Tight Bayesian Ambiguity Sets for Robust MDPs

Reazul H. Russel and Marek Petrik
Why Robustness in Reinforcement Learning

- **Batch RL**: Learn from logged data
- Limited data leads to uncertain transition probabilities
- Brittle policies fail when deployed
- Unacceptable **risk** in high-stakes domains: medicine, industry, ...

Why Robustness in Reinforcement Learning

- **Batch RL**: Learn from logged data
- Limited data leads to uncertain transition probabilities
- Brittle policies fail when deployed
- Unacceptable **risk** in high-stakes domains: medicine, industry, ...

- Compute **robust** policies without being too **conservative**?
 - Optimize **size** and **location** of ambiguity sets in robust MDPs using (hierarchical) Bayesian models
Robust Reinforcement Learning

- Batch of domain samples (log data, no simulator): $s_1, a_1, r_1, s_2, a_2, r_2, \ldots, s_n, a_n, r_n$

- **Robust policy** π: Guarantee lower bound on true return $\rho_{\text{true}}(\pi)$ when deployed
• Batch of domain samples (log data, no simulator):
 \[s_1, a_1, r_1, s_2, a_2, r_2, \ldots, s_n, a_n, r_n \]

• **Robust policy** \(\pi \): Guarantee lower bound on **true** return \(\rho_{\text{true}}(\pi) \) when deployed

• **Approach**: Estimate return \(\rho_{\text{estim}}(\pi) \) of \(\pi \) such that:
 1. Lower bound: \(\rho_{\text{estim}}(\pi) \leq \rho_{\text{true}}(\pi) \)
 2. Tractable: \(\max_{\pi} \rho_{\text{estim}}(\pi) \)

• Solve \(\max_{\pi} \rho_{\text{estim}}(\pi) \)
Robust Estimate of Policy Return

- Use rectangular robust MDPs \(\rho_{\text{estim}}(\pi) = p_0^T v^R(\pi) \):
 \[
v^R(s) = \max_a \min_{p_{s,a} \in \mathcal{P}_{s,a}} \left(r_{s,a} + \gamma \cdot p_{s,a}^T v^R \right)
 \]
- Ambiguity set: \(\mathcal{P}_{s,a} = \{ p \in \Delta^s : \| p - \bar{p}_{s,a} \|_1 \leq \psi_{s,a} \} \)
- \(\approx \) principled regularization

MDP

\[
p_{s,a} = [0.4, 0.2, 0.2]
\]

Robust MDP

\[
\bar{p}_{s,a} = [0.4, 0.2, 0.2], \psi_{s,a} = 0.4
\]
Research Challenge: Data-driven Ambiguity Sets

- Too small: not robust, too large: very conservative
- **Standard approach**: Concentration inequality around the max likelihood estimate (UCRL, ...)

Guarantee $\rho_{\text{estim}}(\pi) \leq \rho_{\text{true}}(\pi)$ with

30% confidence

90% confidence
Research Challenge: Data-driven Ambiguity Sets

- Too small: not robust, too large: very conservative
- **Standard approach**: Concentration inequality around the max likelihood estimate (UCRL, ...)

Guarantee $\rho_{\text{estim}}(\pi) \leq \rho_{\text{true}}(\pi)$ with

30% confidence

90% confidence

Robust but too conservative to be practical!
Getting Robustness Right: Main Insights

1. Capture prior knowledge using (hierarchical) Bayesian models
2. Optimize size and location of ambiguity sets
3. Ambiguity set need not be a confidence interval (similar to Gupta [2018])
Getting Robustness Right: Main Insights

1. Capture prior knowledge using (hierarchical) Bayesian models
2. Optimize size and location of ambiguity sets
3. Ambiguity set need not be a confidence interval (similar to Gupta [2018])

Guarantee $\rho_{\text{estim}}(\pi) \leq \rho_{\text{true}}(\pi)$ with 90% confidence

Concentration inequality set

Bayesian credible (confidence) set

Bayesian optimized ambiguity set
RSVF: Optimizing Bayesian Ambiguity Sets

- Fixed value function v^R: Guarantee $\rho_{\text{estim}}(\pi) \leq \rho_{\text{true}}(\pi)$ if ambiguity sets intersects a hyperplane
- RSVF: Incrementally grow a set of plausible v^R values

1. Guess v^R

$$v^R = [0, 0, 1]$$

2...n: Recompute v^R

$$v^R = [0, 0, 1] \text{ or } [2, 1, 0]$$

n+1: Stop when robust

$$v^R = [0, 0, 1] \text{ or } [2, 1, 0] \text{ or } [3, 1, 0]$$
Uninformative Dirichlet Prior (95% confidence)

Smaller error means less conservative solution
Smaller error means less conservative solution
Conclusion

• Data-driven construction of robust ambiguity sets
 1. Capture prior knowledge using (hierarchical) Bayesian models
 2. Optimize size and **location** of ambiguity sets
 3. Ambiguity set need **not** be a **confidence interval**

• Pros:
 1. Robust but not too much
 2. Finite-sample guarantees
 3. Easy to define prior knowledge (e.g., Stan, PyMC)

• Cons:
 1. Increased computational complexity
Conclusion

- Data-driven construction of robust ambiguity sets
 1. Capture prior knowledge using (hierarchical) Bayesian models
 2. Optimize size and location of ambiguity sets
 3. Ambiguity set need not be a confidence interval

- Pros:
 1. Robust but not too much
 2. Finite-sample guarantees
 3. Easy to define prior knowledge (e.g. Stan, PyMC)

- Cons:
 1. Increased computational complexity

Thank you