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Blood Inventory Management Problem

Regional blood banks:

Aggregate supplied blood
Supply demand requested by the
hospitals

Objectives:

Minimize shortage – demand that is
not satisfied
Maximize utilization – amount of
blood used before it perishes
Minimize cost – the financial cost of
keeping the blood
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Considerations

Demand and supply of blood are stochastic

Blood is perishable

Multiple blood types are compatible

Blood type distribution: Supply 6= Demand

Manage how much of which blood is:
1 Used to satisfy the demand
2 Retained in inventory

Challenges not addressed:

Large portion of blood that is reserved is not used
Usage depends on the hospital type 0 20 40
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Formalization

Multistage stochastic problem – stage
= week

Decide whether to satisfy the demand
or keep the inventory

Formulate as a Markov decision
process:

States: S, Actions: A
Transition function: P(s1, a, s2) –
probability of transition from s1 to s2
with action a
Contribution (reward) function: r(s, a)
for state s and action a:
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Transition Function

State:

Inventory: Available blood types and
ages
Demand: Amount of blood required

Action:

Blood amounts and types used satisfy
the demands

Transition function:

Stochastic demand
Stochastic supply added to inventory
Blood discarded after 5 weeks
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Contribution (Reward) Function

Determines tradeoffs in satisfying the demands:

Contribution is linear per unit of blood demand
Type Reward

Unsatisfied 0
Same type 50
Compatible type 45

Contribution of using blood type i for blood type j : cij
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Myopic Solution

Finding the best way of using a given
inventory – single step

Actions:

yi j – Type i used to satisfy demand for
type j
zi – Type i that is retained in
inventory

Solved as a simple flow problem:

max
y ,z

∑
ij

cijyij

s.t.
∑
j∈T

yij + zk ≤ C (i) ∀i ∈ T∑
i

yij ≤ D(j) ∀j ∈ T

yij , zi ≥ 0 ∀i , j ∈ T
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Myopic Solution – Performance

Performance in infinite-horizon discount setting?

Myopic solution: ≈ 273 000

Uses all the supply
Often significant shortages

Optimal solution: ≈ 275 000

Explanation:

Linear penalty for running out of blood
Small variance in supply and demand.

Conclusion:

No sophisticated inventory management necessary to satisfy the supply
Model does not justify keeping blood inventory
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Modified Contribution Function

Include the emergency of the blood request

Critical
Urgent
Elective

Contribution function is:
Type Critical Urgent Elective

Unsatisfied 0 0 0
Same type 50 25 5
Compatible type 45 27.5 4.5

Need to keep inventory:

Myopic solution: ≈ 70 000
Optimal solution: ≈ 94 000

Myopic solution is suboptimal
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Infinite Horizon Objective

Optimize over infinite number of steps (weeks)

Start with an initial state s0

The reward is discounted with γ = 0.9:

Es0

[ ∞∑
i=0

γ iRi

]
= E

[
R0 + 0.9R1 + 0.92R2 + 0.93R3 + . . .

]
Value function: v(s)

Assigns value to each state s
Discounted return when starting in state s:

Es

[ ∞∑
i=0

γ iRi

]
= E

[
R0 + 0.9R1 + 0.92R2 + 0.93R3 + . . .

]
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Value Function as Linear Program

Constraints:

v(s1) ≥ γp (·s1, a1)T v + ra1

v(s1) ≥ γp (·s1, a2)T v + ra2

...

That is:
v(s1) ≥ max

a∈A
1T

s1 (γPav + ra)

For any feasible solution v we have v ≥ v∗

Minimal feasible solution is v∗

Linear program:
min

v
1Tv

s.t. Av ≥ b

Problem: Too large to solve optimally
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Approximate Linear Program

Reduces number of variables in the LP

Consider an approximation basis: M, as a matrix

Value function from colspan(M): v = Mx

Approximate linear program:

min
v

1TMx

s.t. AMx ≥ b

Many constraints – reduce by sampling

Better theoretical properties than other approximate methods – finds
the optimal solution if it is representable
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Value Function in Blood Inventory Management

v(s3)

Stochastic Demand and SupplyAllocation Decision

Inventory+Supply

Demand

Inventory

Demand

Inventory

Pre-decision Post-decision Pre-decision

v(s1) u(s2)

Two types of value function:
1 u value of post-decision state
2 v value of pre-decision state

Greedy step:

arg max
a∈A

1T
s (γPau + ra)

Value function:
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Approximation Basis in Blood Inventory Management

Defines a set of values for each
post-decision state – inventory.

Structure:

Piece-wise linear
Fixed regions of linearity

M =
Feature A Feature B

A=0, B=1 0 1
A=0, B=2 0 2
A=1, B=0 1 0
A=2, B=0 2 0
A=1, B=1 1 1

Greedy step be formulated as a flow
problem

Example value function:

0
1

2
3

4
5

6
7

8
9

10

0

2

4

6

8

10
0

50

100

150

200

250

300

350

400

450

500

Amount blood type ABAmount blood type 0

V
a
l
u
e
 
f
u
n
c
t
i
o
n

Linear regions

Marek Petrik and Shlomo Zilberstein () Blood Management Using Approximate Linear ProgrammingJanuary 13th, 2009 18 / 36



Blood Inventory Management ALP

ALP Constraints:

u(s1) ≥ 1T
s1 (γPa1u + ra1)

u(s1) ≥ 1T
s1 (γPa2u + ra2)

...

But |A| =∞; use:

u(s1) ≥ max
a∈A

1T
s1 (γPau + ra)

u(s1) ≥ max
y ,u,z

cTy

s.t. A1y + A2z ≤ b1

By ≤ b2, y , z ≥ 0

Problem: Not a linear program
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Dual Formulation of Blood Inventory Management

Dualize to get a linear program

u(s1) ≥ min
λ1,λ2

bT
1 λ1 + bT

2 λ2

s.t. AT
1 λ1 + BTλ2 ≥ c

AT
2 λ ≥ u

λ1, λ2 ≥ 0

Leads to:
min

u,λ1,λ2

u(s1) + u(s2) + . . .

s.t. u(s1) ≥ bT
1 λ1 + bT

2 λ2

AT
1 λ1 + BTλ2 ≥ c

AT
2 λ ≥ u

λ1, λ2 ≥ 0
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Performance and Approximation Error

ALP Solution quality: 18 000

Myopic solution: 70 000

Approximation is too loose

Approximation errors:
1 Representational – Limited approximation features (basis) M
2 Transitional – Limitation of ALP formulation
3 Sampling – Limited number of sampled constraints
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Sampling Error

Sources:
1 Constraint sampling
2 Constraint estimation

Constraint matrix A:

Constraint Estimation Error

Constraint Sampling Error
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Constraint Sampling

Full ALP:

min
x

1TMx

s.t. 1T
s Mx ≥ 1T

s (γPaMx + ra) ∀s ∈ S

Constraint for each state in S
Consider a subset S̃ ⊂ S
Reduced ALP:

min
x

1TMx

s.t. 1T
s Mx ≥ 1T

s (γPaMx + ra) ∀s ∈ S̃
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Constraint Estimation

Constraints in ALP:

1T
s Mx ≥ 1T

s γPaMx + ra) ∀s ∈ S
Must be sampled when:

Unknown problem model
Possible transition to too many states

Sample states from the transition probability s → s1, s2, . . . , sn
Constraint:

v(s) ≥ γPav + ra = γES [v(S)] + ra

≈ γ 1

n

n∑
j=1

v(sj) + ra

Can show regularity for ALP – for sufficiently large n, the error is
sufficiently small
The number of samples depends on the number of features in the ALP
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Constraint Sampling

v(s3)

Stochastic Demand and SupplyAllocation Decision

Inventory+Supply

Demand

Inventory

Demand

Inventory

Pre-decision Post-decision Pre-decision

v(s1) u(s2)

Constraint sampling = selecting the inventory

Constraint estimation = selecting stochastic supply and demand

Problem: The stochastic demand and supply effect is larger that the
demand effect – the variance is too high
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Constraint Sampling Error
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Synchronized Sampling

Exploit:

Inventory influence mostly independent of the demand and supply

Use ω to denote the stochastic supply/demand

f (s, ω) = the state that follows from s given action a and
demand/supply ω
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Synchronized Sampling

Sampled supply/demand: ω1
1, ω

1
2, . . . , ω

2
1, ω

2
2, . . .

Standard constraint sampling

A =


1 0 0 . . .
0 1 0 . . .

...
0 0 0 . . . 1

− γ 1

n

−−
∑n

j=1 v(f (s1, ω
1
j )) −−

−−
∑n

j=1 v(f (s2, ω
2
j )) −−

−−
...


Synchronized constraint sampling

A =


1 0 0 . . .
0 1 0 . . .

...
0 0 0 . . . 1

−γ 1

n

n∑
j=1

−− v(s1)− γv(f (s1, ωj)) −−
−− v(s2)− γv(f (s2, ωj)) −−

−−
... −−
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Synchronized Constraint Sampling Error
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Transitional Error

The standard bound:

‖v∗ − ṽ‖1 ≤
2

1− γ
min

x
‖v∗ −Mx‖∞

Approximate value function may still be useless:
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Resource Management Transitional Error

Typically concave value functions

Approximation by a piece-wise linear function

ALP can be seen as approximating the derivative of the value function

Consider an MDP with value function:
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Relaxed Approximate Linear Program

Allow limited constraint violation

Original linear program:

min
v

1Tv

s.t. Av ≥ b

Assume a weight distribution on the constraints: d

Transformed into:

min
v

1Tv + dT [r − Ax ]+

Corresponds to upper bounds on dual variables

If d ≥ 1
1−γ1 the solution is identical to ALP

Preserves good theoretical properties of ALP
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Empirical Performance

Performance of ALP:

Optimal RALP Myopic ALP
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Conclusion

Blood inventory management is an interesting and hard resource
management problem

Payoff for blood supply must be concave or the optimal solution is
trivial – myopic

Important aspects of ALP solution:

The sampling method for constraint selection
The sampling method for constraint estimation
Relaxation of “outlier” constraints

ALP can work well

But needs significant tweaking and adjustments
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