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Why Robustness in Reinforcement Learning

Batch RL: Learn from logged data

Limited data leads to uncertain transition probabilities

Brittle policies fail when deployed

Unacceptable risk in high-stakes domains: medicine, industry,
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Compute robust policies without being too conservative?

e Optimize size and location of ambiguity sets in robust MDPs
using (hierarchical) Bayesian models



Robust Reinforcement Learning

e Batch of domain samples (log data, no simulator):

S1,41,r,5,a82,M,...,51,dn,'n

e Robust policy m: Guarantee lower bound on true return

ptrue(T) when deployed



Robust Reinforcement Learning

Batch of domain samples (log data, no simulator):

S1,41,r,5,a82,M,...,51,dn,'n

Robust policy 7: Guarantee lower bound on true return

ptrue(T) when deployed

Approach: Estimate return pestim(7) of 7 such that:

1. Lower bound: pestim(7m) < prrue()
2. Tractable: max; Pestim(7)

Solve max; Pestim ()



Robust Estimate of Policy Return

e Use rectangular robust MDPs (pesiim(7) = pJ vF):

R : T R
vi(s) = max psyTelygS‘) (r57a +7-plv )
o Ambiguity set: P, ={p € A®: ||p— Ps.all1 < ¥s,a}

e ~ principled regularization

MDP Robust MDP
ps.a = [0.4,0.2,0.2] Ps.a =[0.4,0.2,0.2],%s , = 0.4



Research Challenge: Data-driven Ambiguity Sets

e Too small: not robust, too large: very conservative
e Standard approach: Concentration inequality around the
max likelihood estimate (UCRL, ...)

Guarantee pestim(7m) < prrue(m) with

30% confidence 90% confidence
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Guarantee pestim(7m) < prrue(m) with

30% confidence 90% confidence

0.00 0.25 0.50 0.75 1.00

Robust but too conservative to be practical!



Getting Robustness Right: Main Insights

1. Capture prior knowledge using (hierarchical) Bayesian models

2. Optimize size and location of ambiguity sets

3. Ambiguity set need not be a confidence interval (similar to
Gupta [2018])



Getting Robustness Right: Main Insights

1. Capture prior knowledge using (hierarchical) Bayesian models

2. Optimize size and location of ambiguity sets

3. Ambiguity set need not be a confidence interval (similar to
Gupta [2018])

Guarantee pestim(7) < prrue(7) with 90% confidence

Concentration Bayesian credible Bayesian optimized

inequality set (confidence) set ambiguity set
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RSVF: Optimizing Bayesian Ambiguity Sets

e Fixed value function vR: Guarantee pestim(7) < prrue(7) if
ambiguity sets intersects a hyperplane

e RSVF: Incrementally grow a set of plausible v values

1. Guess vR 2...n: Recompute vF n+1: Stop when robust
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Uninformative Dirichlet Prior (95% confidence)
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Smaller error means less conservative solution



Informative Hierarchical Prior (95% confidence)
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Conclusion

e Data-driven construction of robust ambiguity sets
1. Capture prior knowledge using (hierarchical) Bayesian models
2. Optimize size and location of ambiguity sets
3. Ambiguity set need not be a confidence interval

e Pros:

1. Robust but not too much
2. Finite-sample guarantees
3. Easy to define prior knowledge (e.g. Stan, PyMC)

e Cons:

1. Increased computational complexity
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Thank you



