Tight Bayesian Ambiguity Sets for Robust MDPs

Reazul H. Russel and Marek Petrik

Why Robustness in Reinforcement Learning

- Batch RL: Learn from logged data
- Limited data leads to uncertain transition probabilities
- Brittle policies fail when deployed
- Unacceptable **risk** in high-stakes domains: medicine, industry,

. . .

Why Robustness in Reinforcement Learning

- Batch RL: Learn from logged data
- Limited data leads to uncertain transition probabilities
- Brittle policies fail when deployed
- Unacceptable risk in high-stakes domains: medicine, industry,
 ...

- Compute robust policies without being too conservative?
 - Optimize size and location of ambiguity sets in robust MDPs using (hierarchical) Bayesian models

Robust Reinforcement Learning

- Batch of domain samples (log data, no simulator): $s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_n, a_n, r_n$
- Robust policy π : Guarantee lower bound on true return $\rho_{\text{true}}(\pi)$ when deployed

Robust Reinforcement Learning

• Batch of domain samples (log data, no simulator): $s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_n, a_n, r_n$

- Robust policy π : Guarantee lower bound on true return $\rho_{\text{true}}(\pi)$ when deployed
- **Approach**: Estimate return $\rho_{\mathsf{estim}}(\pi)$ of π such that:
 - 1. Lower bound: $\rho_{\text{estim}}(\pi) \leq \rho_{\text{true}}(\pi)$
 - 2. Tractable: $\max_{\pi} \rho_{\text{estim}}(\pi)$
- Solve $\max_{\pi} \rho_{\mathsf{estim}}(\pi)$

Robust Estimate of Policy Return

• Use rectangular robust MDPs $(\rho_{\text{estim}}(\pi) = \rho_0^T v_{\pi}^R)$:

$$v^{R}(s) = \max_{a} \min_{\substack{\boldsymbol{p}_{s,a} \in \mathcal{P}_{s,a}}} \left(r_{s,a} + \gamma \cdot \boldsymbol{p}_{s,a}^{T} v^{R} \right)$$

- Ambiguity set: $\mathcal{P}_{s,a} = \{ p \in \Delta^s : \|p \bar{p}_{s,a}\|_1 \leq \psi_{s,a} \}$
- $\bullet \approx$ principled regularization

MDP

$$p_{s,a} = [0.4, 0.2, 0.2]$$
0.75
0.50
0.25
0.00 0.25 0.50 0.75 1.00

Robust MDP

$$\bar{p}_{s,a} = [0.4, 0.2, 0.2], \psi_{s,a} = 0.4$$

Research Challenge: Data-driven Ambiguity Sets

- Too small: not robust, too large: very conservative
- Standard approach: Concentration inequality around the max likelihood estimate (UCRL, ...)

Guarantee
$$\rho_{\text{estim}}(\pi) \leq \rho_{\text{true}}(\pi)$$
 with

Research Challenge: Data-driven Ambiguity Sets

- Too small: not robust, too large: very conservative
- Standard approach: Concentration inequality around the max likelihood estimate (UCRL, ...)

Guarantee
$$\rho_{\text{estim}}(\pi) \leq \rho_{\text{true}}(\pi)$$
 with

Robust but too conservative to be practical!

Getting Robustness Right: Main Insights

- 1. Capture prior knowledge using (hierarchical) Bayesian models
- 2. Optimize size and **location** of ambiguity sets
- Ambiguity set need **not** be a **confidence interval** (similar to Gupta [2018])

Getting Robustness Right: Main Insights

- 1. Capture prior knowledge using (hierarchical) Bayesian models
- 2. Optimize size and location of ambiguity sets
- 3. Ambiguity set need **not** be a **confidence interval** (similar to Gupta [2018])

Guarantee $\rho_{\text{estim}}(\pi) \leq \rho_{\text{true}}(\pi)$ with 90% confidence

Bayesian optimized

RSVF: Optimizing Bayesian Ambiguity Sets

- Fixed value function v^R : Guarantee $\rho_{\text{estim}}(\pi) \leq \rho_{\text{true}}(\pi)$ if ambiguity sets **intersects a hyperplane**
- RSVF: Incrementally grow a set of plausible v^R values

 $v^R=[0,0,1]$

 $v^R = [0, 0, 1] \text{ or } [2, 1, 0]$

0.50

n+1: Stop when robust

$$v^R = [0, 0, 1]$$
 or $[2, 1, 0]$ or $[3, 1, 0]$

Uninformative Dirichlet Prior (95% confidence)

Smaller error means less conservative solution

Informative Hierarchical Prior (95% confidence)

Smaller error means less conservative solution

Conclusion

- Data-driven construction of robust ambiguity sets
 - 1. Capture prior knowledge using (hierarchical) Bayesian models
 - 2. Optimize size and location of ambiguity sets
 - 3. Ambiguity set need **not** be a **confidence interval**
- Pros:
 - 1. Robust but not too much
 - 2. Finite-sample guarantees
 - 3. Easy to define prior knowledge (e.g. Stan, PyMC)
- Cons:
 - 1. Increased computational complexity

Conclusion

- Data-driven construction of robust ambiguity sets
 - 1. Capture prior knowledge using (hierarchical) Bayesian models
 - 2. Optimize size and location of ambiguity sets
 - 3. Ambiguity set need **not** be a **confidence interval**
- Pros:
 - 1. Robust but not too much
 - 2. Finite-sample guarantees
 - 3. Easy to define prior knowledge (e.g. Stan, PyMC)
- Cons:
 - 1. Increased computational complexity

Thank you