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Abstract

An important problem in sequential decision-making under uncertainty is to use
limited data to compute a safe policy, which is guaranteed to outperform a given
baseline strategy. In this paper, we develop and analyze a new model-based
approach that computes a safe policy, given an inaccurate model of the system’s
dynamics and guarantees on the accuracy of this model. The new robust method
uses this model to directly minimize the (negative) regret w.r.t. the baseline policy.
Contrary to existing approaches, minimizing the regret allows one to improve
the baseline policy in states with accurate dynamics and to seamlessly fall back
to the baseline policy, otherwise. We show that our formulation is NP-hard and
propose a simple approximate algorithm. Our empirical results on several domains
further show that even the simple approximate algorithm can outperform standard
approaches.

1 Introduction

Many problems in science and engineering can be formulated as a sequential decision-making
problem under uncertainty. A common scenario in such problems that occurs in many different fields,
such as online marketing, inventory control, health informatics, and computational finance, is to find
a good or an optimal strategy/policy, given a batch of data generated by the current strategy of the
company (hospital, investor). Although there are many techniques to find a good policy given a batch
of data, only a few of them guarantee that the obtained policy will perform well, when it is deployed.
Since deploying an untested policy can be risky for the business, the product (hospital, investment)
manager does not usually allow it to happen, unless we provide her/him with some performance
guarantees of the obtained strategy, in comparison to the baseline policy (for example the policy that
is currently in use).

In this paper, we focus on the model-based approach to this fundamental problem in the context
of infinite-horizon discounted Markov decision processes (MDPs). In this approach, we use the
batch of data and build a model or a simulator that approximates the true behavior of the dynamical
system, together with an error function that captures the accuracy of the model at each state of the
system. Our goal is to compute a safe policy, i.e., a policy that is guaranteed to perform at least
as well as the baseline strategy, using the simulator and error function. Most of the work on this
topic has been in the model-free setting, where safe policies are computed directly from the batch of
data, without building an explicit model of the system [Thomas et al., 2015b,a]. Another class of
model-free algorithms are those that use a batch of data generated by the current policy and return a
policy that is guaranteed to perform better. They optimize for the policy by repeating this process
until convergence [Kakade and Langford, 2002; Pirotta et al., 2013].

A major limitation of the existing methods for computing safe policies is that they either adopt a
newly learned policy with provable improvements or do not make any improvement at all by returning
the baseline policy. These approaches may be quite limiting when model uncertainties are not uniform
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across the state space. In such cases, it is desirable to guarantee an improvement over the baseline
policy by combining it with a learned policy on a state-by-state basis. In other words, we want to use
the learned policy at the states in which either the improvement is significant or the model uncertainty
(error function) is small, and to use the baseline policy everywhere else. However, computing a
learned policy that can be effectively combined with a baseline policy is non-trivial due to the complex
effects of policy changes in an MDP. Our key insight is that this goal can be achieved by minimizing
the (negative) robust regret w.r.t. the baseline policy. This unifies the sources of uncertainties in the
learned and baseline policies and allows a more systematic performance comparison. Note that our
approach differs significantly from the standard one, which compares a pessimistic performance
estimate of the learned policy with an optimistic estimate of the baseline strategy. That may result in
rejecting a learned policy with a performance (slightly) better than the baseline, simply due to the
discrepancy between the pessimistic and optimistic evaluations.

The model-based approach of this paper builds on robust Markov decision processes [Iyengar, 2005;
Wiesemann et al., 2013; Ahmed and Varakantham, 2013]. The main difference is the availability
of the baseline policy that creates unique challenges for sequential optimization. To the best of
our knowledge, such challenges have not yet been fully investigated in the literature. A possible
solution is to solve the robust formulation of the problem and then accept the resulted policy only
if its conservative performance estimate is better than the baseline. While a similar idea has been
investigated in the model-free setting (e.g., [Thomas et al., 2015a]), we show in this paper that it can
be overly conservative.

As the main contribution of the paper, we propose and analyze a new robust optimization formulation
that captures the above intuition of minimizing robust regret w.r.t. the baseline policy. After a
preliminary discussion in Section 2, we formally describe our model and analyze its main properties
in Section 3. We show that in solving this optimization problem, we may have to go beyond the
standard space of deterministic policies and search in the space of randomized policies; we derive a
bound on the performance loss of its solutions; and we prove that solving this problem is NP-hard.
We also propose a simple and practical approximate algorithm. Then, in Section 4, we show that
the standard model-based approach is really a tractable approximation of robust baseline regret
minimization. Finally, our experimental results in Section 5 indicate that even the simple approximate
algorithm significantly outperforms the standard model-based approach when the model is uncertain.

2 Preliminaries

We consider problems in which the agent’s interaction with the environment is modeled as an infinite-
horizon γ-discounted MDP. A γ-discounted MDP is a tupleM = 〈X ,A, r, P, p0, γ〉, where X and
A are the state and action spaces, r(x, a) ∈ [−Rmax, Rmax] is the bounded reward function, P (·|x, a)
is the transition probability function, p0(·) is the initial state distribution, and γ ∈ (0, 1] is a discount
factor. We use ΠR = {π : X → ∆A} and ΠD = {π : X → A} to denote the sets of randomized
and deterministic stationary Markovian policies, respectively, where ∆A is the set of probability
distributions over the action space A.

Throughout the paper, we assume that the true reward r of the MDP is known, but the true transition
probability is not given. The generalization to include reward estimation is straightforward and is
omitted for the sake of brevity. We use historical data to build a MDP model with the transition
probability denoted by P̂ . Due to limited number of samples and other modeling issues, it is unlikely
that P̂ matches the true transition probability of the system P ?. We also require that the estimated
model P̂ deviates from the true transition probability P ? as stated in the following assumption:

Assumption 1. For each (x, a) ∈ X ×A, the error function e(x, a) bounds the `1 difference between
the estimated transition probability and true transition probability, i.e.,

‖P ?(·|x, a)− P̂ (·|x, a)‖1 ≤ e(x, a). (1)

The error function e can be derived either directly from samples using high probability concentration
bounds, as we briefly outline in Appendix A, or based on specific domain properties.

To model the uncertainty in the transition probability, we adopt the notion of robust MDP
(RMDP) [Iyengar, 2005; Nilim and El Ghaoui, 2005; Wiesemann et al., 2013], i.e., an extension of
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MDP in which nature adversarially chooses the transitions from a given uncertainty set

Ξ(P̂ , e) =
{
ξ : X ×A → ∆X : ‖ξ(·|x, a)− P̂ (·|x, a)‖1 ≤ e(x, a), ∀x, a ∈ X ×A

}
.

From Assumption 1, we notice that the true transition probability is in the set of uncertain tran-
sition probabilities, i.e., P ? ∈ Ξ(P̂ , e). The above `1 constraint is common in the RMDP litera-
ture (e.g., [Iyengar, 2005; Wiesemann et al., 2013; Petrik and Subramanian, 2014]). The uncertainty
set Ξ in RMDP is (x, a)-rectangular and randomized [Le Tallec, 2007; Wiesemann et al., 2013].
One of the motivations for considering (x, a)-rectangular sets in RMDP is that they lead to tractable
solutions in the conventional reward maximization setting. However, in the robust regret minimization
problem that we propose in this paper, even if we assume that the uncertainty set is (x, a)-rectangular,
it does not guarantee tractability of the solution. While it is of great interest to investigate the structure
of uncertainty sets that lead to tractable algorithms in robust regret minimization, it is beyond the
main scope of this paper and we leave it as future work.

For each policy π ∈ ΠR and nature’s choice ξ ∈ Ξ, the discounted return is defined as

ρ(π, ξ) = lim
T→∞

Eξ

[
T−1∑
t=0

γtr
(
Xt, At

)
| X0 ∼ p0, At ∼ π(Xt)

]
= p>0 v

ξ
π,

where Xt and At are the state and action random variables at time t, and vξπ is the corresponding
value function. An optimal policy for a given ξ is defined as π?ξ ∈ arg maxπ∈ΠR ρ(π, ξ). Similarly,
under the true transition probability P ?, the true return of a policy π and a truly optimal policy are
defined as ρ(π, P ?) and π? ∈ arg maxπ∈ΠR ρ(π, P ?), respectively. Although we define the optimal
policy using arg maxπ∈ΠR , it is known that every reward maximization problem in MDPs has at
least one optimal policy in ΠD.

Finally, given a deterministic baseline policy πB , we call a policy π safe, if its "true" performance is
guaranteed to be no worse than that of the baseline policy, i.e., ρ(π, P ?) ≥ ρ(πB , P

?).

3 Robust Policy Improvement Model

In this section, we introduce and analyze an optimization procedure that robustly improves over a
given baseline policy πB . As described above, the main idea is to find a policy that is guaranteed to
be an improvement for any realization of the uncertain model parameters. The following definition
formalizes this intuition.
Definition 2 (The Robust Policy Improvement Problem). Given a model uncertainty set Ξ(P̂ , e)
and a baseline policy πB, find a maximal ζ ≥ 0 such that there exists a policy π ∈ ΠR for which
ρ(π, ξ) ≥ ρ(πB, ξ) + ζ, for every ξ ∈ Ξ(P̂ , e).1

The problem posed in Definition 2 readily translates to the following optimization problem:

πS ∈ arg max
π∈ΠR

min
ξ∈Ξ

(
ρ(π, ξ)− ρ(πB, ξ)

)
. (2)

Note that since the baseline policy πB achieves value 0 in (2), ζ in Definition 2 is always non-negative.
Therefore, any solution πS of (2) is safe, because under the true transition probability P ? ∈ Ξ(P̂ , e),
we have the guarantee that

ρ(π, P ?)− ρ(πB, P
?) ≥ min

ξ∈Ξ

(
ρ(π, ξ)− ρ(πB, ξ)

)
≥ 0 .

It is important to highlight how Definition 2 differs from the standard approach (e.g., [Thomas et
al., 2015a]) on determining whether a policy π is an improvement over the baseline policy πB . The
standard approach considers a statistical error bound that translates to the test: minξ∈Ξ ρ(π, ξ) ≥
maxξ∈Ξ ρ(πB, ξ). The uncertainty parameters ξ on both sides of (2) are not necessarily the same.
Therefore, any optimization procedure derived based on this test is more conservative than the
problem in (2). Indeed when the error function in Ξ is large, even the baseline policy (π = πB)

1From now on, for brevity, we omit the parameters P̂ and e, and use Ξ to denote the model uncertainty set.
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Figure 1: (left) A robust/uncertain MDP used in Example 4 that illustrates the sub-optimality of
deterministic policies in solving the optimization problem (2). (right) A Markov decision process
with significant uncertainty in the baseline policy.

may not pass this test. In Section 5.1, we show the conditions under which this approach fails. Our
approach also differs from other related work in that we consider regret with respect to the baseline
policy, and not the optimal policy, as considered in [Xu and Mannor, 2009].

In the remainder of this section, we highlight some major properties of the optimization problem (2).
Specifically, we show that its solution policy may be purely randomized, we compute a bound on the
performance loss of its solution policy w.r.t. π?, and we finally prove that it is a NP-hard problem.

3.1 Policy Class

The following theorem shows that we should search for the solutions of the optimization problem (2)
in the space of randomized policies ΠR.
Theorem 3. The optimal solution to the optimization problem (2) may not be attained by a determin-
istic policy. Moreover, the loss due to considering deterministic policies cannot be bounded, i.e., there
exists no constant c ∈ R such that

max
π∈ΠR

min
ξ∈Ξ

(
ρ(π, ξ)− ρ(πB, ξ)

)
≤ c · max

π∈ΠD
min
ξ∈Ξ

(
ρ(π, ξ)− ρ(πB, ξ)

)
.

Proof. The proof follows directly from Example 4. The optimal policy in this example is randomized
and achieves a guaranteed improvement ζ = 1/2. There is no deterministic policy that guarantees a
positive improvement over the baseline policy, which proves the second part of the theorem.

Example 4. Consider the robust/uncertain MDP on the left panel of Figure 1 with states {x1, x11} ⊂
X , actions A = {a1, a2, a11, a12}, and discount factor γ = 1. Actions a1 and a2 are shown as solid
black nodes. A number with no state represents a terminal state with the corresponding reward.
The robust outcomes {ξ1, ξ2} correspond to the uncertainty set of transition probabilities Ξ. The
baseline policy πB is deterministic and is denoted by double edges. It can be readily seen from
the monotonicity of the Bellman operator that any improved policy π will satisfy π(a12|x11) = 1.
Therefore, we will only focus on the policy at state x1. The robust improvement as a function of
π(·|x1) and the uncertainties {ξ1, ξ2} is given as follows:

min
ξ∈Ξ

(
ρ(π, ξ)− ρ(πB, ξ)

)
= min

ξ∈Ξ

([
π \ ξ ξ1 ξ2
a1 3 1
a2 2 2

]
−
[
π \ ξ ξ1 ξ2
a1 2 1

])
= 0.

This shows that no deterministic policy can achieve a positive improvement in this problem. However,
a randomized policy π(a1|x1) = π(a2|x1) = 1/2 returns the maximum improvement ζ = 1/2.

Randomized policies can do better than their deterministic counterparts, because they allow for
hedging among various realizations of the MDP parameters. Example 4 shows a problem such that
there exists a realization of the parameters with improvement over the baseline when any deterministic
policy is executed. However in this example, there is no single realization of parameters that provides
an improvement for all the deterministic policies simultaneously. Therefore, randomizing the policy
guarantees an improvement independent of the parameters’ choice.
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3.2 Performance Bound

Generally, one cannot compute the truly optimal policy π? using an imprecise model. Nevertheless, it
is still crucial to understand how errors in the model translates to a performance loss w.r.t. an optimal
policy. The following theorem (proved in Appendix C) provides a bound on the performance loss of
any solution πS to the optimization problem (2).
Theorem 5. A solution πS to the optimization problem (2) is safe and its performance loss is bounded
by the following inequality:

Φ(πS)
∆
= ρ(π?, P ?)− ρ(πS, P

?) ≤ min

{
2γRmax

(1− γ)2

(
‖eπ?‖1,u?

π?
+‖eπB

‖1,u?πB
)
,Φ(πB)

}
,

where u?π? and u?πB are the state occupancy distributions of the optimal and baseline policies in the
true MDP P ?. Furthermore, the above bound is tight.

3.3 Computational Complexity

In this section, we analyze the computational complexity of solving the optimization problem (2)
and prove that the problem is NP-hard. In particular, we proceed by showing that the following
sub-problem of (2):

arg min
ξ∈Ξ

(
ρ(π, ξ)− ρ(πB, ξ)

)
, (3)

for a fixed π ∈ ΠR, is NP-hard. The optimization problem (3) can be interpreted as computing a
policy that simultaneously minimizes the returns of two MDPs, whose transitions induced by policies
π and πB. The proof of Theorem 6 is given in Appendix D.
Theorem 6. Both optimization problems (2) and (3) are NP-hard.

Although the optimization problem (2) is NP-hard in general, but it can be tractable in certain settings.
One such setting is when the Markov chain induced by the baseline policy is known precisely, as the
following proposition states. See Appendix E for the proof.
Proposition 7. Assume that for each x ∈ X , the error function induced by the baseline policy is
zero, i.e., e

(
x, πB(x)

)
= 0.2 Then, the optimization problem (2) is equivalent to the following robust

MDP (RMDP) problem and can be solved in polynomial time:

arg max
π∈ΠR

min
ξ∈Ξ

ρ(π, ξ). (4)

3.4 Approximate Algorithm

Solving for the optimal solution of (2) may not be possible in practice, since the problem is NP hard.
In this section, we propose a simple and practical approximate algorithm. The empirical results
of Section 5 indicate that this algorithm holds promise and also suggest that the approach may be a
good starting point for building better approximate algorithms in the future.

Algorithm 1: Approximate Robust Baseline Regret Minimization Algorithm

input :Empirical transition probabilities: P̂ , baseline policy πB , and the error function e
output :Policy π̃S

1 foreach x ∈ X , a ∈ A do

2 ẽ(x, a)←
{
e(x, a) when πB(x) 6= a

0 otherwise
;

3 end
4 π̃S ← arg maxπ∈ΠR minξ∈Ξ(P̂ ,ẽ)

(
ρ
(
π, ξ
)
− ρ
(
πB, ξ

))
;

5 return π̃S

Algorithm 1 contains the pseudocode of the proposed approximate method. The main idea is to
use a modified uncertainty model by assuming no error in transition probabilities of the baseline

2Note that this is equivalent to precisely knowing the Markov chain induced by the baseline policy P ?πB .
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policy. Then it is possible to minimize the robust baseline regret in polynomial time as suggested
by Theorem 7. Assuming no error in baseline transition probabilities is reasonable because of
two main reasons. First, in practice, data is often generated by executing the baseline policy, and
thus, we may have enough data for a good approximation of the baseline’s transition probabilities:
∀x ∈ X , P̂

(
· |x, πB(x)

)
≈ P ?

(
· |x, πB(x)

)
. Second, transition probabilities often affect baseline

and improved policies similarly, and as a result, have little effect on the difference between their
returns (i.e., the regret). See Section 5.1 for an example of such behavior.

4 Standard Policy Improvement Methods

In Section 3, we showed that finding an exact solution to the optimization problem (2) is computa-
tionally expensive and proposed an approximate algorithm. In this section, we describe and analyze
two standard methods for computing safe policies and show how they can be interpreted as an
approximation of our proposed baseline regret minimization. Due to space limitations, we describe
another method, called reward-adjusted MDP, in Appendix H, but report its performance in Section 5.

4.1 Solving the Simulator

The simplest solution to (2) is to assume that our simulator is accurate and to solve the reward maxi-
mization problem of an MDP with the transition probability P̂ , i.e., πsim ∈ arg maxπ∈ΠR ρ(π, P̂ ).
Theorem 8 quantifies the performance loss of the resulted policy πsim.

Theorem 8. Let πsim be an optimal policy of the reward maximization problem of an MDP with
transition probability P̂ . Then under Assumption 1, the performance loss of πsim is bounded by

Φ(πsim)
∆
= ρ(π?, P ?)− ρ(πsim, P

?) ≤ 2γRmax

(1− γ)2
‖e‖∞.

The proof is available in Appendix F. Note that there is no guarantee that πsim is safe, and thus,
deploying it may lead to undesirable outcomes due to model uncertainties. Moreover, the performance
guarantee of πsim, reported in Theorem 8, is weaker than that in Theorem 5 due to the L∞ norm.

4.2 Solving Robust MDP

Another standard solution to the problem in (2) is based on solving the RMDP problem (4). We
prove that the policy returned by this algorithm is safe and has better (sharper) worst-case guarantees
than the simulator-based policy πsim. Details of this algorithm are summarized in Algorithm 2. The
algorithm first constructs and solves an RMDP. It then returns the solution policy if its worst-case
performance over the uncertainty set is better than the robust performance maxξ∈Ξ ρ(πB , ξ), and it
returns the baseline policy πB , otherwise.

Algorithm 2: RMDP-based Algorithm

input :Simulated MDP P̂ , baseline policy πB , and the error function e
output :Policy πR

1 π0 ← arg maxπ∈ΠR minξ∈Ξ(P̂ ,e) ρ
(
π, ξ
)

;
2 if minξ∈Ξ(P̂ ,e) ρ

(
π0, ξ

)
> maxξ∈Ξ ρ(πB , ξ) then return π0 else return πB ;

Algorithm 2 makes use of the following approximation to the solution of (2):

max
π∈ΠR

min
ξ∈Ξ

(
ρ(π, ξ)− ρ(πB , ξ)

)
≥ max
π∈ΠR

min
ξ∈Ξ

ρ(π, ξ)−max
ξ∈Ξ

ρ(πB , ξ),

and guarantees safety by designing π such that the RHS of this inequality is always non-negative.

The performance bound of πR is identical to that in Theorem 5 and is stated and proved in Theorem 12
in Appendix G. Although the worst-case bounds are the same, we show in Section 5.1 that the
performance loss of πR may be worse than that of πS by an arbitrarily large margin.
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It is important to discuss the difference between Algorithms 1 and 2. Although both solve an RMDP,
they use different uncertainty sets Ξ. The uncertainty set used in Algorithm 2 is the true error function
in building the simulator, while the uncertainty set used in Algorithm 1 assumes that the error function
is zero for all the actions suggested by the baseline policy. As a result, both algorithms approximately
solve (2) but approximate the problem in different ways.

5 Experimental Evaluation

In this section, we experimentally evaluate the benefits of minimizing the robust baseline regret. First,
we demonstrate that solving the problem in (2) may outperform the regular robust formulation by an
arbitrarily large margin. Then, in the remainder of the section, we compare the solution quality of
Algorithm 1 with simpler methods in more complex and realistic experimental domains. The purpose
of our experiments is to show how solution quality depends on the degree of model uncertainties.

5.1 An Illustrative Example

Consider the example depicted on the right panel of Figure 1. White nodes represent states and black
nodes represent state-action pairs. Labels on the edges originated from states indicate the policy
according to which the action is taken; labels on the edges originated from actions denote the rewards
and, if necessary, the name of the uncertainty realization. The baseline policy is πB, the optimal
policy is π?, and the discount factor is γ ∈ (0, 1).

This example represents a setting in which the level of uncertainty varies significantly across the
individual states: the transition model is precise in state x0 and uncertain in state x1. The baseline
policy πB takes a suboptimal action in state x0 and the optimal action in the uncertain state x1. To
prevent being overly conservative in computing a safe policy, one needs to consider that the realization
of uncertainty in x1 influences both the baseline and improved policies.

Using the plain robust optimization formulation in Algorithm 2, even the optimal policy π? is not
considered safe in this example. In particular, the robust return of π? is minξ ρ(π?, ξ) = −9, while
the optimistic return of πB is maxξ ρ(πB, ξ) = +10. On the other hand, solving (2) will return the
optimal policy since: minξ ρ(π?, ξ)− ρ(πB, ξ) = 11− 10 = −9− (−10) = 1. Even the heuristic
method of Section 3.4 will return the optimal policy. Note that since the reward-adjusted formulation
(see its description in Appendix H) is even more conservative than the robust formulation, it will also
fail to improve on the baseline policy.

5.2 Grid Problem

In this section, we use a simple grid problem to compare the solution quality of Algorithm 1 with
simpler methods. The grid problem is motivated by modeling customer interactions with an online
system. States in the problem represent a two dimensional grid. Columns capture states of interaction
with the website and rows capture customer states such as overall satisfaction. Actions can move
customers along either dimension with some probability of failure. A more detailed description of
this domain is provided in Section I.1.

Our goal is to evaluate how the solution quality of various methods depends on the magnitude of the
model error e. The model is constructed from samples, and thus, its magnitude of error depends on
the number of samples used to build it. We use a uniform random policy to gather samples. Model
error function e is then constructed from this simulated data using bounds in Section B. The baseline
policy is constructed to be optimal when ignoring the row part of state; see Section I.1 for more
details.

All methods are compared in terms of the improvement percentage in total return over the baseline
policy. Figure 2 depicts the results as a function of the number of transition samples used in
constructing the uncertain model and represents the mean of 40 runs. Methods used in the comparison
are as follows: 1) EXP represents solving the nominal model as described in Section 4.1, 2) RWA
represent the reward-adjusted formulation in Algorithm 3 of Appendix H, 3) ROB represents the
robust method in Algorithm 2, and 4) RBC represents our approximate solution of Algorithm 1.

Figure 2 shows that Algorithm 1 not only reliably computes policies that are safe, but also significantly
improves on the quality of the baseline policy when the model error is large. When the number of
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Figure 2: Improvement in return over the baseline policy in: (left) the grid problem and (right) the
energy arbitrage problem. The dashed line shows the return of the optimal policy.

samples is small, Algorithm 1 is significantly better than other methods by relying on the baseline
policy in states with a large model error and only taking improving actions when the model error is
small. Note that EXP can be significantly worse than the baseline policy, especially when the number
of samples is small.

5.3 Energy Arbitrage

In this section, we compare model-based policy improvement methods using a more complex domain.
The problem is to determine an energy arbitrage policy in given limited energy storage (a battery)
and stochastic prices. At each time period, the decision-maker observes the available battery charge
and a Markov state of energy price, and decides on the amount of energy to purchase or to sell.

The set of states in the energy arbitrage problem consists of three components: current state of charge,
current capacity, and a Markov state representing price; the actions represent the amount of energy
purchased or sold; the rewards indicate profit/loss in the transactions. We discretize the state of
charge and action sets to 10 separate levels. The problem is based on the domain from [Petrik and
Wu, 2015], whose description is detailed in Appendix I.2.

Energy arbitrage is a good fit for model-based approaches because it combines known and unknown
dynamics. Physics of battery charging and discharging can be modeled with high confidence, while
the evolution of energy prices is uncertain. As a result, using an explicit battery model, the only
uncertainty is in transition probabilities between the 10 states of the price process instead of the entire
1000 state-action pairs. This significantly reduces the number of samples needed.

As in the previous experiments, we estimate the uncertainty model in a data-driven manner. Notice
that the inherent uncertainty is only in price transitions and is independent of the policy used (which
controls the storage dynamics). Here the uncertainty set of transition probabilities is estimated using
the method in Appendix A, but the uncertainty set is only a non-singleton w.r.t. price states. Figure 2
shows the percentage improvement on the baseline policy averaged over 5 runs. We clearly observe
that the heuristic RBC method, described in Section 3.4, effectively interleaves the baseline policy (in
states with high level of uncertainty) and an improved policy (in states with low level of uncertainty),
and results in the best performance in most cases. Solving a robust MDP with no baseline policy
performed similarly to directly solving the simulator.

6 Conclusion

In this paper, we study the model-based approach to the fundamental problem of learning safe
policies given a batch of data. A policy is considered safe, if it is guaranteed to have an improved
performance over a baseline policy. Solving the problem of safety in sequential decision-making can
immensely increase the applicability of the existing technology to real-world problems. We show
that the standard robust formulation may be overly conservative and formulate a better approach
that interleaves an improved policy with the baseline policy, based on the error at each state. We
propose and analyze an optimization problem based on this idea (see (2)) and prove that solving it is
NP-hard. Furthermore, we propose several approximate solutions and experimentally evaluated their
performance.
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A Error Bound

Our goal here is to construct the error function e, when P̂ is estimated from the samples drawn from
P ?, such that we can guarantee that P ? ∈ Ξ(P̂ , e), with probability at least 1− δ. Let us assume that
at each state-action pair (x, a) ∈ X ×A, we draw N(x, a) samples from P ?(·|x, a).
Proposition 9. If at each state-action pair (x, a) ∈ X × A, we define e(x, a) =√

2
N(x,a) log

( |X ||A|2|X|

δ

)
, then P ? ∈ Ξ(P̂ , e), with probability at least 1− δ.

Proof. From Theorem 2.1 in Weissman et al. [2003], for each state-action pair (x, a) ∈ X ×A, we
may write

P
(
||P ?(· | x, a)− P̂ (· | x, a)||1 ≥ ε

)
≤ (2|X | − 2) exp

(
−N(x, a)ε2

2

)
. (5)

Setting ε =
√

2
N(x,a) log

( |X ||A|2|X|

δ

)
, we may rewrite (5) as

P
(
||P ?(· | x, a)− P̂ (· | x, a)||1 ≥

√
2

N(x, a)
log
( |X ||A|2|X |

δ

))
≤ 2|X | exp

(
−N(x, a)

2
× 2

N(x, a)
log
( |X ||A|2|X |

δ

))
=

δ

|X ||A| . (6)

From the definition of the uncertainty set Ξ(P̂ , e) and by summing the error probability in (6), we
obtain that P

(
P ? /∈ Ξ(P̂ , e)

)
≤ δ.
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B Proof of Lemma 11

for which the following technical lemma (whose proof can be found in Appendix B) is used in the
analysis.

Before proving Lemma 11, we first prove the following lemma.
Lemma 10. For any policy π ∈ ΠR, consider two transition probability matrices P1 and P2

and two reward functions r1 and r2 corresponding to π. Let v1 and v2 be the value functions of
the policy π given (P1, r1) and (P2, r2), respectively. Under the assumption that for any state
x ∈ X , ‖P1(·|x)− P2(·|x)‖1 ≤ e(x), we have

(I− γP1)−1
(
r1 − r2 −

γRmax

1− γ e
)
≤ v1 − v2 ≤ (I− γP1)−1

(
r1 − r2 +

γRmax

1− γ e
)
,

where e is the vector of e(x)’s.

Proof. The difference between the two value functions can be written as

v1 − v2 = r1 + γP1v1 − r2 − γP2v2

= r1 + γP1v1 − r2 − γP2v2 + γP1v2 − γP1v2

= (r1 − r2) + γP1(v1 − v2) + γ(P1 − P2)v2

= (I− γP1)−1 [r1 − r2 + γ(P1 − P2)v2] .

Now using the Holder’s inequality, for any x ∈ X , we have∣∣∣(P1(·|x)− P2(·|x)
)T
v2

∣∣∣ ≤ ‖P1(·|x)− P2(·|x)‖1‖ v2‖∞ ≤ e(x)‖v2‖∞ ≤ e(x)
Rmax

1− γ .

The proof follows by uniformly bounding (P1 − P2)v2 from the above inequality and from the
monotonicity of (I− γP1)−1.

Lemma 11. The difference between the returns of a policy π in two MDPs parameterized by
P ?, ξ ∈ Ξ is bounded as

|ρ(π, P ?)− ρ(π, ξ)| ≤ 2γRmax

1− γ pT0 (I− γP ?π )−1eπ,

where P ?π and eπ are the transition probability matrix and error function (between P ? and ξ, see
Eq. 1) of policy π.

Proof. Lemma 11 is the direct consequence of Lemma 10 with the fact that for any (x, a) ∈ X ×A
and any ξ ∈ Ξ(P̂ , e), from Assumption 1 and the construction of Ξ(P̂ , e), we have

‖P ?(·|x, a)− ξ(·|x, a)‖1 = ‖P ?(·|x, a)− P̂ (·|x, a) + P̂ (·|x, a)− ξ(·|x, a)‖1
≤ ‖P ?(·|x, a)− P̂ (·|x, a)‖1 + ‖P̂ (·|x, a)− ξ(·|x, a)‖1
≤ 2e(x, a) .
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C Proof of Theorem 5

To prove the safety of πS, note that the objective in (2) is always non-negative, since the baseline
policy πB is a feasible solution. Thus, we obtain the safety condition by simple algebraic manipulation
as follows:

ρ(πS, P
?)−ρ(πB, P

?) ≥ min
ξ∈Ξ

(
ρ(πS, ξ)−ρ(πB, ξ)

)
= max
π∈ΠR

min
ξ∈Ξ

(
ρ(π, ξ)−ρ(πB, ξ)

)
≥ 0 . (7)

Now we prove the performance bound. From Theorem 11, for any policy π, we may write

max
ξ

∣∣∣ρ(π, ξ)− ρ(π, P ?)
∣∣∣ ≤ 2γRmax

1− γ pT0 (I− P ?π )−1 eπ =
2γRmax

(1− γ)2
‖eπ‖1,u?π , (8)

where u?π is state occupancy distribution of policy π in the true MDP P ?, defined as

u?π = (1− γ)(I− γP ?>π )−1p0.

We are now ready to show a bound on the performance loss of πS through the following set of
inequalities:

Φ(πS) = ρ(π?, P ?)− ρ(πS , P
?) = ρ(π?, P ?)− ρ(πS , P

?) + ρ(πB , P
?)− ρ(πB , P

?)

≤ ρ(π?, P ?)− ρ(πB , P
?)−min

ξ

(
ρ(πS , ξ)− ρ(πB , ξ)

)
≤ ρ(π?, P ?)− ρ(πB , P

?)−min
ξ

(
ρ(π?, ξ)− ρ(πB , ξ)

)
≤ ρ(π?, P ?)− ρ(πB , P

?)−min
ξ
ρ(π?, ξ) + max

ξ
ρ(πB , ξ)

= max
ξ

(
ρ(π?, P ?)− ρ(π?, ξ)

)
+ max

ξ

(
ρ(πB , ξ)− ρ(πB , P

?)
)

(a)
≤ 2γRmax

(1− γ)2

(
‖eπ?‖1,u?

π?
+ ‖eπB‖1,u?πB

)
, (9)

where (a) is by applying (8) to the two max terms on the RHS of the inequality.

The final bound is obtained by combining (9) and the fact that ρ(πS , P
?) ≥ ρ(πB , P

?), and as a
result, Φ(πS) ≤ Φ(πB).

To prove the tightness of the bound, we use the example depicted in Figure 3. The initial state is x0,
actions are a1, a2, the transitions are deterministic, and the leafs represent absorbing states with the
given return. We denote by P ?, the transitions of the true MDP, and by ξ1, the worst-case transitions
in the uncertainty set Ξ(P̂ , e). Finally the baseline policy πB takes action a1 in state x0 and shown
by double edges in Figure 3. It is clear that the optimal policy π? is the one that takes action a2 in
state x0. The return of this policy is ρ(π?, P ?) = 1 + 2ε. It is also straightforward to derive that the
policy πS that takes action a1 in state x0 (as shown in Figure 3) is a solution to (2). The return of this
policy is ρ(πS , P

?) = 1 and its performance loss is Φ(πS) = ρ(π?, P ?)− ρ(πS , P
?) = 2ε.

x0

a1 a2

1 1 + ε 1 + ε 1 + 2ε

πB, πS

P ? ξ1

π?

ξ1 P ?

Figure 3: Example showing the tightness of the bound in Theorem 5.

Now let us set ε in the leafs of Figure 3 to ε = 2γRmax

(1−γ)2 ‖eπ?‖1,u?π? . Note that this is the value given

by (8) for π = π?. This gives us the tightness proof assuming that P̂ is such that ‖eπ?‖1,u?
π?

and
‖eπB‖1,u?πB have similar values, and 1 + 2ε is a valid return value, i.e., 1 + 2ε ≤ Rmax

1−γ .
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Figure 4: MDPM1 in Theorem 6 that represents the optimization of ρ(π, ξ) over ξ.
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Figure 5: MDPM2 in Theorem 6 representing the optimization of ρ(πB, ξ) over ξ.

D Proof of Theorem 6

Assume a given fixed policy π. We start by showing the NP hardness of solving (3):

min
ξ∈Ξ

(
ρ(π, ξ)− ρ(πB, ξ)

)
by a reduction from the boolean satisfiability (SAT) problem. To simplify the exposition, we also
illustrate the reduction on the following simple example SAT problem in a conjunctive normal form
(CNF):

(a ∨ b ∨ ¬ c) ∧ (¬ a ∨ d ∨ b) = (l11 ∨ l12 ∨ l13) ∧ (l21 ∨ l22 ∨ l23) , (10)

where a, b, c, and d are the variables, and lij represent the j-th literal in i-th disjunction.

As noted above, ρ(π, ξ) represents the return of a robust MDP. Recall that computing minξ ρ(π, ξ)
for a fixed π is equivalent to computing a policy in a regular MDP with actions representing
realizations of the transition uncertainty. Therefore, optimizing for ξ in (3) translates to finding a
single policy ξ for two MDPs—defined by π and πB—that maximizes the difference between their
returns ρ(π, ξ)− ρ(πB, ξ).

We reduce the SAT problem to the optimization over ξ in (3). As described above, the value ρ(π, ξ)
for a fixed π can be represented as a return of some MDPM1 for a policy given by ξ. Similarly, the
value ρ(πB, ξ) for a fixed πB can be represented as a return of another MDPM2. We describe the
general reduction in detail below. Figures 4 and 5 illustrate the MDPsM1 andM2 respectively for
the example in (10).

MDPs M1,M2 share the same state and action sets. The actions represent the realization of
uncertainty ξ and are denoted by the edge labels. They are discrete and stand for the extreme points
of feasible `1 uncertainty sets. For ease of notation, we assume γ = 1 and states with double circles
are terminal with rewards inscribed therein. All non-terminal transition have zero rewards.

The identical state set of bothM1 andM2 are constructed as follows. There is one state for each
variable v ∈ {a, b, c, d}, and two states {lTij , lFij} for every literal lij . Informally, actions {T, F} for a
variable state capture the value of that variable. Actions {0, 1} for a literal state lTij or lFij represent
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the value of the variable referenced by the literal. This is regardless of whether the literal is positive
or negative. For example, when the variable in lij is true, the action in lTij is 1 and when the variable
in lij is false, the action in lFij is 1. Two states per each literal are necessary in order to model the
negation operation.

The transitions in MDPsM1 andM2 are constructed to guarantee that their returns are −1 and +1,
respectively (and as a result the objective in (3) is −2), only if the assignment to the literals satisfies
the SAT problem. Note that the transitions for the negated literals, such as l21 are different from the
positive literals, such as l11. This construction easily generalizes to any SAT problem in the CNF.
Consider the example in (10) and let b = T (other variables can take any values). It can then be seen
readily that the objective in (3) would be −2.

Let ρ? be the optimal value of (3). Then, to show the correctness of our reduction, we argue that
ρ? = −2, if and only if the SAT problem is satisfiable. To show the reverse implication, assume that
the SAT is satisfied for some assignment to variables and construct a policy ξ̄ as follows:

ξ̄(v) =

{
T if v = true

F otherwise
, ξ̄(lTij) =

{
1 if vij = true

0 otherwise
, ξ̄(lFij) =

{
0 if vij = true

1 otherwise
,

where vij represents the value of the variable referenced by the corresponding literal lij , e.g., v11 =
v21 = a in (10). It can be readily seen that ρ(π, ξ̄) = 1 and ρ(πB, ξ̄) = −1, and thus, the implication
that ρ? = −2 holds.

To show the forward implication, assume that for an optimal deterministic realization ξ̄, we have
ρ(πB, ξ

?) = 1 and ρ(πB, ξ
?) = −1, and thus, ρ? = −2. We assign values to variables v as follows:

v =

{
true if ξ̄(v) = T ,

false otherwise .

We have that ρ(πB, ξ̄) = 1 only if for every disjunction i either 1) there exists a positive literal lij
such that ξ̄(lTij) = 1 and ξ̄(lFij) = 0, or 2) there exists a negative literal lij such that ξ̄(lTij) = 0 and
ξ̄(lFij) = 1. Assume without loss of generality that this is always the first literal li1. Now, consider
any positive li1 = v and observe that ξ̄(lTi1) = 1 and ξ̄(lFi1) = 0. Because ρ(πB, ξ̄) = 1 only if
ξ̄(v) = T , the disjunction i is satisfied. The case of a negative li1 is analogous, and thus, the forward
implication also holds.

The restriction to deterministic policies ξ̄ in the forward implication argument can be lifted by
considering a discount factor; in such case the maximal return inM2 may be achieved only by a
deterministic policy. Then, appropriately increasing the return inM2 finishes the argument.

The argument above shows that the inner minimization problem in (2) is NP hard. Recall that (2) is
stated as follows:

max
π∈ΠR

min
ξ∈Ξ

(
ρ(π, ξ)− ρ(πB, ξ)

)
To prove the theorem, it simply remains to show that the outer maximization over π does not make
the problem any easier. To show this, we will construct a single robust MDP R such that a policy
with the maximal improvement inducesM1 as the robust optimization subproblem. Baseline policy
πB inR similarly inducesM2. Then, the difference between improved and baseline policies is no
greater than some threshold if and only if the SAT is satisfiable.

Construct the robust MDPR with the same state set asM1 andM2. There are two actions a1 and
a2 in each state. Upon taking action a1, the transitions are chosen according toM1 and the reward is
as inM1. Upon taking action a2, the transition and reward are given the same as inM2 minus 3.
Rewards in terminal states are not modified.

The baseline policy takes action a2, i.e. πB(x) = a2. Return of the baseline policy is in [3 k, 3 k + 1]
where k is the sum of the number of distinct variables and literals in the CNF.

Let the improvement policy π′ be π′(x) = a1. It can be readily seen that this policy achieves the
maximal improvement. This is because ρ(π′, ξ) ∈ [0,−1] while the return of any other policy will be
at most −3 (the return for a2 in any state is −3).

To finish the proof, observe that when the SAT is satisfiable then:

max
π∈ΠR

min
ξ∈Ξ

(
ρ(π, ξ)− ρ(πB, ξ)

)
= min

ξ∈Ξ

(
ρ(π′, ξ)− ρ(πB, ξ)

)
= 3 k − 2 .
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This is true using the above argument concerning the optimal value of the inner minimization problem.
On the other hand, when the SAT is unsatisfiable then by the same argument:

max
π∈ΠR

min
ξ∈Ξ

(
ρ(π, ξ)− ρ(πB, ξ)

)
= min

ξ∈Ξ

(
ρ(π′, ξ)− ρ(πB, ξ)

)
> 3 k − 2 .

This shows that deciding whether the optimal value of (2) is greater than 3 k − 2 is as hard as solving
the corresponding SAT.
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E Proof of Proposition 7

The hypothesis in the proposition implies that for any ξ ∈ Ξ(P̂ , e), we have ξ
(
· |x, πB(x)

)
=

P̂
(
· |x, πB(x)

)
, ∀x ∈ X . This further indicates that ρ(πB , ξ) is a constant (independent of ξ), for all

ξ ∈ Ξ(P̂ , e). Thus, when the Markov chain induced by the baseline policy is known, the optimization
problem (2) is reduced to the optimization problem (4), which is a robust MDP (RMDP) problem with
`1-constraint uncertainty set. It is known that this class of RMDP problems can be solved in (strongly)
polynomial time [Hansen et al., 2013] and has also been solved efficiently in practice [Petrik and
Subramanian, 2014].

F Proof of Theorem 8

From Lemma 11 with π = πsim and ξ = P̂ we have

ρ(πsim, P̂ )− γRmax

1− γ p
>
0 (I− γP ?πsim

)−1eπsim ≤ ρ(πsim, P
?).

Thus, we may write

Φ(πsim)
∆
= ρ(π?, P ?)− ρ(πsim, P

?) ≤ ρ(π?, P ?)− ρ(πsim, P̂ ) +
γRmax

1− γ p
T
0 (I− γP ?πsim

)−1eπsim

(a)
≤ ρ(π?, P ?)− ρ(π?, P̂ ) +

γRmax

1− γ p
T
0 (I− γP ?πsim

)−1eπsim

(b)
≤ γRmax

1− γ p
T
0

[
(I− γP ?π?)−1eπ? + (I− γP ?πsim

)−1eπsim

]
(c)
≤ 2γRmax

(1− γ)2
‖e‖∞ ,

where each step follows because:

(a) Optimality of πsim in the MDP with transition probabilities P̂ .

(b) Application of Lemma 11 with policy π = π? and ξ = P̂ .
(c) For any policy π ∈ ΠR, we have that ‖pT0 (I − γP ?π )−1‖1 = 1/(1 − γ), and from the

application of the Holder’s inequality.
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G Performance Bound on the Solution of the Robust Algorithm

Theorem 12. Given Assumption 1, the nonempty solution πR of Algorithm 2 is safe, i.e., ρ(πR, P
?) ≥

ρ(πB , P
?). Moreover, its performance loss Φ(πR) satisfies

Φ(πR)
∆
= ρ(π?, P ?)− ρ(πR, P

?) ≤ min

{
2γRmax

(1− γ)2

(
‖eπ?‖1,u?

π?
+ ‖eπB‖1,u?πB

)
,Φ(πB)

}
,

where u?π? is the state occupancy distribution of the optimal policy π? in the true MDP P ?, and
Φ(πB) = ρ(π?, P ?)− ρ(πB, P

?) is the performance loss of the baseline policy.

Proof. To prove the safety of πR and bound its performance loss, we need to upper and lower bound
the difference between the performance of any policy π in the true MDP P ? and its worst-case
performance in the uncertainty set Ξ, i.e., minξ∈Ξ ρ

(
π, ξ
)
. Since from Assumption 1, we have

P ? ∈ Ξ, we may write
min
ξ∈Ξ

ρ
(
π, ξ
)
≤ ρ(π, P ?). (11)

Now let ξ̄ ∈ Ξ(P̂ , e) be the minimizer in minξ∈Ξ ρ
(
π, ξ
)
. The minimizer exists because of the

continuity and compactness of the uncertainty set. Applying Lemma 11 with ξ = ξ̄, for any policy
π ∈ ΠR, we obtain

ρ(π, P ?)−ρ
(
π, ξ̄) = ρ(π, P ?)−min

ξ∈Ξ
ρ
(
π, ξ
)
≤ 2γRmax

1− γ pT0 (I−γP ?π )−1eπ =
2γRmax

(1− γ)2
‖eπ‖1,u?π ,

(12)
where u?π = (1−γ)p>0 (I−γP ?π )−1 is the state occupancy distribution of policy π in the true MDP P ?.

To prove the safety of the returned policy πR: Consider the two cases on Line 2 of Algorithm 2.
When the condition is satisfied, i.e., ρ0 > maxξ∈Ξ ρ

(
πB , ξ

)
, we have

ρ(πB , P
?) ≤ max

ξ∈Ξ
ρ
(
πB , ξ

)
< min

ξ∈Ξ
ρ
(
π0, ξ

)
︸ ︷︷ ︸

ρ0

≤ ρ(π0, P
?),

where the last inequality comes from (11), and thus, the policy πR = π0 is safe. When the condition
is violated, then πR is simply πB , which is safe by definition.

To derive a bound on the performance loss of the returned policy πR: Consider also the two
cases on Line 2 of Algorithm 2. When the condition is satisfied, using (11), we have

Φ(πR)
∆
= ρ(π?, P ?)− ρ(πR, P

?) = ρ(π?, P ?)− ρ(π0, P
?) ≤ ρ(π?, P ?)−min

ξ∈Ξ
ρ
(
π0, ξ

)
,

and when the condition is violated, we have

Φ(πR)
∆
= ρ(π?, P ?)− ρ(πR, P

?) = ρ(π?, P ?)− ρ(πB , P
?) .

Since when the condition is satisfied on Line 2 of Algorithm 2, we have
min
ξ∈Ξ

ρ
(
π0, ξ

)
> max

ξ∈Ξ
ρ
(
πB , ξ

)
in both cases on Line 2 of Algorithm 2, we may write

Φ(πR) ≤ min

ρ(π?, P ?)−min
ξ∈Ξ

ρ
(
π0, ξ

)
+ max

ξ∈Ξ
ρ
(
πB , ξ

)
− ρ(πB , P

?) ,

Φ(πB)︷ ︸︸ ︷
ρ(π?, P ?)− ρ(πB , P

?)

 .

The first term in the minimum can be written as
ρ(π?, P ?)−min

ξ∈Ξ
ρ
(
π0, ξ

)
+ max

ξ∈Ξ
ρ
(
πB , ξ

)
− ρ(πB , P

?)

(a)
≤ ρ(π?, P ?)−min

ξ∈Ξ
ρ
(
π?, ξ

)
+ max

ξ∈Ξ
ρ
(
πB , ξ

)
− ρ(πB , P

?)

(b)
≤ 2γRmax

(1− γ)2
‖eπ?‖1,u?

π?
+

2γRmax

(1− γ)2
‖eπB‖1,u?πB ,

where (a) follows from π0 being the solution to (2), and thus, being the maximizer of minξ∈Ξ ρ
(
π, ξ
)
,

and (b) is from (12) with π = π? and π = πB .
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H Solving the Reward-Adjusted MDP

In this section, we describe and analyze another simple method for computing safe policies that
we did not include it in Section 4 due to space limitations, and show how it can be interpreted
as an approximation of our proposed baseline regret minimization. This algorithm is based on
solving a MDP with the same transition probabilities as the simulator, P̂ , and rewards defined as
r̂(x, a) = r(x, a)− γRmax

1−γ e(x, a), ∀(x, a) ∈ X ×A. We call this MDP, reward-adjusted (RaMDP),

and denote its transition probabilities and rewards by ξ̃. The unique property of RaMDP is that under
Assumption 1, the performance of any policy π in RaMDP is a lower-bound on its performance
in the true MDP, i.e., ρ(π, ξ̃) ≤ ρ(π, P ?) (see Theorem 14). Furthermore in comparison to the
objective function of RMDP, the following proposition shows that ρ(π, ξ̃) is always a lower-bound
on minξ∈Ξ ρ

(
π, ξ
)
.

Proposition 13. Given Assumption 1, for each policy π, we have minξ∈Ξ ρ
(
π, ξ
)
≥ ρ(π, ξ̃).

Proof. Let ξ̄ ∈ Ξ(P̂ , e) be the minimizer in minξ∈Ξ ρ
(
π, ξ
)
. The minimizer exists because of the

continuity and compactness of the uncertainty set. From Lemma 10, for each π, we may write

ρ(π, ξ̄) ≥ ρ(π, P̂ )− γRmax

1− γ p
T
0 (I− γP̂π)−1eπ

(a)
= ρ(π, ξ̃),

where (a) holds because ξ̃ differs from P̂ only in its reward function, which is of the form r̂π =
rπ − γRmax

1−γ eπ .

We conclude based on this proposition that the reward-adjusted method approximates the solution of
the optimization problem (2) as

max
π∈ΠR

min
ξ∈Ξ

(
ρ(π, ξ)− ρ(πB , ξ)

)
≥ max
π∈ΠR

min
ξ∈Ξ

ρ(π, ξ)−max
ξ∈Ξ

ρ(πB , ξ)

≥ max
π∈ΠR

ρ(π, ξ̃)−max
ξ∈Ξ

ρ(πB , ξ), (13)

and guarantees safety by designing π such that the RHS of (13) is always non-negative. Algorithm 3
returns an optimal policy of the RaMDP ξ̃, when the performance of this policy in ξ̃ is better than the
robust baseline performance maxξ∈Ξ ρ(πB , ξ), and returns πB , otherwise.

Algorithm 3: RaMDP-based Algorithm

input :Simulated MDP P̂ , baseline policy πB , and the error function e
output :Policy πRa

1 r̂(x, a)← r(x, a)− γRmax

1−γ e(x, a) ;

2 π0 ← arg maxπ∈ΠR ρ(π, ξ̃); where ξ̃ = (r̂, P̂ )

3 ρ0 ← ρ(π0, ξ̃) ;
4 if ρ0 > maxξ∈Ξ ρ(πB , ξ) then πRa ← π0 else πRa ← πB ;
5 return πRa

Since the performance of any policy in the RaMDP ξ̃ is a lower-bound on its performance in the true
MDP P ?, it is guaranteed that the policy πRa returned by Algorithm 3 performs at least as well as
the baseline policy πB . Theorem 14 shows that πRa is safe and quantifies its performance loss.
Theorem 14. Given Assumption 1, the solution πRa of Algorithm 3 is safe, i.e., ρ(πRa, P

?) ≥
ρ(πB , P

?). Moreover, its performance loss Φ(πRa) satisfies

Φ(πRa)
∆
= ρ(π?, P ?)− ρ(πRa, P

?) ≤ min

{
2γRmax

(1− γ)2

(
‖eπ?‖1,u?

π?
+ ‖eπB‖1,u?πB

)
,Φ(πB)

}
,

where u?π? is the state occupancy distribution of the optimal policy π? in the true MDP P ?, and
Φ(πB) = ρ(π?ξ? , P

?)− ρ(πB, P
?) is the performance loss of the baseline policy.
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Proof. To prove the safety of πRa and bound its performance loss, we need to upper and lower bound
the difference between the performance of any policy π in the true MDP P ? and its performance in ξ̃,
i.e., ρ(π, P ?) − ρ(π, ξ̃). These upper and lower bounds are obtained by applying Lemma 10 with
P1 = P ?, and P2 = ξ̃ as follows:

ρ(π, P ?)− ρ(π, ξ̃) ≥ pT0 (I− γP ?π )−1

(
rπ − r̂π −

γRmax

1− γ eπ
)
≥ 0, (14)

where the second inequality in (14) follows from the definition of the adjusted reward function r̂, and
the fact that (I− γP ?π )−1 is monotone and p0 is non-negative. Similarly, the upper-bound may be
written as

ρ(π, P ?)− ρ(π, ξ̃) ≤ 2γRmax

1− γ pT0 (I− γP ?π )eπ =
2γRmax

(1− γ)2
‖eπ‖1,u?π , (15)

where u?π = (1−γ)p>0 (I−γP ?π )−1 is the state occupancy distribution of policy π in the true MDP P ?.

To prove the safety of the returned policy πRa: Consider the two cases on Line 4 of Algorithm 3.
When the condition is satisfied, we have

ρ(πB , P
?) ≤ max

ξ∈Ξ
ρ(πB , ξ) < ρ(π0, ξ̃) ≤ ρ(π0, P

?),

where the last inequality comes from (14), and thus, the policy πRa = π0 is safe. When the condition
is violated, then πRa is simply πB , which is safe by definition.

To derive a bound on the performance loss of the returned policy πRa: Consider also the two
cases on Line 4 of Algorithm 3. When the condition is satisfied, using (14), we have

Φ(πRa)
∆
= ρ(π?, P ?)− ρ(πRa, P

?) = ρ(π?, P ?)− ρ(π0, P
?) ≤ ρ(π?, P ?)− ρ(π0, ξ̃),

and when the condition is violated, we have

Φ(πRa)
∆
= ρ(π?, P ?)− ρ(πRa, P

?) = ρ(π?, P ?)− ρ(πB , P
?).

Since when the condition is satisfied on Line 4 of Algorithm 3, we have

ρ(π0, ξ̃) > max
ξ∈Ξ

ρ(πB , ξ),

in both cases on Line 4 of Algorithm 3, we may write

Φ(πRa) ≤ min

ρ(π?, P ?)− ρ(π0, ξ̃) + max
ξ∈Ξ

ρ
(
πB , ξ

)
− ρ(πB , P

?) ,

Φ(πB)︷ ︸︸ ︷
ρ(π?, P ?)− ρ(πB , P

?)

 .

The first term in the minimum may be written as

ρ(π?, P ?)− ρ(π0, ξ̃) + max
ξ∈Ξ

ρ
(
πB , ξ

)
− ρ(πB , P

?)

(a)
≤ρ(π?, P ?)− ρ(π?, ξ̃) + max

ξ∈Ξ
ρ
(
πB , ξ

)
− ρ(πB , P

?)
(b)
≤ 2γRmax

(1− γ)2
‖eπ?‖1,u?

π?
+

2γRmax

(1− γ)2
‖eπB‖1,u?πB ,

where (a) follows from π0 being an optimal policy of RaMDP ξ̃ and (b) is from (15) with π = π?

and π = πB .

Theorem 14 indicates that by this simple adjustment in the reward function of the simulator P̂ , we
may guarantee that our solution is safe. Moreover, it shows that the bound on the performance loss of
πRa is actually tighter than that for the solution πsim of the simulator, reported in Theorem 8.

While Algorithm 2 is more complex than Algorithm 3 (since solving a RMDP is more complicated
than a standard MDP), Theorem 12 does not show any advantage for πR over πRA, neither in terms
of safety nor in terms of the bound on its performance loss (compared to Theorem 14). On the other
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hand, while Algorithm 3 guarantees to yield a safe policy more efficiently than Algorithm 2, from
Proposition 13 one notices that Algorithm 3 may be overly conservative in many circumstances.
This is because the adjustment of the reward function is based on the assumption that there exists a
state with the maximum value of Rmax/(1− γ) and that this state is accessible from all other states
with reward Rmax. Thus, we may conclude that Algorithm 2 returns a less conservative safe policy
(compared to Algorithm 3), with extra computational cost.

The experimental results of Section 5 also show that the reward-adjusted solution of Algorithm 3 can
be extremely conservative.
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I Description of Experimental Domains

I.1 Grid Problem

We now describe the grid problem in more detail. The state space in the problem comes from a
two-dimensional grid: S = {sij : i ∈ I, j ∈ J }; i and j represent a column and row respectively.
Columns represent states of an interaction with the website, and rows represent more complex
customer states, such as overall satisfaction. The dimensions are |I| = 12 and J = 3.

There are 4 actions: aL for left, aR for right, aU for up, and aU for down. Rewards are in-
dependent of actions and depend only on states and only on the column: xij = ri where
r = [−1, 1, 2, 3, 2, 1,−1,−2,−3, 3, 4, 5]. Actions left and right generally decrease and increase
the column number; but can fail and in that case the transition is to a random column. The failure
probability zj depends on the row j, with specific failure probabilities: z = [0.9, 0.2, 0.3]. If a
transition fails, then the next state is chosen according to a fixed distribution which is generated a
priori from a Dirichlet distribution. The distribution for first and last row are the same, and the middle
row is the average of the two.

Algorithm 4 describes how the transition from a state is computed. The initial state is s00.

Algorithm 4: Transitions for state and action.
Data: Current state sij , action a, distributions Pj
Result: Next state skl

1 if Random uniform from [0, 1] > zj then
2 if a = aR then
3 k ← i+ 1 ;
4 else if a = aL then
5 k ← i− 1 ;
6 else
7 k ← Random from Pj ;
8 end
9 k ← max{0,min{k, |I| − 1}} ;

10 else
11 k ← Random from Pj ;
12 end
13 if a = aU then
14 l← j + 1 ;
15 else if a = aD then
16 l← j − 1 ;
17 else
18 e← Random uniform from [0, 1] ;
19 if e ≤ 0.35 then
20 l← j + 1 ;
21 else if e ≤ 0.7 then
22 l← j − 1 ;
23 else
24 l← j ;
25 end
26 end
27 l← max{0,min{l, |J | − 1}} ;
28 return skl;

I.2 Energy Arbitrage

The energy arbitrage model is based on [Petrik and Wu, 2015] using a discount factor 0.9999. We
summarize it here for ease of reference. Recall that even though the state and action spaces in this
problem are continuous, we discretize them as described in Section 5.
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The problem represents an energy arbitrage model with multiple finite known price levels and a
stochastic evolution given a limited storage capacity. In particular, the storage is assumed to be an
electrical battery that degrades when energy is stored or retrieved. Energy prices are governed by a
Markov process with states Θ. There are two energy prices in each time step: pi : Θ→ R+ is the
purchase (or input) price and po : Θ→ R+ is the sell (or output) price. Energy prices θ vary between
0 and 10 and their evolution is governed by a martingale with a normal distribution around the mean.

We use s to denote the available battery capacity with s0 denoting the initial capacity. The current
state of charge is denotes as z or y and must satisfy that 0 ≤ zt ≤ st at any time step t. The action
is the amount of energy to charge or discharge, which is denoted by a. A positive a indicates that
energy is purchased to charge the battery; a negative a indicates the sale of energy.

The battery storage degrades with use. The degradation is a function of the battery capacity when
charged or discharged. We use a general model of battery degradation with a specific focus on Li-ion
batteries. The degradation function d(z, a) ∈ R+ represent the battery capacity loss after starting
at the state of charge z ≥ 0 and charging (discharging if negative) by a with −z ≤ a ≤ s0. This
function indicates the loss of capacity, such that:

st+1 = st − d(zt, at)

The state set in the Markov decision problem is composed of (z, s, θ) where z is the state of charge,
s is the battery capacity, and θ ∈ Θ is the state of the price process. The available actions in a state
(z, s, θ) are a such that−z ≤ a ≤ s−z. The transition is from (zt, st, θt) to (zt+1, st+1, θt+1) given
action at is:

zt+1 = zt + at
st+1 = st − d(zt, at)

The probability of this transition is given by P [θt+1|θt]. The reward for this transition is:

r((zt, st, θt), at) =

{−at · pi − cd · d(zt, at) if at ≥ 0

−at · po − cd · d(zt, at) if at < 0
.

That is, the reward captures the monetary value of the transaction minus a penalty for degradation of
the battery. Here, cd represents the cost of a unit of lost battery capacity.

The Bellman optimality equations for this problem are:

qT (z, s, θ) = 0

vt(z, s, θt) = min
{
piθt [a]+ + poθt [a]−+

+ cd d(z, a)+

+ qt(z + a, s− d(z, a), θt) :

: a ∈ [−z, s− z]
}

qt(z, s, θt) = λ · E[vt+1(z, s, θt+1)]

(16)

where [a]+ = max{a, 0} and [a]− = min{a, 0} and the expectation is taken over P (θt+1|θt).

Please see [Petrik and Wu, 2015] for more details, including the price transition matrix.
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