
RAAM: The Benefits of Robustness in Approximating
Aggregated MDPs in Reinforcement Learning

Marek Petrik
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598
mpetrik@us.ibm.com

Dharmashankar Subramanian
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598
dharmash@us.ibm.com

Abstract

We describe how to use robust Markov decision processes for value function ap-
proximation with state aggregation. The robustness serves to reduce the sensitiv-
ity to the approximation error of sub-optimal policies in comparison to classical
methods such as fitted value iteration. This results in reducing the bounds on the
γ-discounted infinite horizon performance loss by a factor of 1/(1 − γ) while
preserving polynomial-time computational complexity. Our experimental results
show that using the robust representation can significantly improve the solution
quality with minimal additional computational cost.

1 Introduction

State aggregation is one of the simplest approximate methods for reinforcement learning with very
large state spaces; it is a special case of linear value function approximation with binary features.
The main advantages of using aggregation in comparison with other value function approximation
methods are its simplicity, flexibility, and the ease of interpretability (Bean et al., 1987; Bertsekas
and Castanon, 1989; Van Roy, 2005).

Informally, value function approximation methods compute an approximately-optimal policy π̃ by
computing an approximate value function ṽ as an intermediate step. The quality of the solution can
be measured by its performance loss: ρ(π?) − ρ(π̃) where π? is the optimal policy, and ρ(·) is the
γ-discounted infinite-horizon return of the policy, averaged over (any) given initial state distribution.
The tight upper bound guarantees on the performance loss— tighter for state-aggregation than for
general linear value function approximation—are (Van Roy, 2005),

ρ(π?)− ρ(π̃) ≤ 4 γ ε(v?)/(1− γ)2 (1.1)

where ε(v?)—defined formally in Section 4—is the smallest approximation error for the optimal
value function v?. It is important that the error is with respect to the optimal value function which can
have special structural properties, such as convexity in inventory management problems (Porteus,
2002).

Because the bound in (1.1) is tight, the performance loss may grow with the discount factor as fast as
γ/(1−γ)2 while the total return for any policy only grows as 1/(1−γ). Therefore, for γ sufficiently
close to 1, the policy π̃ computed through state aggregation may be no better than a random policy
even when the approximation error of the optimal policy is small. This large performance loss is
caused by large errors in approximating sub-optimal value functions (Van Roy, 2005).

In this paper, we show that it is possible to guarantee much smaller performance loss by using a
robust model of the approximation errors through a new algorithm we call RAAM (robust approxi-
mation for aggregated MDPs). Informally, we use robustness to reduce the approximated return of
policies with large approximation errors to make it less likely that such policies will be selected.

1

The performance loss of the RAAM can be bounded as:

ρ(π?)− ρ(π̃) ≤ 2 ε(v?)/(1− γ) . (1.2)

As the main contribution of the paper—described in Section 3—we incorporate the desired robust-
ness into the aggregation model by assuming bounded worst-case state importance weights. The
state importance weights determine the relative importance of the approximation errors among the
states. RAAM formulates the robust optimization over the importance weights as a robust Markov
decision process (RMDP).

RMDPs extend MDPs to allow uncertain transition probabilities and rewards and preserve most of
the favorable MDP properties (Iyengar, 2005; Nilim and Ghaoui, 2005; Le Tallec, 2007; Wiesemann
et al., 2013). RMDPs can be solved in polynomial time and the solution methods are practical (Kauf-
man and Schaefer, 2013; Hansen et al., 2013). To minimize the overhead of RAAM in comparison
with standard aggregation, we describe a new linear-time algorithm for the Bellman update in Sec-
tion 3.1 for RMDPs with robust sets constrained by the L1 norm.

Another contribution of this paper—described in Section 4—is the analysis of RAAM performance
loss and the impact of the choice of robust uncertainty sets. We focus on constructing aggregate
RMPDs with rectangular uncertainty sets (Iyengar, 2005; Wiesemann et al., 2013) and show that it
is possible to use MDP structural properties to reduce RAAM performance loss guarantees compared
to (1.2).

The experimental results in Section 5 empirically illustrate settings in which RAAM outperforms
standard state aggregation methods. In particular, RAAM is more robust to sub-optimal policies
with a large approximation error. The results also show that the computational overhead of using
the robust formulation is very small.

2 Preliminaries

In this section, we briefly overview robust Markov decision processes (RMDPs). RMDPs general-
ize MDPs to allow for uncertain transition probabilities and rewards. Our definition of RMDPs is
inspired by stochastic zero-sum games to generalize previous results to allow for uncertainty in both
the rewards and transition probabilities (Filar and Vrieze, 1997; Iyengar, 2005).

Formally, an RMDP is a tuple (S,A,B, P, r, α), where S is a finite set of states, α ∈ 4S is the
initial distribution, As is a set of actions that can be taken in state s ∈ S, and Bs is a set of robust
outcomes for s ∈ S that represent the uncertainty in transitions and rewards. From a game-theoretic
perspective, Bs can be seen as the actions of the adversary. For any a ∈ As, b ∈ Bs, the transition
probabilities are Pa,b : S → 4S and the reward is ra,b : S → R. The rewards depend only on the
starting state and are independent of the target state1.

The basic solution concepts of RMDPs are very similar to regular MDPs with the exception that
the solution also includes the policy of the adversary. We consider the set of randomized stationary
policies ΠR = {πs ∈ 4As}s∈S as candidate solutions and use ΠD for deterministic policies.
Two main practical models of the uncertainty in Bs have been considered: s-rectangular and s, a-
rectangular sets (Le Tallec, 2007; Wiesemann et al., 2013). In s-rectangular uncertainty models,
the realization of the uncertainty depends only on the state and is independent on the action; the
corresponding set of nature’s policies is: ΞS = {ξs ∈ 4Bs}s∈S . In s, a-rectangular models, the
realization of the uncertainty can also depend on the action: ΞSA = {ξs,a ∈ 4Bs}s∈S,a∈As . We
will also consider restricted sets on the adversary’s policies: ΞQS = {ξs ∈ Qs}s∈S and ΞQSA =
{ξs,a ∈ Qs}s,a∈S×As

, for some Qs ⊂ 4Bs .

Next, we briefly overview the basic properties of robust MDPs; please refer to (Iyengar, 2005; Nilim
and Ghaoui, 2005; Le Tallec, 2007; Wiesemann et al., 2013) for more details. The transitions and
rewards for any stationary policies π and ξ are defined as:

Pπ,ξ(s, s
′) =

∑
a,b∈As×Bs

Pa,b(s, s
′)πs,a ξs,b , rπ,ξ(s) =

∑
a,b∈As×Bs

ra,b(s)πs,a ξs,b .

1Rewards that depend on the target state can be readily reduced to independent ones by taking the appropri-
ate expectation.

2

It will be convenient to use Pπ,ξ to denote the transition matrix and rπ,ξ and α as vectors over
states. We will also use I to denote an identity matrix and 1, 0 to denote vectors of ones and zeros
respectively with appropriate dimensions. Using this notation, with a s, a-rectangular model, the
objective in the RMDP is to maximize the γ-discounted infinite horizon robust return ρ as:

ρ− = sup
π∈ΠR

ρ−(π) = sup
π∈ΠR

inf
ξ∈ΞSA

ρ(π, ξ) = sup
π∈ΠR

inf
ξ∈ΞSA

∞∑
t=0

αT(γ Pπ,ξ)
t rπ,ξ . (RBST)

The negative superscript denotes the fact that this is the robust return. The value function for a policy
pair π and ξ is denoted by v−π,ξ and the optimal robust value function is v−? . Similarly to regular
MDPs, the optimal robust value function must satisfy the robust Bellman optimality equation:

v−? (s) = max
π∈ΠR

min
ξ∈ΞQSA

∑
a,b∈As×Bs

πs,a ξs,a,b

(
ra,b(s) + γ

∑
s′∈S

Pa,b(s, s
′) v−? (s′)

)
. (2.1)

3 RAAM: Robust Approximation for Aggregated MDPs

This section describes how RAAM uses transition samples to compute an approximately optimal
policy. We also describe a linear-time algorithm for computing value function updates for the robust
MDPs constructed by RAAM.

Algorithm 1: RAAM: Robust Approximation for Aggregated MDPs
// Σ - samples, w - weights, θ - aggregation, ω - robustness
Input: Σ, w, θ, ω
Output: π̄ – approximately optimal policy
// Compute RMDP parameters

1 S ← {θ(s̄) : (s̄, s̄′, ā, r) ∈ Σ} ∪ {θ(s̄′) : (s̄, s̄′, ā, r̄) ∈ Σ} ; // States
2 forall the s ∈ S do
3 As ← {ā : (s̄, s̄′, ā, r) ∈ Σ, s = θ(s̄)} ; // Actions
4 Bs ← {s̄ : (s̄, s̄′, ā, r) ∈ Σ, s = θ(s̄)} ; // Outcomes
5 end
// Compute RMDP transition probabilities and rewards

6 forall the s, s′ ∈ S × S do
7 forall the a, b ∈ As × Bs do
8 Σ′ ← {(s̄′, r̄) : (s̄, s̄′, ā, r̄) ∈ Σ, θ(s̄) = s, a = ā, b = s̄} ;
9 Pa,b(s, s

′)← 1
|Σ′|

∑
s̄′,·∈Σ′ 1s′=θ(s̄′) ;

10 ra,b(s)←
∑
·,r̄∈Σ′ r̄/|Σ′| ;

11 end
12 end
// Construct robust sets based on state weights and L1 bounds

13 Qs ← {ξ ∈ 4Bs : ‖ξ − ws

1Tw|Bs
‖1 ≤ ω};

14 ΞQSA ← {ξs,a ∈ Qs}s,a∈S×As
;

// Solve RMDP
15 Solve (2.1) to get π?—the optimal RMDP policy—and let π̄s̄,a = π?θ(s̄),a ;
16 return π̄ ;

Algorithm 1 depicts a simplified implementation of RAAM. In general, we use s̄ to distinguish the
un-aggregated MDP states from the states in the aggregated RMDP. The main input to the algorithm
consists of transition samples Σ = {(s̄i, s̄′i, āi, ri)}i∈I which represent transitions from a state s̄i
to the state s̄′i given reward ri and taking an action ai; the transitions need to be sampled according
to the transition probabilities conditioned on the state and an action. The aggregation function
θ : S̄ → S, which maps every MDP state from S̄ to an aggregate RMDP state, is also assumed to
be given. Finally, the state weights w ∈ 4S and the robustness ω are tunable parameters.

We use the L1 norm to bound the uncertainty. The representation uses ω to continuously trade
off between fixed importance weights for ω = 0 and complete robustness ω = 2. We analyze

3

s2s1

s̄1 s̄2 s̄3

a1

a2

0

1

ε

0

Figure 1: An example MDP.

s1

a1

a2

s2

s̄1 s̄2

s̄1 s̄2

0

1

0 ε

0

Figure 2: Aggregated RMDP.

the effect of this parameter in Section 4. However, simply setting w to be uniform and ω = 2
will provide sufficiently strong theoretical guarantees and generally works well in practice. Finally,
we assume s, a-rectangular uncertainty sets for the sake of reducing the computational complexity;
better approximations could be obtained by using s-rectangular sets, but this makes no difference
for deterministic policies.

Next, we show an example that demonstrates how the robust MDP is constructed from the aggrega-
tion. We will also use this example to show the tightness of our bounds on the performance loss.
Example 3.1. The original MDP problem is shown in Fig. 1. The round white nodes represent the
states, while the black nodes represent state-action pairs. All transitions are deterministic, with the
number next to the transition representing the corresponding reward. Two shaded regions marked
with s1 and s2 denote the aggregate states. Fig. 2 depicts the corresponding aggregated robust MDP
constructed by RAAM. The rectangular nodes in this picture represent the robust outcome.

3.1 Reducing Computational Complexity

Solving an RMDP is in general more difficult than solving a regular MDP. Most RMDP algorithms
are based on value or policy iteration, but in general involve repeated solutions of linear or convex
programs (Kaufman and Schaefer, 2013). Even though the worst-case time complexity of these
algorithms is polynomial, they may be impractical because they require repeatedly solving (2.1) for
every state, action, and iteration. Each of these computations may require solving a linear program.

The optimization over ΞSA when computing the value function update for solving Line 15 of Algo-
rithm 1 requires solving the following linear program for each s and a.

min
ξs,a∈4Bs

ξTs,azs =
∑
b∈Bs

ξs,a,b
(
ra,b(s) + γ

∑
s′∈S

Pa,b(s, s
′) v(s′)

)
s.t. ‖ξs,a − qs‖1 ≤ ω .

(3.1)

Here qs = ws/1
Tw(Bs). While this problem can be solved directly using a linear program solver,

we describe a significantly more efficient method in Algorithm 2.
Theorem 3.2. Algorithm 2 correctly solves (3.1) in O(|Bs|) time when the full sort is replaced by a
quickselect quantile selection algorithm in Line 4.

The proof is technical and is deferred to Appendix B.1. The main idea is to dualize the norm
constraint and examine the structure of the optimal solution as a function of the dual variable.

4 Performance Loss Bounds

This section describes new bounds on the performance loss which is the difference between the
return of the optimal and approximate policy. The performance loss is a more reliable measure of
the error than the error in the value function (Van Roy, 2005). We also analyze the effect of the state
weights w and the robustness parameter ω on performance loss.

It will be convenient, for the purpose of deriving the error bounds, to treat aggregation as a linear
value function approximation (Van Roy, 2005). For that purpose, define a matrix Φ(s̄, s) = 1s=θ(s̄)

4

Algorithm 2: Solve (3.1) in Line 15 of Algorithm 1
Input: zs, qs – sorted such that zs is non-decreasing, indexed as 1 . . . n
Output: ξ?s,a – optimal solution of (3.1)

1 o← copy(qs) ; i← n ;
2 ε← min{1− q1,

ω
2 } ;

3 o1 ← ε+ q1;
4 while ε > 0 ; // Determine the threshold
5 do
6 oi ← oi −min{ε, oi} ;
7 ε← ε−min{ε, oi} ;
8 i← i− 1;
9 end

10 return o ;

where s ∈ S, s̄ ∈ S̄, and 1 represents the indicator function. That is, each column corresponds to
a single aggregate state with each row entry being either 1 or 0 depending on whether the original
state belongs into the aggregate state.

In order to simplify the derivation of the bounds, we start by assuming that the RMDP in RAAM
is constructed from the full sample of the original MDP; we discuss finite-sample bounds later.
Therefore, assume that the full regular MDP is M = (S̄, Ā, P̄ , r̄, ᾱ); we are using bars in general
to denote MDP values, but assume that A = Ā. We also use ρ̄ to denote the return of a policy in the
MDP. The robust outcomes correspond to the original states that compose any s: Bs = θ−1(s). The
RMDP transitions and rewards for some π and ξ are computed as:

Pπ,ξ = ΦT diag
(
ξ̄
)
P̄π Φ rπ,ξ = ΦT diag

(
ξ̄
)
r̄π αT = ᾱT Φ. (4.1)

Here, ξ̄s̄ =
∑
a∈As̄

πs,a ξs,a,s̄ such that θ(s̄) = s are state weights induced by ξ.

There are two types of optimal policies: π̄? and π?; π̄? is the truly optimal policy, while π? is the
optimal policy given aggregation constraints requiring the same action for all aggregated states. For
any computed policy π̃, we focus primarily on the performance loss ρ̄(π?)− ρ̄(π̃). The total loss can
be easily decomposed as ρ̄(π̄?)−ρ̄(π̃) =

[
ρ̄(π̄?)−ρ̄(π?)

]
+
[
ρ̄(π?)−ρ̄(π̃)

]
. The error ρ(π̄?)−ρ̄(π?)

is independent of how the value of the aggregation is computed.

The following theorem states the main result of the paper. A part of the results uses the concentration
coefficient C for a given distribution µ of the MDP (Munos, 2005) which are defined as: P̄a(s, s′) ≤
Cµ(s′) for all s, s′ ∈ S̄, a ∈ Ā.
Theorem 4.1. Let π̃ be the solution of Algorithm 1 based on the full sample for ω = 2. Then:

ρ̄(π?)− ρ̄(π̃) ≤ 2 ε(v?)

1− γ ,

where ε(v?) = minv∈RS ‖v? − Φv‖∞ and this bound is tight. In addition, when the concentration
coefficient of the original MDP is C with distribution µ, then ε(v?) = minv∈RS ‖e(v)‖1,σ where
σ = ΦT (γ α+ (1− γ)µ) and e(v)s = maxs̄∈θ−1(s) |(I− γ P̄π?)(v̄? − Φ v)|s̄.

Before proving Theorem 4.1, it is instrumental to compare it with the performance loss of related
reinforcement learning algorithms. When the aggregation is constructed using constant and uni-
form aggregation weights (as when Algorithm 1 is used with ω = 0), the performance loss of the
computed policy π̃ is bounded as (Tsitsiklis and Van Roy, 1996; Gordon, 1995):

ρ̄(π?)− ρ̄(π̃) ≤ 4 γ ε(v?)

(1− γ)2
.

This bound holds specifically for aggregation (and approximators that are averagers) and is tight;
the performance loss for more general algorithms can be even larger. Note that the difference in the
1/(1− γ) factor is very significant when γ → 1. Van Roy (2005) shows similar bounds as RAAM,
but they are weaker and require the invariant distribution ψ. In addition, similar performance loss
bounds as Theorem 4.1 can be guaranteed by DRADP, but this approach results in general to NP-
hard computational problems (Petrik, 2012). In fact, the robust aggregation can be seen as a special
case of DRADP with rectangular uncertainty sets (Iyengar, 2005).

5

To prove Theorem 4.1 we need the following result showing that for properly chosen robust uncer-
tainty sets, the robust return is a lower bound on the true return. We will use d̄π to represent the
normalized occupancy frequency for the MDP M and policy π.

Lemma 4.2. Assume the uncertainty set to be ΞQS or ΞQSA as constructed in (4.1). Then ρ−(π) ≤
ρ̄(π) as long as for each π ∈ Π we have that d̄π|Bs

∈ ψs · Qs for each s ∈ S and some ψs.

When ω = 2, the inequality in the theorem also holds for value functions as Proposition B.1 in the
appendix shows.

Proof. We prove the result for s-rectangular uncertainty sets; the proof for s, a-rectangular sets
is analogous. When the policy π is fixed, solving for the nature’s policy represents a minimiza-
tion MDP with continuous action constraints that has the following dual linear program formula-
tion (Marecki et al., 2013):

ρ−(π) = min
d∈{RBs}s∈S

dT r̄π / (1− γ)

s.t. ΦT (I− γ P̄T
π) d = (1− γ) ΦT ᾱ

ds,b /
∑
b′∈Bs

ds,b′ ∈ Qs, ∀s ∈ S, ∀b ∈ Bs .
(4.2)

Note that the left-hand side of the last constraint corresponds to ξa,b. Now, setting d = d̄π shows the
desired inequality for π; this value is feasible in (4.2) from (B.3) and the objective value is correct
from (B.4). The normalization constant is ψs =

∑
b′∈Bs

ds,b′ .

Proof of Theorem 4.1. Using Lemma 4.2, the performance loss for ω = 2 can be bounded as:

0 ≤ ρ̄(π?)− ρ̄(π̃) ≤ ρ̄(π?)− ρ−(π̃) = min
π∈Π

(ρ̄(π?)− ρ̄−(π)) ≤ ρ̄(π?)− ρ−(π?)

For a policy π, solving ρ−(π) corresponds to an MDP with the following LP formulation:

ρ̄(π?)− ρ−(π?) ≤ min
v
{αT(v? − Φv) : Φv ≤ γP̄π?Φv + rπ?} . (4.3)

Now, let the minimum ε = minv ‖v?−Φv‖∞ be attained at v0. Then, to show that v1 = v0− 1+γ
1−γ ε1

is feasible in (4.3), for any k:

−ε1 ≤ v? − Φv0 ≤ ε1
(k − 1)ε1 ≤ v? − Φv0 + kε1 ≤ (1 + k)ε1 (4.4)

(k − 1)γε1 ≤ γP̄π?(v? − Φv0 + kε1) ≤ (1 + k)γε1 (4.5)

The derivation above uses the monotonicity of P̄π? in (4.5). Then, after multiplying by (I− γP̄π?),
which is monotone, and rearranging the terms:

(I− γP̄π?)Φ(v0 − kε1) ≤ (1 + γ − (1− γ)k)ε1 + rπ? ,

where (I − γP̄π?)v? = rπ? . Letting k = (1 + γ)/(1 − γ) proves the needed feasibility and (4.4)
establishes the bound. The tightness of the bound follows from Example 3.1 with ε→ 0.

The bound on the second inequality follows from bounding the dual gap between the primal feasible
solution v1 and an upper bound on a dual optimal solution. To upper-bound the dual solution, define
a concentration coefficient for an RMDP similarly to an MDP: P̄a,b(s, s′) ≤ Cµ(s′) for all s, s′ ∈ S,
a ∈ As, b ∈ Bs. By algebraic manipulation, if the original MDP has a concentration coefficient
C with a distribution µ then the aggregated RMDP has the same concentration coefficient with a
distribution ΦTµ. Then, using Lemma 4.3 in (Petrik, 2012), the occupancy frequency (and therefore
the dual value) of the RMDP for any policy is bounded as u ≤ C

1−γΦ((1− γ) ΦT α+ γΦTµ).

The linear program (4.3) can be formulated as the following penalized optimization problem:

max
u

min
v
αT(v? − Φv) + uT

[
(I− γP̄π?)Φv − rπ?

]
+
,

Note that:

αT(v? − Φv) = αT
(
I− γP̄π?

)−1
(I− γP̄π?)(v? − Φv) = d̄Tπ?(I− γP̄π?)(v? − Φv) .

6

The penalized optimization problem can be rewritten, using the fact that rπ? = (I − γ P̄π?) v? and
the feasibility of v1 as:

max
u

2

1− γ u
T |(I− γ P̄π?)(Φ v1 − v?)|

s.t. u ≤ C

1− γ Φ ((1− γ) ΦTα+ γ ΦTµ)

The theorem then follows by simple algebraic manipulation from the upper bound on u.

4.1 State Importance Weights

In this section, we discuss how to select the state importance weightsw and the robustness parameter
ω. Note that Lemma 4.2 shows that any choice of w and ω such that the normalized occupancy fre-
quency is within ω ofw in terms of the L1 norm, provides the theoretical guarantees of Theorem 4.1.
Smaller uncertainty sets under this condition only improve the guarantees. In practice, the values w
and ω can be treated as regularization parameters. We show sufficient conditions under which the
right choice of w and ω can significantly reduce the performance loss, but these conditions have a
more explanatory than predictive character.

As it can be seen easily from the proof of Lemma 4.2 and Appendix B.2, the optimal choice for
the RAAM weights w to approximate the return of a policy π is to use its state occupancy fre-
quency. While the occupancy frequency is rarely known, there exist structural properties, such as
the concentration coefficient (Munos, 2005), that can lead to upper bounds on the possible occu-
pancy frequencies. However, the following example shows that simply using an upper bound on the
occupancy frequency is not sufficient to reduce the performance loss.
Example 4.3. Consider an MDP with 4 states: s1, . . . , s4 and the aggregation with two states that
correspond to {s1, s2} and {s3, s4}. Let the set of admissible occupancy frequencies be: Q = {d ∈
44 : 1/4 ≤ d(s1) + d(s4) ≤ 1/2, d ≥ 1/8}. The set of uncertainties for this bounded set is
for i = 1, 3, and j = 2, 4 as follows: ΞQS = {d ∈ R4

+ : 1/6 ≤ d(si) ≤ 4/5, 1/5 ≤ d(sj) ≤
5/6, d(si) + d(sj) = 1}, which is smaller than ΞS . However, Q without the constraint d ≥ 1/8

results in ΞQS = ΞS .

As Example 4.3 demonstrates, the concentration coefficient alone does not guarantee an improve-
ment in the policy loss. One possible additional structural assumption is that the occupancy fre-
quencies for the individual states in each aggregate state to be “correlated” across policies. More
formally, the aggregation correlation coefficient D ∈ R+ must satisfy:

λσ(s̄) ≤ dπ(s̄) ≤ λD σ(s̄) , (4.6)

for some λ ≥ 0, each s̄ ∈ S̄, and σ as defined in Theorem 4.1. Using this assumption, we can derive
the following theorem. Consider the uncertainty setQs = {q : q ≤ C (σ|Bs

)/(1Tσ(Bs))} then we
can show the following theorem.
Theorem 4.4. Given an MDP with a concentration coefficient C for µ and a correlation coefficient
D, then for uncertainty set ΞQS and for σ = ΦT (γ α+ (1− γ)µ) we have:

ρ̄(π?)− ρ̄(π̃) ≤ 2C D

1− γ min
v∈RS

‖(I− γ P̄π?) (v̄? − Φ v)‖1,σ .

The proof is based on a minor modification of Theorem 4.1 and is deferred until the appendix.
Theorem 4.4 improves on Theorem 4.1 by entirely replacing the L∞ norm by a weighted L1 norm.
While the correlation coefficient may not be easy to determine in practice, it may a property to
analyze to explain a failure of the method.

Finite-sample bounds are beyond the scope of this paper. However, the sampling error is additive
and can be based for example on ε coverage assumptions made for approximate linear programs.
In particular, (4.2) represents an approximate linear program and can be bounded as such, as for
example done by Petrik et al. (2010).

5 Experimental Results

In this section, we experimentally validate the approximation properties of RAAM with respect to
the quality of the solutions and the computational time required. For the purpose of the empirical

7

0.0 0.5 1.0 1.5 2.0
Extra Reward rq

−60

−40

−20

0

20

40

M
e
a
n
 R

e
tu

rn

Mean Aggregation/LSPI

Robust Aggregation, jj ¢jj1 ∙0:5
Robust Aggregation, jj ¢jj1 ∙1:5
Approximate Linear Programming

Figure 3: Sensitivity to the reward perturba-
tion for regular aggregation and RAAM.

101 102 103 104

Variables

10−5

10−4

10−3

10−2

10−1

100

Ti
m

e
(s

)

CPLEX Total
CPLEX Solver
Custom Python
Custom C++

Figure 4: Time to compute (3.1) for Algo-
rithm 2 versus a CPLEX LP solver.

evaluation we use a modified inverted pendulum problem with a discount factor of 0.99, as described
for example in (Lagoudakis and Parr, 2003). For the aggregation, we use a uniform grid of dimension
40 × 40 and uniform sampling of dimensions 120 × 120. The ordinary setting is solved easily and
reliably by both the standard aggregation and RAAM. To study the robustness with respect to the
approximation error of suboptimal policies we add an additional reward ra for the pendulum under a
tilted angle (π/2− 0.12 ≤ θ ≤ π/2 and θ̈ ≥ 0 where θ is the angle and θ̈ is the action). This reward
can be only achieved by a suboptimal policy. Fig. 3 shows the return of the approximate policy as
the function of the magnitude of the additional reward for the standard aggregation and RAAM with
various values on ω. We omit the confidence ranges, which are small, to enhance image clarity.
Note that we assume that once the pendulum goes over π/2, the reward -1 is accrued until the end of
the horizon. This result clearly demonstrates the greater stability and robustness of RAAM for than
standard aggregation. The results also illustrate the lack of stability of ALP, which is can be seen as
an optimistic version of RAAM. We observed the same behavior for other parameter choices.

The main cost of using RAAM compared to ordinary aggregation is the increased computational
complexity. Our results show, however, that the computational overhead of RAAM is minimal.
Section 5 shows that Algorithm 2 is several orders of magnitude faster than CPLEX 12.3. The
value function update for the aggregated inverted pendulum with 1600 states, 3 actions, and about
9 robust outcomes takes 8.7ms for ordinary aggregation, 8.8ms for RAAM with ω = 2, and 9.7ms
for RAAM with ω = 1. The guarantees on the improvement for one iteration are the same for both
algorithms and all implementations are in C++.

6 Conclusion

RAAM is novel approach to state aggregation which leverages RMDPs. RAAM significantly re-
duces performance loss guarantees in comparison with standard aggregation while introducing neg-
ligible computational overhead. The robust approach has some distinct advantages in comparison
with previous methods with improved performance loss guarantees. Our experimental results are en-
couraging and show that adding robustness can significantly improve the solution quality. Clearly,
not all problems will benefit from this approach. However, given the small computational overhead
and there is no reason to not try. While we do provide some theoretical justification for choosing w
and ω, it is most likely that in practice these can be best treated as regularization parameters.

Many improvements on the basic RAAM algorithm are possible. Most notably, the RMDP action
set could be based on “meta-actions” or “options”. The L1 may be replaced by other polynomial
norms or KL divergence. RAAM could be also extended to choose adaptively the most appropri-
ate aggregation for the given samples (Bernstein and Shikim, 2008). Finally, using s-rectangular
uncertainty sets may lead to better results.

Acknowledgments

We thank Ban Kawas for extensive discussions on this topic and the anonymous reviewers for their
comments that helped to significantly improve the paper.

8

References
Bean, J. J. C., Birge, J. R. J., and Smith, R. R. L. (1987). Aggregation in dynamic programming.

Operations Research, 35(2), 215–220.
Bernstein, A. and Shikim, N. (2008). Adaptive aggregation for reinforcement learning with efficient

exploration: Deterministic domains. In Conference on Learning Theory (COLT).
Bertsekas, D. P. D. and Castanon, D. A. (1989). Adaptive aggregation methods for infinite horizon

dynamic programming. IEEE Transations on Automatic Control, 34, 589–598.
de Farias, D. P. and Van Roy, B. (2003). The linear programming approach to approximate dynamic

programming. Operations Research, 51(6), 850–865.
Desai, V. V., Farias, V. F., and Moallemi, C. C. (2012). Approximate dynamic programming via a

smoothed linear program. Operations Research, 60(3), 655–674.
Filar, J. and Vrieze, K. (1997). Competitive Markov Decision Processes. Springer.
Gordon, G. J. (1995). Stable function approximation in dynamic programming. In International

Conference on Machine Learning, pages 261–268. Carnegie Mellon University.
Hansen, T., Miltersen, P., and Zwick, U. (2013). Strategy iteration is strongly polynomial for 2-

player turn-based stochastic games with a constant discount factor. Journal of the ACM (JACM),
60(1), 1–16.

Iyengar, G. N. (2005). Robust dynamic programming. Mathematics of Operations Research, 30(2),
257–280.

Kaufman, D. L. and Schaefer, A. J. (2013). Robust modified policy iteration. INFORMS Journal on
Computing, 25(3), 396–410.

Lagoudakis, M. G. and Parr, R. (2003). Least-squares policy iteration. Journal of Machine Learning
Research, 4, 1107–1149.

Le Tallec, Y. (2007). Robust, Risk-Sensitive, and Data-driven Control of Markov Decision Pro-
cesses. Ph.D. thesis, MIT.

Mannor, S., Mebel, O., and Xu, H. (2012). Lightning does not strike twice: Robust MDPs with
coupled uncertainty. In International Conference on Machine Learning.

Marecki, J., Petrik, M., and Subramanian, D. (2013). Solution methods for constrained Markov
decision process with continuous probability modulation. In Uncertainty in Artificial Intelligence
(UAI).

Munos, R. (2005). Performance bounds in Lp norm for approximate value iteration. In National
Conference on Artificial Intelligence (AAAI).

Nilim, A. and Ghaoui, L. E. (2005). Robust control of Markov decision processes with uncertain
transition matrices. Operations Research, 53(5), 780–798.

Petrik, M. (2012). Approximate dynamic programming by minimizing distributionally robust
bounds. In International Conference of Machine Learning.

Petrik, M. and Zilberstein, S. (2009). Constraint relaxation in approximate linear programs. In
International Conference on Machine Learning, New York, New York, USA. ACM Press.

Petrik, M., Taylor, G., Parr, R., and Zilberstein, S. (2010). Feature selection using regularization
in approximate linear programs for Markov decision processes. In International Conference on
Machine Learning.

Porteus, E. L. (2002). Foundations of Stochastic Inventory Theory. Stanford Business Books.
Puterman, M. L. (2005). Markov decision processes: Discrete stochastic dynamic programming.

John Wiley & Sons, Inc.
Tsitsiklis, J. N. and Van Roy, B. (1996). An analysis of temporal-difference learning with function

approximation.
Van Roy, B. (2005). Performance loss bounds for approximate value iteration with state aggregation.

Mathematics of Operations Research, 31(2), 234–244.
Wiesemann, W., Kuhn, D., and Rustem, B. (2013). Robust Markov decision processes. Mathematics

of Operations Research, 38(1), 153–183.

9

