
Learning Heuristic Functions Through Approximate Linear Programming

Marek Petrik and Shlomo Zilberstein
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

{petrik,shlomo}@cs.umass.edu

Abstract

Planning problems are often formulated as heuristic search.
The choice of the heuristic function plays a significant role
in the performance of planning systems, but a good heuris-
tic is not always available. We propose a new approach to
learning heuristic functions from previously solved problem
instances in a given domain. Our approach is based on ap-
proximate linear programming, commonly used in reinforce-
ment learning. We show that our approach can be used ef-
fectively to learn admissible heuristic estimates and provide
an analysis of the accuracy of the heuristic. When applied
to common heuristic search problems, this approach reliably
produces good heuristic functions.

Introduction
Heuristic search plays an important role in planning (Bonet
and Geffner 2001; Hoffman and Nebel 2001). Numer-
ous planning algorithms have been developed based on A*,
branch an bound, and their many derivatives. These al-
gorithms use an admissible heuristic function to guide the
search process and prune unpromising parts of the search
space. Thus, a good heuristic function is crucial for good
performance of many planning systems. When a planning
problem is formulated as an integer program, an admissi-
ble heuristic can be derived using the corresponding linear
program without the integrality constraints (Bylander 1997).
Yet, many planning domains lack the necessary structure
that makes such relaxation methods applicable. As a result,
heuristic functions are often constructed manually.

There has been significant progress in recent years with
automatic construction of heuristic functions using state
abstraction in either deterministic (Holte et al. 1996) or
stochastic domains (Beliaeva and Zilberstein 2005). Ef-
fective methods have been developed based on hierarchical
heuristic search (Holte, Grajkowski, and Tanner 2005) and
pattern databases (Culberson and Schaeffer 1996). By ap-
plying abstraction to the original state-space, a much smaller
problem can be created, the solution of which provides an
admissible heuristic estimate for solving the original prob-
lem. The key question is how to construct the abstract
state space efficiently. Some state aggregation techniques

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

work well in domains with a certain structure, but extensive
analysis or enumeration of the original state-space are re-
quired in others. Thus creating a good heuristic function
automatically in large domains–ones that cannot be fully
enumerated–remains an important challenge. We show how
this problem can be solved using sample plans. Our ap-
proach produces quickly a heuristic function that is admissi-
ble and precise with high probability.

In many settings, such as online planing and conformant
planning, problem instances must be solved multiple times.
The results of previous searches–both the solutions and ex-
panded nodes–offer valuable statistics on the performance
of the heuristic function, and can be used to improve it. We
propose an approach to construct a heuristic function au-
tomatically from search data. The goal is not necessarily
to improve on the best known heuristic functions for well-
studied domains, which are often based on thorough analy-
sis and deep human insights. Instead, the advantage of our
approach is its generality and that it does not impose restrict-
ing conditions. Therefore, it is very easy to apply it to new
domains to quickly obtain useful admissible heuristics.

We propose a new framework to create heuristic functions
based on approximate linear programming (ALP). ALP is
often used in reinforcement learning to learn how to act
in complex stochastic domains modeled as Markov deci-
sion processes (MDPs) (Powell 2007). Solution techniques
are typically based on calculating a value function, which
is the expected total return that can be obtained when act-
ing optimally starting in a given state. The value function
is typically maximized. To solve large problems, the value
function can be approximated using a small linear subspace,
generated by an approximation basis. The basis captures
a limited set of features of all states. Given that the basis
is restricted, the value function needs to be solved only for
a small subset of all states. The states can be sampled and
only a small portion of them is typically required, depending
on the size of the subspace.

Approximate linear programming is beneficial for con-
structing heuristic functions for several reasons. In ALP, the
Markov decision problem is formulated as a linear program
in which the variables represent the values of the different
states (Powell 2007). To approximate the value function, the
variables are restricted to a small-dimensional linear space.
This makes the problem much easier to solve. While in some

small problems it is possible to use all the constraints, it is
typically sufficient to only use a small subset of them. This is
because of properties of linear programs which we discuss
below. Furthermore, ALP is guaranteed to produce an up-
per bound on the exact value function (Trick and Zin 2005).
Since in MDPs the goal is to maximize the expected reward,
an upper bound provides an admissible heuristic. The re-
striction to a small-dimensional linear space ensures that the
heuristic function is easy to compute.

Approximate linear programming can be seen as a gen-
eralization of state-space abstraction and additive pattern
databases. Like state space abstraction, the method relies
on grouping states, based on their features. It does pro-
vide, however, a richer set of representations, as we de-
scribe below. Furthermore, it does not require a full enu-
meration of the abstract search space. Instead, the ap-
proach may be based purely on samples of the transi-
tions (de Farias and Roy 2004; Goldfarb and Iyengar 2003;
Ben-Tal and Nemirovski 2008). Because the features in ALP
may be real numbers, it is possible to use pattern databases
as the features. Hence, our approach can be seen as finding
a linear combination of pattern databases that preserves the
admissibility of the heuristic function.

The paper is organized as follows. First, we formally de-
fine the framework. Next, we describe a basic formulation
of the approximate linear program for finding an admissible
heuristic function. Then, we propose an alternative formu-
lation, which minimizes the maximal error of the heuristic
function. Properties of the approximation features that en-
sure a good approximation are described next. This extends
the standard analysis of approximate linear programming
and provides a new foundation for automatic creation of
good admissible heuristics. Finally, we demonstrate the ap-
proach on the 8-puzzle problem–a simple well-known prob-
lem that allows us to analyze the quality of the obtained
heuristic functions.

Formal Framework
We begin with a formal description of the search problem.
To maintain consistency with the standard reinforcement
learning literature, we assume that the problem is a maxi-
mization problem. Planning problems are often framed as
minimization problems, but any minimization problem can
be easily transformed to a maximization one by using nega-
tive rewards to capture the cost of actions.

While we focus in this paper on deterministic problems,
the framework also applies to stochastic domains, when used
with LAO* (Hansen and Zilberstein 2001). In fact, it is
harder to find admissible heuristics in stochastic domains so
our approach may prove particularly useful (Beliaeva and
Zilberstein 2005). The search problem is defined as follows:

Definition 1. A search problem is a tuple (S,A, t, r), where
S is a set of states with a single initial state σ and a single
goal state τ . A is a set of actions available in each state,
and the function t(s, a) = s′ specifies the successor state s′
of some state s 6= τ when action a is taken. The function
r(s, a) ∈ R specifies the corresponding reward, which is a
negative cost.

The objective is to find a terminating path for a given state
s with the maximal discounted cumulative return. The path
is a sequence of the form ({ai ∈ A, si ∈ S})n

i=1, such that
sn = τ and t(si, ai) = si+1 for i < n. The value of such a
sequence, starting in some state s1, is:

v(s1) =
n−1∑
i=1

γir(si, ai).

The optimal value, denoted as v∗(s1), is the maximal pos-
sible value over any goal-terminated sequence starting in the
given state. The discount factor is considered only for the
sake of generality. Unlike some traditional MDP solution
techniques, our approach applies also to problems without
discounting (i.e., when γ = 1). We assume that there is al-
ways a path from σ to any state s and that there is a path
from any state s to the goal τ . We also assume that there are
no cycles with positive cumulative rewards. Otherwise, it is
possible to construct a solution with an infinite return when
γ = 1. Finally, we assume that the goal is reachable from
every state.

A heuristic function h : S → R is a function that assigns
a real value to each state, which is an estimate of the value
of that state. Since we consider maximization problems, a
heuristic function is admissible when h(s) ≥ v(s) for all
s ∈ S. In general, a lower admissible heuristic function is
preferable because it tends to be a more accurate estimate
of v. That is, the heuristic function is an upper bound on
the value of each state. We also consider a lower bound
on the value of each state, denoted as θ : S → R, such that
θ(s) ≤ v(s) for all s ∈ S. The utility of such a function is to
asses the bound on the approximation error of the heuristic
function.

The heuristic function is learned from samples of pre-
viously solved problem instances. These are sequences of
state-action pairs that connect a state with the goal. We as-
sume that some of them are arbitrary goal-terminated paths:

({sj
i , a

j
i})

nj

i j ∈ B, snj
= τ,

and others are optimal goal-terminated paths:

({sj
i , a

j
i})

nj

i j ∈ A, snj
= τ.

The sequences in both sets A and B are used to determine
the lower bounds on the heuristic function. That is, they en-
sure that the heuristic function is admissible. The sequences
in set A are used to determine the lower bounds on v∗ and
thus how far the heuristic function is from the true value of
each state. We denote the set of all sequences C = A ∪ B.
Notice that in the following, sj

i denotes an i-th state of the
sequence j, while si is a specific state from S, unrelated to
sj

i . A similar notation is used for actions.
A necessary component for constructing a heuristic func-

tion is a set of state features. The heuristic function is ob-
tained as a linear combination of the features, and thus the
set of feasible heuristic functions is a linear space. Because
the features abstract the state space, they enable generaliza-
tion from an incomplete set of samples. The basis of this
space is composed of the columns of a matrix denoted as

2
5

1

9

3

2

1

τs1

Figure 1: Formulations ensuring admissibility.

M , with each row corresponding to a single state. That is,
each row of M defines the features for the corresponding
state. The features are not limited to {0, 1}, but may have
arbitrary real values. The heuristic function is expressed as:

h = Mx,

for some vector x, which represents the weight on the fea-
tures. We use the vector and function notations interchange-
ably, depending on the circumstances. In the vector notation,
we assume an arbitrary but fixed ordering of the states and
the actions. A specific instance of such approximation is ab-
straction, or aggregation. In abstraction, the set of all states
S is partitioned into S1 . . .Sm. The approximation basis is
then constructed as: M(i, j) = 1 ⇔ si ∈ Sj , where si

corresponds to row i. Choosing the basis to be the identity
matrix allows an arbitrary heuristic function to be expressed.

Besides reducing the need for sampling, a limited basis
allows for heuristic functions to depend on features that are
calculated easily. Without any restriction, the heuristic func-
tion in problems with a complex state space could be as hard
to compute as the actual solution.

Admissible Heuristic Functions
In this section we propose two linear formulations that en-
sure the admissibility of a heuristic function. The feasible
set is represented by a set of linear inequalities.

The two basic formulations are depicted in Figure 1. The
first formulation, is to simply bound the heuristic value by
the value received in the sampled states, and is represented
by the dotted line in the figure. Formally, this is stated as:

h(sj
i) ≥

nj∑
k=i

γk−ir(sj
k, a

j
k) ∀j ∈ C, ∀i = 1 . . . nj (1)

Clearly, this formulation ensures the admissibility of the
heuristic function. Notice that this will possibly mean multi-
ple inequalities for each state, but only the dominating ones
need to be retained. Thus let vi denote the highest right-
hand side for state si. The function must be restricted to the
vector subspace spanned by columns of M . For notational
convenience, we formulate the problem in a way that is in-
dependent of samples. Let h and v be column vectors with
each row corresponding to a state. Then the inequality may
be written as:

h = Mx ≥ v,
treating h as a vector. In general, only some of the inequal-
ities are provided based on the available samples; with all
samples v = v∗. To simplify the notation, we denote this
feasible set as H1, and thus h ∈ H1.

The second formulation is based on approximate linear
programming, and is represented by the solid lines in Fig-
ure 1. In this case, the sample paths do not need to be ter-
minated by the goal node. However, the heuristic function is
actually required to be consistent, which is a stronger condi-
tion than admissibility. That is, for each observed sequence
of two states, the difference between their heuristic values
must be greater than the reward received. Formally,

h(sj
i) ≥ γh(s

j
i+1) + r(sj

i , a
j
i)

∀j ∈ C, ∀i = 1 . . . nj−1

h(τ) ≥ 0
(2)

In this case, we can define an action-transition matrix Ta for
action a. The matrix captures whether it is possible to move
from the state defined by the row to the state defined by the
column.

Ta(i, j) = 1⇔ t(si, a) = sj .

A transition matrix T for all actions can then be created by
vertically appending these matrices as follows:

T = [Ta1 ;Ta2 . . .].

Similarly, we define a vector ra of all the rewards for ac-
tion a, such that ra(i) = r(si, a). The vector r of all the
rewards for all the actions can then be created by append-
ing the vectors: r = [ra1 ; ra2 . . .]. The constraints on the
heuristic function in matrix form become:

h ≥ γTah+ ra ∀a ∈ A,

together with the constraint h(τ) ≥ 0. To include the basis
M to which the heuristic function is constrained, the prob-
lem is formulated as:

(I − γTa)Mx ≥ ra ∀a ∈ A
h(τ) ≥ 0,

where I is the identity matrix. To simplify the notation, we
denote the feasible set as H2, and thus h ∈ H2.

The formulation in Eq. (2) ensures that the resulting
heuristic function will be admissible.
Proposition 1. Given a complete set of samples, the heuris-
tic function h ∈ H2 is admissible. That is, for all s ∈ S ,
h(s) ≥ v(s).

Proof. By induction on the length of the path from state s
to the goal with maximal value. The base case follows from
the definition. For the inductive case, let the optimal path to
the goal from state s take action a, breaking ties arbitrarily.
Let then s1 = t(s, a). From the inductive hypothesis and
sub-path optimality, we have that h(s1) ≥ v(s1). Then:

h(s) ≥ γh(s1) + r(s, a) ≥ γv(s1) + r(s, a) = v(s).

Therefore, for a finite state space, the function h is an ad-
missible heuristic function.

In addition to admissibility, given incomplete samples, the
heuristic function obtained from Eq. (2) is guaranteed not to
be lower than the lowest heuristic value feasible in Eq. (1),
as the following proposition states.

Proposition 2. Let C be a set of samples that does not nec-
essarily cover all states. If h is infeasible in Eq. (1), then h
is also infeasible in Eq. (2).

The proof of this proposition is simple and relies on the
fact that if an inequality is added for every segment of a path
that connects it to the goal, then the value in this state cannot
be less than the sum of the transition rewards.

Proposition 2 shows that given a fixed set of samples,
Eq. (2) guarantees admissibility whenever Eq. (1) does.
However, as we show below, it may also lead to a greater
approximation error. We therefore analyze a hybrid formu-
lation, weighted by a constant α:

∀j ∈ C, ∀i = 1 . . . nj−1 :

h(sj
i) ≥ αγh(sj

i+1) + αr(sj
i , a

j
i) + (1− α)v(sj

i)
(3)

Here v(sj
i) is the value of state sj

i in sequence j. When it
is not available, an arbitrary lower bound may be used. For
α = 0, this formulation is equivalent to Eq. (1), and for
α = 1, the formulation is equivalent to Eq. (2). We denote
the feasible set as H3, and thus h ∈ H3. The key property
of this formulation is stated in the following lemma, which
is used later in the paper to establish approximation bounds,
and is straightforward to prove.
Lemma 1. The optimal value function v∗ is a feasible solu-
tion of Eq. (3) for an arbitrary α.

Given the above, we are ready to formulate the linear pro-
gram for an admissible heuristic function. In general, it is
beneficial to make the heuristic function as close as possi-
ble to the optimal value, while preserving its admissibility.
That implies minimizing the heuristic function, while ensur-
ing admissibility:

minimize cTh

subject to h ∈ H3

(4)

In this program, c is an arbitrary non-negative vector that
sums to one. It represents a distribution over the states. The
formulation corresponds exactly to approximate linear pro-
gramming when α = 1. But to use this program in practice,
we need to address two fundamental questions:

1. Minimizing the weighted sum of the errors is somewhat
arbitrary (de Farias 2002); and

2. The existence of a finite admissible heuristic is not guar-
anteed. That is, Eq. (4) may not have a feasible solution.

We address these issues below and discuss the performance
of these methods under partial availability of samples.

Lower Bounds on the Value Function
In this section we show that in some settings it is possible to
obtaining a tight lower bound on the value of each state. This
is important because it allows us to evaluate the difference
between the heuristic value and the true value of each state.
The lower bounds on the values of some selected states are
obtained from the optimal solutions.

The formulation we consider is similar to Eq. (1).

θ(sj
i) ≤

nj∑
k=i

γk−ir(sj
k, a

j
k) ∀j ∈ A, ∀i = 1 . . . nj (5)

1

10

≤ 9

s2

τs1

Figure 2: Lower bound formulations, where the dotted lines
represent paths of arbitrary length.

That is, the bounds are on the values of states that were
solved optimally and any nodes that are on the path con-
necting the start state with the goal state. These bounds can
also be written in matrix notation, as in Eq. (1):

θ = My ≥ v∗.

We denote this feasible set G1, and thus θ ∈ G1. Additional
bounds may be introduced as well. Given an admissible
heuristic function, bounds can be deduced for any state that
is expanded, even when it is not on an optimal path. While
these bounds may not be tight in many cases, they will only
increase the probability that the function θ is a lower bound.
Notice that these constraints are sampled in the same manner
as the constraints that ensure feasibility.
Proposition 3. When the set of samples is complete and θ
satisfies Eq. (5), then

θ(s) ≤ v∗(s) ∀s ∈ S.

The proof of this proposition is straightforward.
In addition to the formulation above, a variation of Eq. (2)

can also be considered. For this, assume that every state is
reachable from the initial state σ. Then, the bounds can be
written for ∀j ∈ A, ∀i = 1 . . . nj−1 as:

θ(sj
i+1) ≤ γθ(sj

i)− r(s
j
i , a

j
i)

θ(σ) ≤v∗(σ).
(6)

Unlike Eq. (2), these constraints alone do not guarantee that
the function θ will be a lower bound on the optimal value
of the states. Figure 2 depicts a situation in which these
bounds are satisfied, but there is a feasible solution that is
not an upper bound. Similarly, as in Eq. (2), the bounds may
be formulated as:

(I − γTa)My ≥ ra ∀a ∈ A
θ(σ) ≤ v(σ)

We denote this feasible set G2, and thus θ ∈ G2.
Using the upper and lower bounds, we can formulate a

new linear program to solve the approximation problem:

minimize δ

subject to h(s)− θ(s) ≤ δ ∀s ∈ S
h ∈ H3 θ ∈ G1

(7)

This linear program, unlike Eq. (4), minimizes the max-
norm error of the approximation. This is because from the
definition h(s) ≥ θ(s) for all s. In addition, even when

the linear program is constructed from the samples only,
this inequality holds. Notice that the number of constraints
h(s)−θ(s) ≤ δ is too large, because one constraint is needed
for each state. Therefore, in practice these constraints will
be sampled as well as the remaining states. In particular, we
use those states s for which v∗(s) is known. While it is pos-
sible to use G2 instead of G1, that somewhat complicates
the analysis. We summarize below the main reasons why
the formulation in Eq. (7) is more suitable than Eq. (4).

Approximation Bounds
We showed above how to formulate the linear programs for
optimizing the heuristic function. It is however important
whether these linear programs are feasible and whether their
solutions are close to the best heuristic that can be repre-
sented using the features in basis M . In this section, we ex-
tend the analysis used in approximate linear programming to
show new conditions for obtaining a good heuristic function.

We are interested in bounding the maximal approxima-
tion error ‖h − v∗‖∞. This bound limits the maximal er-
ror in any state, and can be used as a rough measure of
the extra search effort required to find the optimal solution.
Alternatively, given that ‖h − v∗‖∞ ≤ ε, then the greed-
ily constructed solution with this heuristic will have the ap-
proximation error of at most mε, where m is the number of
steps required to reach the goal. This makes it possible to
solve the problem without search. For simplicity, we do not
address here the issues related to limited sample availabil-
ity, which have been previously analyzed (de Farias 2002;
de Farias and Roy 2004; Ben-Tal and Nemirovski 2008;
Goldfarb and Iyengar 2003)

The approximation bound for the solution of Eq. (4) with
the constraints in Eq. (2) comes from approximate linear
programming (de Farias 2002). Assuming there is a z such
that e = Mz, the bound is:

‖v∗ − h‖c ≤
2

1− γ
min

x
‖v∗ −Mx‖∞,

where ‖ · ‖c is an L1 error bound weighted by a vector c,
elements of which sum to 1. The approximation bound con-
tains the multiplicative factors, because even when Mx is
close to v∗ it may not satisfy the required feasibility condi-
tions. This bound only ensures that the sum of the errors
is small, but errors in some of the states may still be very
large. The bound can be directly translated to an L∞ bound,
assuming that c = e, that is a vector of all ones. The bound
is as follows:

‖v∗ − h‖∞ ≤ |S|
2

1− γ
min

x
‖v∗ −Mx‖∞.

The potential problem with this formulation is that it may
be very loose when: (1) the number of states is large, since
it depends on the number of states |S|; or (2) the discount
factor γ is close to 1 or is 1.

We show below how to address these problems using the
alternative formulation of Eq. (7) and taking advantage of
additional structure of the approximation space. In the fol-
lowing, we use e to denote the vector of all ones.

1

1

s2

s3

s1

Figure 3: An approximation with loose bounds.

Lemma 2. Assuming that e = Mz for some z. Then there
exists a heuristic function ĥ that is feasible in Eq. (3) and
satisfies:

‖ĥ− v∗‖∞ ≤
2

1− γα
min

x
‖v∗ −Mx‖∞.

The proof is similar to that of Lemma 4. Using similar
analysis, the following lemma can be shown.
Lemma 3. Assume that e = Mz for some z. Then there
exists a lower bound θ̂ that is feasible in Eq. (5), such that:

‖θ̂ − v∗‖∞ ≤ 2 min
x
‖v∗ −Mx‖∞.

This lemma can be proved simply by subtracting εe from
θ that is closest to v∗. The above lemmas lead to the follow-
ing theorem with respect to the formulation in Eq. (7).
Theorem 1. Assume that e = Mz for some z, and let ĥ, θ̂, δ
be an optimal solution of Eq. (7). Then:

δ = ‖ĥ− v∗‖∞ ≤
(

2 +
2

1− γα

)
min

x
‖v∗ −Mx‖∞.

Proof. Assume that that the solution δ does not satisfy the
inequality. Then, using Lemma 3 and Lemma 2, it is possi-
ble to construct a solution ĥ, θ̂, δ̂. This leads to a contradic-
tion, because δ̂ < δ.

Therefore, by solving Eq. (7) instead of Eq. (4), the error
is independent of the number of states. This is a significant
difference, since the approach is proposed for problems with
a very large number of states.

Even when Eq. (7) is solved, the approximation error de-
pends on the factor 1/(1 − γα). For γ = α = 1, the bound
is infinite. In fact the approximate linear program may be-
come infeasible in this case, unless the approximation basis
M satisfies some requirements. In the following, we show
which requirements are necessary to ensure that there will
always be a feasible solution.

To illustrate this problem with the approximation, con-
sider the following simple example with states S =
{s1, s2, s3} and a single action A = {a}. The goal is the
state τ = s3, and thus there is no transition from this state.
The transitions are t(si, a) = si+1, for i = 1, 2. The re-
wards are also r(si, a) = 1 for i = 1, 2. Now, let the ap-

proximation basis be M =
(

1 0 1
0 1 0

)T

. This example is

depicted in Figure 3, in which the square represents the ag-
gregated states in which the heuristic function is constant.
The bounds of Eq. (2) in this example are

h(s1) ≥ γh(s2) + 1
h(s2) ≥ γh(s3) + 1
h(s3) ≥ 0

τ

65 43

2s2 s3

s4

σ

Figure 4: An example of the Lyapunov hierarchy. The dotted
line represents a constraint that needs to be removed and
replaced by the dashed ones.

The approximation basis M requires that h(s1) = h(s3).
Thus we get that:

h(s1) ≥ γh(s2)+1 ≥ γ2h(s3)+γ+1 = γ2h(s1)+γ+1.

As a result, despite the fact that v(s1) = 2, the heuristic
function is h(s2) = (1+γ)/(1−γ2). This is very imprecise
for high values of γ. A similar problem was addressed in
standard approximate linear programming by introducing so
called Lyapunov vectors. We build on this idea to define
conditions that enable us to use Eq. (3) with high γ and α.
Definition 2 (Lyapunov vector hierarchy). Let u1 . . . uk ≥
0 be a set of vectors, and T and r be partitioned into Ti and ri
respectively. This set of vectors is called a Lyapunov vector
hierarchy if there exist βi < 1 such that:

Tiu
i ≤ βiu

i

Tju
i ≤ 0 ∀j < i

The second condition requires that no states in partition j
transit to a state with positive ui.

An example of such a hierarchy would be an abstraction,
depicted in Figure 4. Let the state space S be partitioned into
l subsets Si, with i = 1 . . . l. Assume that the transitions
satisfy:

∀a t(s, a) = s′ ∧ s ∈ Si ∧ s′ ∈ Sj ⇒ j < i.

That is, there is an ordering of the partitions consistent with
the transitions. Let ui be a vector of the size of the state
space, defined as:

ui(k) = 1⇔ sk ∈ Si,

and zero otherwise. It is easy to show that these vectors
satisfy the requirements of Definition 2. When the approxi-
mation basis M can be shown to contain such ui, it is, as we
show below, possible to use the formulation with γ = α = 1
with low approximation error.
Lemma 4. Assume that there exists a Lyapunov hierarchy
u1 . . . ul, and for each ui there exists zi such that ui = Mzi.
Then there exists a heuristic function ĥ in M that is feasible
in Eq. (3), such that:

‖ĥ−v∗‖∞ ≤
l∏

i=1

(
(1 + αγ)maxk u

i(k)

(1− αγβi)mink ui
i(k)

)
2min

x
‖v∗−Mx‖∞,

where ui
i is the vector ui restricted to states in partition i.

Proof. First, let

ε = 2‖h̃1 − v∗‖∞ = 2min
x
‖Mx− v∗‖∞.

Construct h̃ = h̃1 + εe such that:

v∗ ≤ h̃ ≤ v∗ + ε.

The proof follows by induction on the size l of the Lyapunov
hierarchy. Assume that the inequalities are satisfied for all
i′ < i, with the error ε and the property that the current
h̃ ≥ v∗. Then let ĥ = h̃ + de, for some d. Then, using
Lemma 1, we have:

ĥ = h̃+ dui ≥ v∗ + dui ≥ Tiv
∗ + rdu

i

≥ Tih̃− γαεe+ r + dui

≥ Ti(ĥ− dui)− γαεe+ r + dui

≥ Tiĥ+ r − αβiγdu
i + dui − γαεe

To satisfy ĥ ≥ Tiĥ+ ri, set d to:

αβiγdu
i + dui ≥ γαεe

d ≥ γα

1− αβiγ

1
mink ui

i(k)
ε.

Therefore the total approximation error for ĥ is:

‖ĥ− v∗‖∞ ≤
γα

1− αβiγ

maxk u
i(k)

mink ui
i(k)

ε

The lemma follows because d ≥ 0 and ui ≥ 0, and thus
the condition h̃ ≥ v∗ is not violated. In the end, all the
constraints are satisfied from the definition of the Lyapunov
hierarchy.

The bound on the approximation error of the optimal so-
lution of Eq. (7) may be then restated as follows.
Theorem 2. Assume that there exists a Lyapunov hierarchy
u1 . . . ul, and for each ui there exists zi such that ui = Mzi.
Then for the optimal solution ĥ, δ of Eq. (7):

δ = ‖ĥ− v∗‖∞ ≤

(
1 +

l∏
i=1

(1 + αγ) maxk u
i(k)

(1− αγβi) mink ui
i(k)

)
2ε,

where ε = minx ‖v∗ −Mx‖∞.

The proof follows from Lemma 4 similarly to Theorem 1.
The theorem shows that even when γ = 1, it is possible
to guarantee the feasibility of Eq. (7) by including the Lya-
punov hierarchy in the basis.

A simple instance of a Lyapunov hierarchy is a set of fea-
tures that depends on the number of steps from the goal.
Therefore, the basis M must contain a vector ui, such that
ui(j) = 1 if the number of steps to get to sj is i and 0 other-
wise. This is practical in problems in which the number of
steps to the goal is known in any state. Assuming this sim-
plified condition, Theorem 2, may be restated as follows.

‖ĥ− v∗‖∞ ≤

(
1 +

l∏
i=1

1 + αγ

1− αγβi

)
2 min

x
‖v∗ −Mx‖∞.

This however indicates an exponential growth in error with
the size of the hierarchy with γ = α = 1. Unfortunately, it is
possible to construct an example in which this bound is tight.
We have not observed such behavior in the experiments, and
it is likely that finer error bounds could be established. As
a result of the analysis above, if the basis contains the Lya-
punov hierarchy, the approximation error is finite even for
γ = 1.

In some problems it is hard to construct a basis that con-
tains a Lyapunov hierarchy. An alternative approach is to
include only constraints that obey the Lyapunov hierarchy
present in the basis. These may include multi-step con-
straints, as indicated in Figure 4. As a result, only a subset
of the constrains is added, but this may improve the approx-
imation error significantly. Another option is to define fea-
tures that depend on the actions, not only on states. This is
a non-trivial extension, however, and we leave the details to
future work. Finally, when all the rewards are negative and
the basis contains only a Lyapunov hierarchy, then it can be
shown that no constraints need to be removed.

Experiments
We evaluate the approach on the sliding eight tile puzzle
problem–a classic search problem (Reinefeld 1993). The
purpose of these experiments is to demonstrate the applica-
bility of the proposed approach. We used the eight-puzzle
particularly because it has been studied extensively and be-
cause it can be solved relatively quickly. This allows us to
evaluate the quality of the heuristic functions we obtain in
different settings. Since all the experiments we describe took
less than a few seconds, scaling to large problems with many
sample plans is very promising. Scalability mostly relies
on the ability to solve efficiently large linear programs–an
area that has seen significant progress over the years. In all
instances, we use the formulation depicted by Eq. (7) with
different values of α.

Our basis construction method relies on a set of features
available for the domain. Good features are crucial for ob-
taining a useful heuristic function, since they must be able
to discriminate states based on their heuristic value. In ad-
dition, the set of features must be limited to facilitate gener-
alization. Notice that although the features are crucial, they
are in general much easier to select compared with a good
admissible heuristic function. We consider the following ba-
sis choices:

1. Manhattan distance of each tile from its goal position,
including the empty tile. This results in 9 features that
range in values from 0 to 4. This basis does not satisfy
the Lyapunov property condition. The minimal admissi-
ble heuristic function from these features will assign value
-1 to the feature that corresponds to each tile, except the
empty tile, which is 0.

2. Abstraction based on the sum of the Manhattan distances
of all pieces. For example, feature 7 will be 1 if the sum
of the Manhattan distances of the pieces is 7 and 0 other-
wise. This basis satisfies the Lyapunov hierarchy condi-
tion as defined above, since all the rewards in the domain
are negative.

x0 x1 x2 x3 x4 x5 x6 x7 x8 States
0 -1 -1 -1 -1 0 0 -1 0 958
0 -1 -1 -1 -1 -1 0 -1 0 70264
0 -1 -1 0 -1 -1 -1 -1 -1 63
0 -1 -1 -1 -1 -1 -1 -1 -1 162

Figure 5: Weights calculated for individual features using
the first basis choice. Column xi corresponds to the weight
assigned to feature associated with tile i, where 0 is the
empty tile. The top 2 rows are based on data from blind
search, and the bottom 2 on data from search based on the
heuristic from the previous row.

3. The first feature is the Nilsson sequence score (Nilsson
1971) and the second feature is the total Manhattan dis-
tance minus 3. The Nilsson sequence score is obtained by
checking around the non-central square in turn, allotting
2 for every tile not followed by its proper successor and 0
for every other tile, except that a piece in the center scores
1. This value is not an admissible heuristic.

First, we evaluate the approach in terms of the number of
samples that are required to learn a good heuristic function.
We first collect samples from a blind search. To prevent ex-
panding too many states, we start with initial states that are
close to the goal. This is done by starting with the goal state
and performing a sequence of 20 random actions. Typical
results obtained in these experiments are shown in Figure 5,
all performed with α = 1. The column labeled “States”
shows the total number of node-action pairs expanded and
used to learn the heuristic function, not necessarily unique
ones. The samples are gathered from solving the problem
optimally for two states. The results show that relatively
few nodes are required to obtain a heuristic function that is
admissible, and very close to the optimal heuristic function
with the given features. Notice that the heuristic function
was obtained with no prior knowledge of the domain and
without any a priori heuristic function. Very similar results
were obtained with the second basis.

Next, we compare the two formulations for the upper
bounds, Eq. (1) and Eq. (2), with regard to their approxi-
mation error. Notice that a big advantage of the formulation
depicted by Eq. (2) is the ability to use transitions from states
that are not on a path to the goal. The data is based on 100
goal terminated searches and 1000 additional randomly cho-
sen states. The results are shown in Figure 6. Here, δ is the
objective value of Eq. (7), which is the maximal overesti-
mation of the heuristic function in the given samples. Sim-
ilarly, δ′ is the maximal overestimation obtained based on
1000 state samples independent of the linear program. The
approximate fraction of states in which the heuristic function
is admissible is denoted by p. These results demonstrate the
tradeoff that α offers. A lower value of α generally leads
to a better heuristic function, but at the expense of admissi-
bility. The bounds with regard to the sampled constraints,
as presented in (de Farias 2002) do not distinguish between
the two formulations. A deeper analysis of this is an impor-
tant part of future work. Interestingly, the results show that
the Nilsson sequence score is not admissible, but it becomes

α 1 0.99 0.9 0.8 0
x1 0 -0.26 -1 -1 -1
x2 -0.25 -0.25 -0.59 -0.6 -0.6
x3 0 0 2.52 2.6 2.6
δ 17 16.49 13.65 13.6 13.6
p 1 1 0.97 0.96 0.95
δ′ 19 17 15 14.4 14.4

Figure 6: The discovered heuristic functions as a function of
α in the third basis choice, where xi are the weights on the
corresponding features in the order they are defined.

admissible when divided by 4.
We also applied the proposed approach to Tetris, a popu-

lar benchmark problem in reinforcement learning (Szita and
Lorincz 2006). Because it is an inherently stochastic prob-
lem, we used the Regret algorithm (Mercier and Hentenryck
2007) to solve it using a deterministic method. The Re-
gret algorithm first generates samples of the uncertain com-
ponent of the problem and then treats it as a deterministic
problem. It is crucial in Tetris to have a basis that con-
tains a Lyapunov hierarchy, since the rewards are positive.
Since we always solve the problem for a fixed number of
steps forward, such a hierarchy can be defined based on the
number of steps remaining as in Figure 4. Our initial ex-
periments with Tetris produced promising results. However,
to outperform the state-of-the-art methods–such as approxi-
mate linear programming (Farias and Roy 2006) and cross-
entropy methods (Szita and Lorincz 2006)–we need to scale
up our implementation to handle millions of samples. This
is mostly a technical challenge that can be addressed using
methods developed by Farias and Roy (2006).

Conclusion
We present a new approach for automatic construction of
heuristic functions by extending the applicability of some
common reinforcement learning techniques to this problem.
When applied naively, these techniques may lead to formu-
lations that have no feasible solutions. We showed that by
guaranteeing certain properties, it is possible to ensure that
the approximation is finite and–in some cases–accurate, with
tight error bounds. This work lays the foundation for fur-
ther understanding of how sampling techniques can produce
good heuristic functions for complex planning problems.

Learning heuristic functions automatically is a longstand-
ing challenge in artificial intelligence. Despite the existing
shortcomings, the new approach we propose has several im-
portant advantages. The formulation is very general and
it places only modest assumptions on the features. It re-
quires little domain knowledge. It works well with samples
of plans–both optimal and non-optimal ones. And, most im-
portantly, it makes it possible to compute guarantees on the
admissibility of the learned heuristic function.

Acknowledgements
This work was supported in part by the Air Force Office of
Scientific Research under Grant No. FA9550-08-1-0171 and

by the National Science Foundation under Grant No. IIS-
0535061. The findings and views expressed in this paper
are those of the authors and do not necessarily reflect the
positions of the sponsors.

References
Beliaeva, N., and Zilberstein, S. 2005. Generating admissible
heuristics by abstraction for search in stochastic domains. In
Abstraction, Reformulation and Approximation. Springer Berlin
/ Heidelberg. 14–29.
Ben-Tal, A., and Nemirovski, A. 2008. Selected topics in robust
optimization. Mathematical Programming, Series B 112:125–
158.
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1-2):5–33.
Bylander, T. 1997. A linear programming heuristic for optimal
planning. In National Conference on Artificial Intelligence, 694–
699.
Culberson, J. C., and Schaeffer, J. 1996. Searching with pattern
databases. In Advances in Artifical Intelligence. Springer Berlin /
Heidelberg. 402–416.
de Farias, D. P., and Roy, B. V. 2004. On constraint sampling
in the linear programming approach to approximate dynamic pro-
gramming. Mathematics of Operations Research 29(3):462–478.
de Farias, D. P. 2002. The Linear Programming Approach to
Approximate Dynamic Programming: Theory and Application.
Ph.D. Dissertation, Stanford University.
Farias, V., and Roy, B. V. 2006. Probabilistic and Randomized
Methods for Design Under Uncertainty. Springer-Verlag. chapter
6: Tetris: A Study of Randomized Constraint Sampling.
Goldfarb, D., and Iyengar, G. 2003. Robust convex quadratically
constrained programs. Mathematical Programming 97:495–515.
Hansen, E. A., and Zilberstein, S. 2001. LAO *: A heuristic
search algorithm that finds solutions with loops. Artificial Intelli-
gence 129(1-2):35–62.
Hoffman, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Aritifial In-
telligence Research 14:253–302.
Holte, R. C.; Mkadmi, T.; Zimmer, R.; and MacDonald, A. 1996.
Speeding up problem solving by abstraction: a graph oriented
approach. Artificial Intelligence 85:321–361.
Holte, R. C.; Grajkowski, J.; and Tanner, B. 2005. Hierarchi-
cal heuristic search revisited. In Abstraction, Reformulation and
Approximation. Springer Berlin / Heidelberg. 121–133.
Mercier, L., and Hentenryck, P. V. 2007. Performance analysis
of online anticipatory algorithms for large multistage stochastic
integer programs. In International Joint Conference on AI, 1979–
1985.
Nilsson, N. 1971. Problem-Solving Methods in Artificial Intelli-
gence. McGraw Hill.
Powell, W. B. 2007. Approximate Dynamic Programming. Wiley-
Interscience.
Reinefeld, A. 1993. Complete solution of the eight-puzzle and
the benefit of node ordering in IDA*. In International Joint Con-
ference on AI, 248–253.
Szita, I., and Lorincz, A. 2006. Learning Tetris using the noisy
cross-entropy method. Neural Computation 18(12):2936–2941.
Trick, M. A., and Zin, S. E. 2005. Spline approximations to value
functions: A linear programming approach. Macroeconomic Dy-
namics 1(1):255–277.

