t^2 + \mathcal{N}(1, 10)$$

Larger population \longrightarrow more uncertainty

Samples to Ambiguity Set: Single State Value, $\delta = 0.2$

Problem: $p^{\star}(s_1, s_2, s_3|s_0) = [0.3, 0.5, 0.2], r(s_1, s_2, s_3|s_0) = [10, 5, -1]$ **True value:** $v(s_0) = r^{\mathsf{T}}p^{\star} = \mathbf{6.3}$
Problem: $p^*(s_1, s_2, s_3|s_0) = [0.3, 0.5, 0.2], r(s_1, s_2, s_3|s_0) = [10, 5, -1]$ **True value:** $v(s_0) = r^{\mathsf{T}}p^* = 6.3$

Samples: $4 \times (s_0 \rightarrow s_1)$, $6 \times (s_0 \rightarrow s_2)$, $1 \times (s_0 \rightarrow s_3)$

Problem: $p^*(s_1, s_2, s_3|s_0) = [0.3, 0.5, 0.2]$, $r(s_1, s_2, s_3|s_0) = [10, 5, -1]$ True value: $v(s_0) = r^{\mathsf{T}}p^* = \mathbf{6.3}$ Samples: $4 \times (s_0 \to s_1)$, $6 \times (s_0 \to s_2)$, $1 \times (s_0 \to s_3)$ 1. Frequentist: $\psi = \sqrt{2/n \log (2^S/\delta)} = 0.8$

$$\hat{v}(s_0) = \min_{p:\|\bar{p}-p\|_1 \le 0.8} r^{\mathsf{T}} p = 2.1$$

Problem: $p^*(s_1, s_2, s_3|s_0) = [0.3, 0.5, 0.2], r(s_1, s_2, s_3|s_0) = [10, 5, -1]$ True value: $v(s_0) = r^{\mathsf{T}}p^* = 6.3$ Samples: $4 \times (s_0 \to s_1), 6 \times (s_0 \to s_2), 1 \times (s_0 \to s_3)$ 1. Frequentist: $\hat{v}(s_0) = \min_{p:\|\bar{p}-p\|_1 \le 0.8} r^{\mathsf{T}}p = 2.1$ 2. Bayes Credible Region: Posterior: $p \sim \text{Dirichlet}(5, 7, 1)$, samples:

$$p_1 = \begin{pmatrix} 0.2\\ 0.7\\ 0.1 \end{pmatrix}, p_2 = \begin{pmatrix} 0.6\\ 0.3\\ 0.1 \end{pmatrix}, \dots$$

Set ψ such that 80% of p_i satisfy:

$$||p_i - \bar{p}||_1 \le \psi = 0.8$$

Problem: $p^{\star}(s_1, s_2, s_3 | s_0) = [0.3, 0.5, 0.2], r(s_1, s_2, s_3 | s_0) = [10, 5, -1]$ **True value**: $v(s_0) = r^{\mathsf{T}} p^{\star} = \frac{6.3}{2}$

Samples: $4 \times (s_0 \rightarrow s_1)$, $6 \times (s_0 \rightarrow s_2)$, $1 \times (s_0 \rightarrow s_3)$

- **1. Frequentist**: $\hat{v}(s_0) = \min_{p:\|\bar{p}-p\|_1 \le 0.8} r^{\mathsf{T}} p = 2.1$
- **2.** Bayes Credible Region: $\hat{v}(s_0) = \min_{p:\|\bar{p}-p\|_1 \le 0.8} r^{\mathsf{T}} p = 2.1$
- **3.** Direct Bayes Bound: δ -quantile of values $r^{\mathsf{T}}p_i$:

$$\hat{v}(s_0) = \mathrm{V}@\mathrm{R}^{0.8}_{p_i}[r^{\mathsf{T}}p_i] = 5.8$$

Problem: $p^{\star}(s_1, s_2, s_3 | s_0) = [0.3, 0.5, 0.2], r(s_1, s_2, s_3 | s_0) = [10, 5, -1]$ **True value:** $v(s_0) = r^{\mathsf{T}} p^{\star} = \mathbf{6.3}$

Samples: $4 \times (s_0 \rightarrow s_1)$, $6 \times (s_0 \rightarrow s_2)$, $1 \times (s_0 \rightarrow s_3)$

- **1. Frequentist**: $\hat{v}(s_0) = \min_{p:\|\bar{p}-p\|_1 \le 0.8} r^{\mathsf{T}} p = 2.1$
- **2.** Bayes Credible Region: $\hat{v}(s_0) = \min_{p:\|\bar{p}-p\|_1 \le 0.8} r^{\mathsf{T}} p = 2.1$
- **3. Direct Bayes Bound**: δ -quantile of values $r^{\mathsf{T}}p_i$:

$$\hat{v}(s_0) = \mathrm{V}@\mathrm{R}^{0.8}_{p_i}[r^{\mathsf{T}}p_i] = 5.8$$

Bayesian credible regions as ambiguity sets are too large

Problem: $p^*(s_1, s_2, s_3|s_0) = [0.3, 0.5, 0.2], r(s_1, s_2, s_3|s_0) = [10, 5, -1]$ **True value:** $v(s_0) = r^{\mathsf{T}}p^* = \mathbf{6.3}$

Samples: $4 \times (s_0 \rightarrow s_1)$, $6 \times (s_0 \rightarrow s_2)$, $1 \times (s_0 \rightarrow s_3)$

- **1. Frequentist**: $\hat{v}(s_0) = \min_{p:\|\bar{p}-p\|_1 \le 0.8} r^{\mathsf{T}} p = 2.1$
- **2.** Bayes Credible Region: $\hat{v}(s_0) = \min_{p:\|\bar{p}-p\|_1 \le 0.8} r^{\mathsf{T}} p = 2.1$
- **3. Direct Bayes Bound**: δ -quantile of values $r^{\mathsf{T}}p_i$:

$$\hat{v}(s_0) = \mathrm{V}@\mathrm{R}^{0.8}_{p_i}[r^{\mathsf{T}}p_i] = 5.8$$

Bayesian credible regions as ambiguity sets are too large

4. RSVF: Approximates optimal ambiguity set \mathcal{P} [Petrik and Russell, 2019]

$$\hat{v}(s_0) = \min_{p \in \mathcal{P}} r^\mathsf{T} p = 5.8$$

Optimal Bayesian Ambiguity Sets

The blue set is optimal (if it exists) for all non-random v [Gupta, 2015,

Petrik and Russell, 2019]

RSVF outer-approximates the optimal blue set

Optimal Bayesian Ambiguity Sets

The blue set is optimal (if it exists) for all non-random v [Gupta, 2015,

Petrik and Russell, 2019]

RSVF outer-approximates the optimal blue set

Bayesian Credible Regions are Too Large: Why?

Credible region $\mathcal{P}_{s,a}$ guarantees

$$\mathbf{P}_{P^{\star}}\left[\min_{p\in\mathcal{P}_{s,a}}p^{\mathsf{T}}v\leq(p_{s,a}^{\star})^{\mathsf{T}}v,\ \forall v\in\mathbb{R}^{S}\right]\geq1-\delta.$$

But this is sufficient:

$$\mathbf{P}_{P^{\star}}\left[\min_{p\in\mathcal{P}_{s,a}}p^{\mathsf{T}}v\leq(p_{s,a}^{\star})^{\mathsf{T}}v\right]\geq1-\delta,\;\forall v\in\mathbb{R}^{S}$$

Because v is not a random variable

How Conservative are Robustness Estimates

Population model: Gap of the lower bound. Smaller is better; 0 unachievable.

Other Approaches

Other Objectives

1. Robust objective

 $\max_{\pi} \min_{P, r} \ \operatorname{return}(\pi, P, r)$

2. Minimize robust regret e.g. [Ahmed et al., 2013, Ahmed and Jaillet, 2017, Regan and Boutilier, 2009]

$$\min_{\pi} \max_{\pi^{\star}, P, r} \left(\operatorname{return}(\pi^{\star}, P, r) - \operatorname{return}(\pi, P, r) \right)$$

All NP hard optimization problems

3. Minimize baseline regret: Improve on a given policy π_B [Petrik

et al., 2016, Kallus and Zhou, 2018]

$$\min_{\pi} \max_{\boldsymbol{P},\boldsymbol{r}} \left(\operatorname{return}(\pi_B, \boldsymbol{P}, \boldsymbol{r}) - \operatorname{return}(\pi, \boldsymbol{P}, \boldsymbol{r}) \right)$$

Also NP hard optimization problem

Guarantee Policy Improvement [Petrik et al., 2016]

Baseline policy $\pi_{\mathsf{B}}:$ Currently deployed, good but would like an improvement

Goal: Guarantee improvement on baseline policy

Algorithm: Minimize robust baseline regret

Solution Quality vs Samples

Safe Policy Using Robust MDP

$$\tilde{\pi} \leftarrow \arg\max_{\pi} \min_{\xi} \operatorname{return}(\pi, \xi)$$

• Accept $\tilde{\pi}$ if outperforms π_{B} with prob $1 - \delta$:

Benchmark: Robust Solution

Limitation of Simple Robustness: Improving Commute

Usual commute	Better commute?
Interstate: 20 min	Local road: 10 min
Bridge: 10–30 min	<i>Bridge</i> : 10–30 min
Total: 30–50 min	Total: 20–40 min

Reject: 40 min > 30 min

Minimizing Robust Baseline Regret

Minimize robust baseline regret

$$\min_{\pi} \max_{\boldsymbol{\xi}} \left(\operatorname{return}(\pi_{\mathsf{B}}, \boldsymbol{\xi}) - \operatorname{return}(\pi, \boldsymbol{\xi}) \right)$$

Correlation between impacts of robustness

Benchmark: Minimizing Robust Baseline Regret

Minimizing Robust Baseline Regret

- Optimal stationary policy may have to be randomized
- Arbitrary optimality gap for deterministic policies
- Computing optimal deterministic policy is NP hard

$$\max_{\pi} \min_{\boldsymbol{\xi}} \left(\operatorname{return}(\pi, \boldsymbol{\xi}) - \operatorname{return}(\pi_{\mathsf{B}}, \boldsymbol{\xi}) \right)$$

Even computing nature response in NP hard

$$\min_{\boldsymbol{\xi}} \left(\operatorname{return}(\pi, \boldsymbol{\xi}) - \operatorname{return}(\pi_{\mathsf{B}}, \boldsymbol{\xi}) \right)$$

NP-hard even with rectangular uncertainty

Performance Guarantees

Model error:

$$\|p_{s,a}^{\star} - \bar{p}_{s,a}\|_{1} \leq \underbrace{\sqrt{\frac{2}{n}\log\left(\frac{SA2^{S}}{\delta}\right)}}_{e(s,a)}$$

Classic performance loss:

$$\underbrace{\operatorname{return}(\pi^{\star}) - \operatorname{return}(\tilde{\pi})}_{\text{Policy loss}} \leq C \underbrace{\max_{\pi} \|e_{\pi}\|_{\infty}}_{L_{\infty} \operatorname{norm}}$$

Performance loss (regret) for robust solution:

$$\underbrace{\operatorname{return}(\pi^{\star}) - \operatorname{return}(\tilde{\pi})}_{\text{Policy loss}} \leq \min \left\{ C \underbrace{\|e_{\pi^{\star}}\|_{1,u^{\star}}}_{L_{1} \text{ norm}}, \underbrace{\operatorname{return}(\pi^{\star}) - \operatorname{return}(\pi_{\mathsf{B}})}_{\text{Baseline loss}} \right\}$$

Summary

Robustness is Important In RL

- 1. Learning without a simulator:
 - Insufficient data set size
 - How to test a policy? No cross-validation
- 2. High cost of failure (bad policy)

RL with Robust MDPs

"Model-based approach to reliable off-policy sample-efficient tabular RL by learning models and confidence"

RMDPs are a convenient model for robustness

- Tractable methods with rectangular sets
- Provide strong guarantees

Learn a model and its confidence

- Source of error matters
- Promising methods for small data

Many model-free methods too e.g. [Thomas et al., 2015, Pinto et al., 2017,

Pattanaik et al., 2018]

Important Research Directions

- 1. Scalability [Tamar et al., 2014]
 - Value function approximation: Deep learning et al
 - How to preserve some sort of guarantees?

2. Relaxing rectangularity

- Crucial in reducing unnecessary conservativeness
- Tractability?

3. Applications

- Understand the real impact and limitations of the techniques
- Code: http://github.com/marekpetrik/craam2, well-tested, examples, but unstable, pre-alpha

Bibliography I

- A. Ahmed and P. Jaillet. Sampling Based Approaches for Minimizing Regret in Uncertain Markov Decision Processes (MDPs). *Journal of Artificial Intelligence Research (JAIR)*, 59:229–264, 2017.
- A. Ahmed, P. Varakantham, Y. Adulyasak, and P. Jaillet. Regret based Robust Solutions for Uncertain Markov Decision Processes. In Advances in Neural Information Processing Systems (NIPS), 2013. URL http://papers.nips.cc/paper/ 4970-regret-based-robust-solutions-for-uncertain-markov-decis
- P. Auer, T. Jaksch, and R. Ortner. Near-optimal regret bounds for reinforcement learning. *Journal of Machine Learning Research*, 11(1): 1563–1600, 2010.
- J. Bagnell. Learning decisions: Robustness, uncertainty, and approximation. PhD thesis, Carnegie Mellon University, 2004. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1. 1.187.8389{&}rep=rep1{&}type=pdf.
- A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. *Robust Optimization*. Princeton University Press, 2009.

Bibliography II

- A. Condon. On algorithms for simple stochastic games. Advances in Computational Complexity Theory, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 13:51–71, 1993. doi: 10.1090/dimacs/013/04.
- E. Delage and S. Mannor. Percentile Optimization for Markov Decision Processes with Parameter Uncertainty. *Operations Research*, 58(1): 203–213, aug 2010. ISSN 0030-364X. doi: 10.1287/opre.1080.0685. URL http:

//or.journal.informs.org/cgi/doi/10.1287/opre.1080.0685.

- K. V. Delgado, L. N. De Barros, D. B. Dias, and S. Sanner. Real-time dynamic programming for Markov decision processes with imprecise probabilities. *Artificial Intelligence*, 230:192–223, 2016. ISSN 00043702. doi: 10.1016/j.artint.2015.09.005. URL http://dx.doi.org/10.1016/j.artint.2015.09.005.
- E. Derman, D. Mankowitz, T. Mann, and S. Mannor. A Bayesian Approach to Robust Reinforcement Learning. Technical report, 2019. URL http://arxiv.org/abs/1905.08188.

Bibliography III

- J. Filar and K. Vrieze. *Competitive Markov Decision Processes*. Springer, 1997. URL http://dl.acm.org/citation.cfm?id=248676.
- R. Givan, S. Leach, and T. Dean. Bounded-parameter Markov decision processes. *Artificial Intelligence*, 122(1):71–109, 2000.
- G. J. Gordon. Stable function approximation in dynamic programming. In International Conference on Machine Learning, pages 261–268. Carnegie Mellon University, 1995. URL citeseer.ist.psu.edu/gordon95stable.html.
- V. Goyal and J. Grand-Clement. Robust Markov Decision Process: Beyond Rectangularity. Technical report, 2018. URL http://arxiv.org/abs/1811.00215.
- V. Gupta. Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization. 2015.
- C. P. Ho, M. Petrik, and W. Wiesemann. Fast Bellman Updates for Robust MDPs. In International Conference on Machine Learning (ICML), volume 80, pages 1979–1988, 2018. URL http://proceedings.mlr.press/v80/ho2018a.html.

Bibliography IV

- G. N. Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):257-280, may 2005a. ISSN 0364-765X. doi: 10.1287/moor.1040.0129. URL http: //mor.journal.informs.org/content/30/2/257.shorthttp:// mor.journal.informs.org/cgi/doi/10.1287/moor.1040.0129.
- G. N. Iyengar. Robust Dynamic Programming. Mathematics of Operations Research, 30(2):257-280, 2005b. ISSN 0364-765X. doi: 10.1287/moor.1040.0129. URL http: //pubsonline.informs.org/doi/abs/10.1287/moor.1040.0129.
- T. Jaksch, R. Ortner, and P. Auer. Near-optimal Regret Bounds for Reinforcement Learning. *Journal of Machine Learning Research*, 11(1): 1563–1600, 2010. URL http://eprints.pascal-network.org/archive/00007081/.
- N. Kallus and A. Zhou. Confounding-Robust Policy Improvement. In Neural Information Processing Systems (NIPS), 2018. URL http://arxiv.org/abs/1805.08593.

Bibliography V

- D. L. Kaufman and A. J. Schaefer. Robust modified policy iteration. INFORMS Journal on Computing, 25(3):396-410, 2013. URL http://joc.journal.informs.org/content/early/2012/06/06/ ijoc.1120.0509.abstract.
- M. Kery and M. Schaub. Bayesian Population Analysis Using WinBUGS. 2012. ISBN 9780123870209. doi: 10.1016/B978-0-12-387020-9.00024-9.
- R. Laroche, P. Trichelair, and R. T. des Combes. Safe Policy Improvement with Baseline Bootstrapping. In International Conference of Machine Learning (ICML), 2019. URL http://arxiv.org/abs/1712.06924.
- Y. Le Tallec. Robust, Risk-Sensitive, and Data-driven Control of Markov Decision Processes. PhD thesis, MIT, 2007.
- S. H. Lim and A. Autef. Kernel-Based Reinforcement Learning in Robust Markov Decision Processes. In *International Conference of Machine Learning (ICML)*, 2019.

Bibliography VI

- S. Mannor, O. Mebel, and H. Xu. Lightning does not strike twice: Robust MDPs with coupled uncertainty. In International Conference on Machine Learning (ICML), 2012. URL http://arxiv.org/abs/1206.4643.
- K. Murphy. Machine Learning: A Probabilistic Perspective. 2012. ISBN 9780262018029. doi: 10.1007/SpringerReference_35834. URL http://link.springer.com/chapter/10.1007/978-94-011-3532-0{_}2.
- A. Nilim and L. El Ghaoui. Robust control of Markov decision processes with uncertain transition matrices. *Operations Research*, 53(5): 780-798, sep 2005. ISSN 0030-364X. doi: 10.1287/opre.1050.0216. URL http: //or.journal.informs.org/cgi/doi/10.1287/opre.1050.0216.
- A. Pattanaik, Z. Tang, S. Liu, G. Bommannan, and G. Chowdhary. Robust Deep Reinforcement Learning with Adversarial Attacks. In International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), 2018. URL http://arxiv.org/abs/1712.03632.

Bibliography VII

- M. Petrik. Approximate dynamic programming by minimizing distributionally robust bounds. In *International Conference of Machine Learning (ICML)*, 2012. URL http://arxiv.org/abs/1205.1782.
- M. Petrik and R. H. Russell. Beyond Confidence Regions: Tight Bayesian Ambiguity Sets for Robust MDPs. Technical report, 2019. URL https://arxiv.org/pdf/1902.07605.pdf{%}0Ahttp: //arxiv.org/abs/1902.07605.
- M. Petrik and D. Subramanian. RAAM : The benefits of robustness in approximating aggregated MDPs in reinforcement learning. In *Neural Information Processing Systems (NIPS)*, 2014.
- M. Petrik, Mohammad Ghavamzadeh, and Y. Chow. Safe Policy Improvement by Minimizing Robust Baseline Regret. In Advances in Neural Information Processing Systems (NIPS), 2016.
- L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta. Robust Adversarial Reinforcement Learning. Technical report, 2017. URL http://arxiv.org/abs/1703.02702.

Bibliography VIII

- M. L. Puterman. *Markov decision processes: Discrete stochastic dynamic programming.* 2005.
- K. Regan and C. Boutilier. Regret-based reward elicitation for Markov decision processes. In *Conference on Uncertainty in Artificial Intelligence (UAI)*, pages 444–451, 2009. ISBN 978-0-9749039-5-8.
- J. Satia and R. Lave. Markovian decision processes with uncertain transition probabilities. *Operations Research*, 21:728–740, 1973. URL http://www.jstor.org/stable/10.2307/169381.
- H. E. Scarf. A min-max solution of an inventory problem. In *Studies in the Mathematical Theory of Inventory and Production*, chapter Chapter 12. 1958.
- A. Shapiro, D. Dentcheva, and A. Ruszczynski. Lectures on stochastic programming: Modeling and theory. 2014. ISBN 089871687X. doi: http://dx.doi.org/10.1137/1.9780898718751.
- A. Tamar, S. Mannor, and H. Xu. Scaling up Robust MDPs Using Function Approximation. In *International Conference of Machine Learning (ICML)*, 2014.

Bibliography IX

- P. S. Thomas, G. Teocharous, and M. Ghavamzadeh. High Confidence Off-Policy Evaluation. In *Annual Conference of the AAAI*, 2015.
- A. Tirinzoni, X. Chen, M. Petrik, and B. D. Ziebart. Policy-Conditioned Uncertainty Sets for Robust Markov Decision Processes. In *Neural Information Processing Systems (NIPS)*, 2018.
- J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approximation. *IEEE Transactions on Automatic Control*, 42(5):674–690, 1997. URL citeseer.ist.psu.edu/article/tsitsiklis96analysis.html.
- T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M. J. Weinberger. Inequalities for the L1 deviation of the empirical distribution. jun 2003.
- C. White and H. Eldeib. Markov decision processes with imprecise transition probabilities. *Operations Research*, 42(4):739–749, 1994. URL

http://or.journal.informs.org/content/42/4/739.short.

Bibliography X

- W. Wiesemann, D. Kuhn, and B. Rustem. Robust Markov decision processes. *Mathematics of Operations Research*, 38(1):153-183, 2013.
 ISSN 0364-765X. doi: 10.1287/moor.1120.0540. URL http://mor. journal.informs.org/cgi/doi/10.1287/moor.1120.0540.
- H. Xu, C. Caramanis, S. Mannor, and S. Member. Robust regression and Lasso. *IEEE Transactions on Information Theory*, 56(7):3561–3574, 2010.
- Y. Zhang, L. N. Steimle, and B. T. Denton. Robust Markov Decision Processes for Medical Treatment Decisions. Technical report, 2017.