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Abstract

In real-time planning, an agent must select the next action
to take within a fixed time bound. Many popular real-time
heuristic search methods approach this by expanding nodes
using time-limited A* and selecting the action leading toward
the frontier node with the lowest f value. In this paper, we re-
consider real-time planning as a problem of decision-making
under uncertainty. We propose treating heuristic values as un-
certain evidence and we explore several backup methods for
aggregating this evidence. We then propose a novel looka-
head strategy that expands nodes to minimize risk, the ex-
pected regret in case a non-optimal action is chosen. We
evaluate these methods in a simple synthetic benchmark and
the sliding tile puzzle and find that they outperform previous
methods. This work illustrates how uncertainty can arise even
when solving deterministic planning problems, due to the
inherent ignorance of time-limited search algorithms about
those portions of the state space that they have not computed,
and how an agent can benefit from explicitly metareasoning
about this uncertainty.

Introduction
In some AI applications, such as user interfaces or fixed-
wing aircraft control, it is undesirable for the system to ex-
hibit unbounded pauses between actions. In real-time plan-
ning, an agent is required to select its next action within a
fixed time bound. The agent attempts to minimize its to-
tal trajectory cost as it incrementally plans toward a goal.
Many real-time heuristic search methods have been devel-
oped for this problem setting. Many of them follow the ba-
sic three-phase paradigm set down in the seminal work of
Korf (1990): 1) starting at the agent’s current state, expand
a fixed number of nodes to form a lookahead search space
(LSS), 2) use the heuristic values of the frontier nodes in
combination with the path costs incurred to reach them to
estimate the cost-to-goal the agent would incur if it selected
each possible currently-applicable action, and then 3) com-
mit to the lowest cost action and, to prevent the agent from
cycling if it returns to the same state in the future, update
the heuristic values of one or more states in the LSS. For
example, in the popular and typical algorithm LSS-LRTA*
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Figure 1: Should an agent at A move to B1 or B2?

(Koenig and Sun 2008), the lookahead in step one is per-
formed using A* (Hart, Nilsson, and Raphael 1968), the
value estimates in step two are implicitly calculated for each
node as the minimum f value among its successors (the
‘minimin’ backup), and the learning in step three is per-
formed by updating h values for all nodes in the LSS using
a variant of Dijkstra’s algorithm.

However, this paradigm is not necessarily optimal. This
becomes apparent when one considers the problem from the
perspective of decision-making under uncertainty. For ex-
ample, Pemberton and Korf (1994) observed that, given an
LSS, the optimal decision for the agent is not, in general, to
head toward the frontier node with the lowest f value. Fig-
ure 1 shows their example LSS, in which an agent located at
node A must decide whether to transition to node B1 or B2.
All nodes at depth three after the Ci are goals. Recall that
the principle of rationality demands that an agent take an ac-
tion that minimizes expected cost. The edge costs xi are un-
known but uniformly distributed between 0 and 1, so h = 0
for all nodes Ci. C1 is the node of lowest f (namely 0.79) so
a typical real-time search would move toB1. However, mov-
ing to B2 minimizes the agent’s expected cost, because in
the next iteration the costs x5, ..., x8 will be revealed and the
expected minimum of these four values (0.2) yields a total
expected cost for B2 (1.06) less than that of B1 (1.066, see
Pemberton, 1995, eq. 1 for details). In other words, having
many good-looking options can be statistically better than a
single great-looking option. This problem does not arise in
the off-line planning setting, as there the agent can discover
all relevant edge costs before committing to an action.

Furthermore, it was noted by Mutchler (1986) that A*’s
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Figure 2: Should an agent expand nodes under α or β?

policy of expanding the frontier node with the lowest f value
is not, in general, the optimal way to make use of a limited
number of node expansions. If we view the agent as facing
a decision about which currently-applicable action is best, it
is sometimes beneficial to gain knowledge by expanding a
different node. For a simple example, consider the situation
depicted in Figure 2, in which we represent the agent’s cur-
rent belief about the remaining plan cost that will be incurred
by committing to an action by a probability distribution over
possible costs. The expected value is denoted by f̂(·). If the
agent is quite certain about the value of actionα but quite un-
certain about the value of a different action β, then expand-
ing frontier nodes under α can be less useful than expand-
ing under β, even if β is believed to have a higher expected
cost. In other words, it can be more important to explore the
possibility that a poorly-understood option might in fact be
great than to nail down the exact value of a well-understood
good-looking option. This problem does not arise in off-line
optimal search, in which every node whose f value is less
than the optimal solution cost must be expanded.

Although these insights seem powerful, they have not
yet resulted in generally-applicable real-time search algo-
rithms. In this paper, we advance toward practical algorithms
that realize the reasoning under uncertainty perspective. We
study strategies for expanding nodes and methods for back-
ing up their information for decision making, culminating in
a novel general-purpose method for real-time search that we
call Nancy. Experimental results in random trees and in the
sliding tile puzzle suggest that Nancy makes better use of
limited node expansions than conventional real-time search
algorithms. While additional work will be required to en-
gineer an optimized implementation, Nancy already shows
how reasoning about uncertainty can play an important role
in resource-constrained search even for deterministic do-
mains.

Previous Work
Mutchler (1986) raises the question of how best to allocate a
limited number of expansions. His analysis considers com-
plete binary trees of uniform depth where each edge is ran-
domly assigned cost 1 with probability p and cost 0 other-
wise. He proves that a minimum f expansion policy is not
optimal for such trees in general, but that it is optimal for
certain values of p and certain numbers of expansions. It is
not clear how to apply these results to more realistic state
spaces.

Pemberton and Korf (1994) point out that it can be use-
ful to use different criteria for action selection versus node
expansion. They use binary trees with random edge costs
uniformly distributed between 0 and 1 and use a computer

algebra package to generate code to compute exact f̂ values
under the assumption that only one or two tree levels remain
until a goal (the ‘last incremental decision problem’). As we
will discuss in more detail below, this requires representing
and reasoning about the distribution of possible values under
child nodes in order to compute the distribution at each par-
ent node. They conclude that a strategy based on expected
values is barely better than the classic minimin strategy and
impractical to compute for state spaces beyond tiny trees.
They also investigate a method in which the nodes with min-
imum f are expanded and the action with minimum f̂ is se-
lected and find that it performs better than using f for both.

Given the pessimism surrounding exact estimates, Pem-
berton (1995) proposes an approximate method called k-
best. Only the k best frontier nodes below a top-level action
are used to compute its value, allowing a fixed inventory of
equations derived in advance to be used to compute expected
values during search. Although this approach did surpass
minimin in experiments on random binary trees, Pemberton
concludes that its complexity makes it impractical. It is also
not clear how to apply these results beyond random binary
trees.

Our problem setting bears a superficial similarity to the
exploration/exploitation trade-off examined in reinforce-
ment learning. However, note that our central challenge is
how to make use of a given number of expansions — we
do not have to decide between exploring for more informa-
tion (by expanding additional nodes) or exploiting our cur-
rent estimates (by committing to the currently-best-looking
action). DTA* (Russell and Wefald 1991) and Mo’RTS
(O’Ceallaigh and Ruml 2015) are examples of real-time
search algorithms that directly address that trade-off. Both
are based on estimating the value of the information poten-
tially gained by additional lookahead search and comparing
this to a time penalty for the delay incurred. DTA* expands
the frontier node with minimum f and Mo’RTS expands the
frontier node with minimum f̂ .

MCTS algorithms such as UCT (Kocsis and Szepesvári
2006) share our motivation of recognizing the uncertainty in
the agent’s beliefs and trying to generate relevant parts of
the state space. Tolpin and Shimony (2012) emphasize the
purpose of lookahead as aiding in the choice of the agent’s
next action and, as we will below, they take an approach
motivated by the value of information. Lieck and Tous-
saint (2017) investigate selective sampling for MCTS. How-
ever, unlike most work in MCTS, we focus on determinis-
tic problems and we have no need to sample action transi-
tions or perform roll-outs. Furthermore, real-time planning
can arise in applications where perhaps only a dozen nodes
can be generated per decision, a regime where MCTS algo-
rithms can perform poorly, as a single roll-out may generate
hundreds of nodes.

Work on active learning also emphasizes careful selection
of computations to refine beliefs. For example, Frazier, Pow-
ell, and Dayanik (2008) present an approach they term ‘the
knowledge gradient’ for allocating measurements subject to
noise in order to maximize decision quality. More broadly,
the notion of representing beliefs over values during learn-



ing and decision-making has been pursued in Bayesian re-
inforcement learning (Bellemare, Dabney, and Munos 2017,
and references therein).

Decision-making from Lookahead
Real-time planning requires us to commit to one of the ac-
tions applicable at the agent’s current state — we call these
top-level actions (TLAs). The assumption behind lookahead
is that the f values of frontier nodes are more informed than
those of the current state’s immediate successors. Our belief
about the total trajectory cost we will be able to achieve by
moving through a node n depends on our beliefs about n’s
successors. Therefore, after generating an LSS, we want to
somehow propagate the frontier f values back up the tree
through their ancestors to estimate the value of each TLA.
In this section, we identify and explore four distinct backup
rules, each with its own assumptions about the unexplored
portion of the state space and the behavior of the agent: min-
imin, Bellman, Nancy, and Cserna. Using these, we will also
see how to generalize Pemberton (1995)’s k-best method to
arbitrary trees.

Minimin Backups
Minimin has been used in real-time search since the seminal
work of Korf (1990). It assigns a parent node p the minimum
f among its successors S(p):

f(p) = min
c∈S(p)

f(c)

The best path to a goal must go through a successor, so the
parent’s f value must be at least as large as its best child’s.
It is used implicitly in the learning phase of LSS-LRTA*,
as adjusting states’ h values so as to satisfy the minimin
equation raises them as high as possible while preserving ad-
missibility (Koenig and Sun 2008). While this is a desirable
property for h learning, we noted earlier that f is a lower
bound rather than an expected cost, and is thus not appropri-
ate as a basis for rational action selection. Minimin becomes
rational and optimal when there is no uncertainty and the
frontier f values are equal to the true f∗ values. While this
case is sufficiently approximated by the end of an A* search,
it does not accurately model real-time planning.

Bellman Backups
A Bellman backup (Bellman 1957) explicitly estimates ex-
pected value, again as the minimum over successors:

f̂(p) = min
c∈S(p)

f̂(c)

By using expected value, the Bellman backup recognizes the
uncertainty that remains between states at the search fron-
tier and any goals lying beyond. It is used as the basis of
action selection by Pemberton and Korf (1994) and for both
action selection and node expansion by Kiesel, Burns, and
Ruml (2015). (In its usual form with stochastic transitions,
it is of course also the basis for value iteration methods for
MDPs.)

The Bellman backup has two weaknesses. First, it con-
veys only a scalar expected value. While this is all that is

needed for selecting a TLA, we saw in Figure 2 and will see
again below that having a complete belief distribution avail-
able is useful both for more sophisticated backups and for
guiding lookahead expansions. The second weakness is that
it assumes that no additional information will become avail-
able as the agent traverses the LSS. In real-time search, by
the time the agent reaches a node deeper in the tree, further
lookahead will have produced additional information that
can inform its choices. In Figure 1, for example, Bellman
will backup the expected value of C3 (or C4) to B2, ignor-
ing the fact that by the time the agent makes a decision at
B2, it will have the best of x5, ..., x8 to choose from, rather
than just the values below C3 (or C4). Backing up from
merely one child does not capture what the agent can expect
to achieve. This raises a subtle point that, to our knowledge,
has not been addressed in previous work: there is a distinc-
tion between the lowest cost of any solution through a node
f∗(n), which is independent of the agent’s resources and
planning algorithm, and the cost that a resource-bounded
agent can actually expect to achieve by moving through n,
which we notate f@. The latter depends on many factors,
including lookahead budget, expansion strategy, and backup
rule, and will likely be higher than f∗ unless we have full
knowledge of the relevant remaining state space. While off-
line planners compute f∗, we need to take the agent’s infor-
mation state into account and aim to estimate f@.

Nancy Backups
To address the first weakness of Bellman backups, lack of
a full belief distribution, we introduce the Nancy backup,
which assigns to the parent the belief of the child with the
lowest expected cost:

B(p) ∼ argmin
d∈{B(c)|c∈S(p)}

E(d)

Of course, this requires that we define the agent’s be-
lief about f@ at every frontier node. This is not hard
(O’Ceallaigh and Ruml 2015) and we will see examples be-
low. While Nancy backups are very similar to Bellman back-
ups, we will see below that having full belief distributions
can yield advantages. They do share Bellman’s weakness of
assuming that no more information will become available.
As such, they are only correct if this assumption holds or if
the best frontier node under a TLA is so much better than all
of the others that its belief is disjoint from theirs.

Cserna Backups
The second weakness of Bellman backups for real-time
search, insensitivity to additional information, was pointed
out by Cserna, Ruml, and Frank (2017). Although they did
not formulate it explicitly, their work implies a new backup
rule that assumes that, by the time the agent reaches a node,
it will know the true value of each successor and be able to
choose the minimum among them. Thus the probability we
assign to a value for the parent corresponds to the probabil-
ity that it will be the minimum of all the successor’s values.
As a CDF, this is

P
[
f@(p) ≤ x

]
= P

[
( min
c∈S(p)

f@(c)) ≤ x
]

(1)



We assume that the probability of a configuration of values
for the children follows our current beliefs about them and,
in our implementation, that the beliefs of the successors are
independent. To compute the Cserna backup involving two
childrenA andB, our implementation considers all possible
pairs of values a and b and adds their minimum, weighted by
the probability of getting that pair, to the belief distribution
of the parent.

We note that the Cserna backup is associative — perform-
ing a Cserna backup directly on all the frontier nodes be-
neath a TLA will result in the same belief as performing
Cserna backups recursively up the tree from the frontier to
the TLA:

P
[
f@(p) ≤ x

]
= P

[
min

c∈S(p)
min

d∈S(c)
f@(d) ≤ x

]
= P

[
min

d∈S(S(p))
f@(d) ≤ x

]
= P

[
min

d∈S(...S(p))
f@(d) ≤ x

]
where the set-valued S is defined as S(A) =

⋃
a∈A S(a).

Because they take into account the distributions of all
children under a node, Cserna backups will make the cor-
rect decision in Figure 1, moving to B2 because of the high
chance of a low value among the x5, ..., x8 rather than to B1

toward the frontier node with minimum f . In other words,
the expected value of a Cserna backup can be lower than the
expected value of the best child distribution, which can lead
to different action selection than Bellman backups.

Cserna backups assume that, by the time we reach a node,
the true value of every child will be available, so that we can
choose the minimum cost child. However, in the case of real-
time search, this assumption only holds if the lookahead is
large enough to exhaust the remaining reachable state space
on the next iteration. Otherwise, Cserna backups will be op-
timistic about a node’s value.

The k-Best Strategy
With these backup strategies defined, it becomes straight-
forward to generalize Pemberton (1995)’s k-best method to
arbitrary trees. His closed-form analysis of the last incre-
mental decision problem can be seen as a specialization of
Cserna backups to his random trees. We will define the k
‘best’ frontier nodes under a TLA as those having the lowest
f̂ values. We backup all frontier nodes using Nancy back-
ups, except when two or more of the best meet at the same
parent, in which case we use a Cserna backup on them. We
now consider this parent one of the ‘best’ and continue up
the tree. This method interpolates between Nancy backups
(k = 1) and Cserna backups (k ≥ maximum number of
frontier nodes under any TLA) while limiting the number of
expensive Cserna backups to at most k−1 under each TLA.

Experiments
While each of the backup strategies has cases in which it is
optimal, none of these correspond to actual real-time search.
We now experimentally evaluate the backup rules to see

which perform best in practice. We use as benchmarks both
random trees (following Pemberton and Korf (1994)) and
the classic 15 puzzle benchmark (following Korf (1990)).
The random trees were generated lazily yet deterministi-
cally, with branching factor 2 and edge costs uniformly dis-
tributed between 0 and 1 (so h = 0 for all nodes). The g
cost of a node is equal to the sum of the edge costs taken
to reach it, and every leaf is a goal. We used the 100 ran-
dom 15 puzzles first generated by Korf (1985) and the Man-
hattan distance heuristic. We implement beliefs numerically
as discrete distributions at 100 evenly spaced values. Cserna
backups use numerical integration, collapsing nearest values
when necessary to keep the size at 100.

Our first experiment tests the same last incremental deci-
sion problem studied by Pemberton (1995): the LSS is the
first 9 levels of a depth 10 tree. After committing to its first
action, the agent observes the last level and follows an op-
timal path. We would expect Cserna backups to be optimal
in this setting. We used 30,000 random trees. For minimin,
the frontier values are the f costs, which equal the g costs.
For Bellman, we estimate f̂(n) as g(n) + 0.23d(n), where
d(n) is an estimate of the number of actions from n to a
goal (equal to h(n) in domains with unit edge costs) and
0.23 is an estimate of h’s per-step error (obtained from pilot
experiments on random trees of depth 100, where the av-
erage solution cost was about 23). For Nancy and Cserna,
we tried both the correct beliefs, derived via Cserna backups
from [0, 1] uniform distributions at the lookahead frontier,
and more general approximate beliefs represented by Gaus-
sians. The Gaussian beliefs are centered on f̂ and, following
O’Ceallaigh and Ruml (2015), have variance proportional to
the difference between a node’s f̂ and f values:

B(n) ∼ N
(
f̂(n),

( f̂(n)− f(n)
2

)2)
(2)

Note that, because the difference between f(n) and f̂(n) is
proportional to d(n) (the distance from the goal), this re-
flects the common assumption that heuristics are more accu-
rate as one approaches a goal. The beliefs were implemented
as truncated Gaussians bounded from below at the admissi-
ble f value and above at three standard deviations.

Figure 3 shows the mean solution cost achieved by the
various backup rules, relative to Cserna with correct beliefs,
along with 95% confidence intervals. The top-to-bottom or-
der in the legend corresponds to the left-to-right order in the
plot. The results confirm our expectations that Cserna is op-
timal for the last incremental decision problem, that 1-best
is equivalent to minimin, that k-best converges to Cserna as
k increases, and that Nancy is equivalent to Bellman. They
also indicate that Gaussian beliefs behave reasonably, lead-
ing to only a small increase in cost compared with knowing
the correct belief distribution.

However, most decisions in real-time search occur far
from goals. We next test the strategies in the context of lim-
ited lookahead in 1,000 trees of depth 100 (receding horizon
control). We used both general Gaussian beliefs and, follow-
ing Pemberton (1995), beliefs that assume only one level
of the tree remains below the frontier. Because the agent
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Figure 3: Backup rules on random trees with one level un-
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Figure 4: Backup rules with depth-first lookahead on ran-
dom trees.

can make better decisions with larger lookaheads, we used
different estimates for f̂ based on the lookahead depth or
node limit, derived from pilot experiments on random trees
(g(n) + c · d(n) where c varied from 0.221 to 0.295). For
the 15 puzzle, f̂ was estimated using the on-line learning
approach of Thayer, Dionne, and Ruml (2011) (the ‘global
average’ one-step error model for h and d). Figure 4 plots
relative solution cost as a function of the lookahead depth
for a simple bounded depth-first lookahead. Minimin, Bell-
man, and Nancy perform the same, as expected. Interest-
ingly, Cserna with Gaussian beliefs seems to perform poorly,
even though the one-level beliefs are no longer correct.

Finally, Figure 5 uses A* lookahead, as used in real-time
search algorithms such as LSS-LRTA*. In this case, nodes
on the lookahead frontier can be at different depths. Because
h(n) = 0 for all nodes, minimin is essentially backing up g
values and performs poorly, while Bellman and Nancy use
more sensible expectations adjusted for depth and perform
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Figure 5: Backup rules with A* lookahead on random trees.
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Figure 6: Backup rules with A* lookahead on 15 puzzles.

well. Gaussian beliefs outperform one-level beliefs at lower
lookaheads. Figure 6 shows the corresponding results on the
15 puzzle. Because this state space is a graph and the agent
can return to the same state, we use LSS-LRTA*, which up-
dates h values on-line and is guaranteed complete. Overall,
the results are remarkably similar to the random trees: Bell-
man and Nancy are better than minimin, and Cserna per-
forms poorly. We conjecture that Cserna’s assumption that
each child’s true value will be revealed is too strong, and
that real search trees are better approximated by Bellman
and Nancy’s assumption that little new knowledge will be
brought to bear.

To summarize, we have seen that minimin and Cserna
backups perform poorly for real-time search in practice,
while Bellman and Nancy seem to work well. As we turn our
attention to node expansion strategies, we will use Nancy
backups, as they provide full belief distributions for the
strategies to use.



Choosing Nodes to Expand

Given an agent’s current beliefs about the f@ values of the
TLAs, it is not immediately obvious which frontier node
to expand. Mutchler (1986) showed that the most common
choice, the node with lowest f , is not optimal. Kiesel, Burns,
and Ruml (2015) propose f̂ , but as Figure 2 showed, taking
our uncertainty into account is important. Because we are
using Nancy backups, the only node whose expansion can
change our belief about a TLA is the one with the minimum
f̂ under that TLA. We will consider several candidate crite-
ria to use for choosing which node to expand, and we opti-
mize them myopically. We predict, for a given TLA, how our
belief about it would change if we were to expand the best
frontier node under it. (We discuss one way of forming these
predictions below.) We then evaluate the resulting belief in
the context of the other TLAs’ unchanged beliefs according
to a desirability criterion, and choose the node whose expan-
sion gives the most desirable set of beliefs. The criteria we
consider are confidence, expected advantage, and risk. Be-
cause action selection will choose the TLA with the lowest
expected value, we will call the current such TLA the ‘best
action’ or α.

We define confidence as the probability, given a set of be-
liefs, that the best action actually has the lowest f@ value.
Said another way, this is the probability that, given sam-
ples from each TLA’s belief, the one from α is lowest. By
expanding nodes so as to maximize our confidence, we re-
duce the overlap among the leading beliefs, helping us be
sure that we choose the best action. In Figure 2, for exam-
ple, expanding under β may well increase confidence faster
than expanding under α. While this seems sensible, note that
confidence can have odd behavior. For example, an action β
might have most of its belief’s probability mass below the
belief for α, making β very likely to be lower, yet an ex-
treme outlier in β’s distribution could cause its f̂ to be higher
than α’s. The central weakness of confidence is that, as a
probability, it does not take solution cost into account. Given
two possible expansions that equally improve the probabil-
ity that α is best, it cannot distinguish which might improve
the agent’s expected cost more.

To capture this, we define expected advantage, given a set
of beliefs, as the difference between the expected costs of the
best action f̂(α) and the second best action f̂(β). Note that
expanding nodes to maximize expected advantage is not the
same as expanding the node with lowest f̂ — it might be the
case that expanding under β moves it further from α than
expanding under α moves it away from β. There are two
serious deficiencies in this criterion, however. First, it does
not take into account the uncertainty of our beliefs and can-
not distinguish between two expansions that move f̂ values
equally but reduce variance differently. Second, and related
to this, in practice we will model belief change due to search
as reduction in variance, leaving f̂ unchanged. So a criterion
insensitive to uncertainty is a non-starter.

Finally, we arrive at our final criterion, risk, which we de-
fine as the expected regret in those cases in which α was not

the correct choice. For two TLAs, this is

E
[
f@(α)− f@(β)

∣∣ f@(β) < f@(α)
]
,

where E is the (conditional) expectation operator. This gen-
eralizes to additional TLAs by considering every outcome
where one of the βi is better than the current α. This is done
using our current beliefs about the TLAs in concert with es-
timates about how each belief would change if we were to
search under its corresponding best frontier node. In our im-
plementation, risk is computed numerically by taking each
combination of possible values for the best TLA, α, and the
other TLAs, βi, and finding a − bi where a is a possible
f@ value in α and bi is a possible f@ value in βi where
bi < a, weighted by the probability of that combination.
We do this risk computation once for each TLA, temporarily
adjusting our belief about that TLA to be the predicted post-
expansion belief. As explained further below, we model our
predicted post-expansion belief about a TLA as having the
same mean as the pre-expansion belief, but a smaller vari-
ance because variance is a function of heuristic error, which
we assume will decrease as additional expansions bring the
search closer to a goal. We then expand the frontier node un-
der the TLA whose predicted post-expansion belief resulted
in the least risk.

Experiments
We now turn to an experimental evaluation of node expan-
sion strategies. To use risk-based expansion, we require a
model of how beliefs change due to search. We use a variant
of the scheme presented by Cserna, Ruml, and Frank (2017).
Note that the variance of our beliefs are based on the dis-
tance to the goal from the frontier node from which we in-
herited our belief (f̂ − f , Eq. 2). Expanding the node will
reduce our distance to goal, thus we reduce its variance by
min(1, ds/d(n)) (Eq. 2 of Cserna, Ruml, and Frank (2017)),
where d(n) is the estimated number of steps to the goal and
ds is the expansion delay (a measure of search vacillation
equal to the average number of other nodes generated be-
tween when a node is generated and when it is expanded).
We assume the expected value remains unchanged (its ex-
pected behavior).

We test expansion strategies in the context of Nancy back-
ups, given their success in the experiments above. Frontier
nodes are given Gaussian beliefs. We compare risk-based
expansion with conventional lookahead techniques, includ-
ing breadth-first, A*, and f̂ -based expansion. Figure 7 shows
mean solution cost relative to A* on random trees of depth
100. We see that, for lookaheads of more than 3 nodes,
breadth-first is dominated by the more flexible strategies. f̂
lookahead is often better than A*’s f -based strategy, con-
firming the results of Kiesel, Burns, and Ruml (2015). But
risk-based expansion is clearly the best, showing strong ben-
efits over the other strategies for lookaheads of 10 nodes and
greater.

Figure 8 presents the corresponding results from 15 puz-
zles. Breadth-first is again poor, but f̂ is not clearly supe-
rior to f . However, aside from poor performance with a 3-
node lookahead, risk-guided expansion again seems supe-
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Figure 7: Expansion strategies on random trees.

rior. For comparison, we also show the performance of LSS-
LRTA*, a popular real-time search method that uses A* ex-
pansion, minimin backups, and moves toward the frontier
node of lowest f . The Nancy algorithm of risk-based expan-
sion, Nancy backups, and f̂ action selection offers signif-
icantly better performance at lookaheads of 30 and higher.
Although it may appear that risk is converging back toward
A* as lookahead increases, this is because both algorithms
are approaching optimal solutions. Figure 9 shows the aver-
age optimality gap (cost over optimal) of each method as a
percentage of A*’s average gap. The results show that risk
has 65% of A*’s difference from optimal at a lookahead of
1000, and even less at 300.

To summarize, we have seen that a lookahead strategy
based on minimizing risk can outperform traditional search
strategies. By using the belief distributions provided by
Nancy backups, it can determine when it may be beneficial
to expand nodes other than those having the best expected
value.

Discussion
While our experimental results are promising, it is impor-
tant to recognize that the methods were compared using a
fixed number of node expansions rather than CPU time. Al-
though Nancy backups are not particularly expensive, our
implementation of risk-based expansion numerically manip-
ulates distributions and integrates over them. Such meta-
reasoning overhead can be amortized by performing several
expansions per decision, but it would be useful to engineer
an optimized method. We believe that a lightweight approx-
imation of risk-based expansion should be possible, perhaps
along the lines of Thomspson sampling (Thompson 1933) or
UCB (Auer, Cesa-Bianchi, and Fischer 2002).

Although we successfully adapted previous work on be-
lief distributions for heuristic search, the issues of how
best to represent beliefs and how to acquire them, perhaps
through on-line learning, deserve sustained attention.

We explored a greedy one-step lookahead approach to
minimizing risk during node expansion, but it would be in-
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Figure 8: Expansion strategies on 15 puzzles.

teresting to explore the possible benefit of more elaborate
schemes.

Conclusion
It is tempting to believe that, although reasoning under
uncertainty is a popular topic in research on MDPs and
POMDPs, it is not relevant for search in deterministic do-
mains. However, this work illustrates how uncertainty can
arise even in deterministic problems due to the inherent ig-
norance of search algorithms about those portions of the
state space that they have not computed. Rationality de-
mands that an agent select an action that minimizes expected
cost, but this leaves open how to select nodes for expan-
sion and how to aggregate frontier information for decision-
making. We examined four backup rules, including two new
ones, and a new expansion strategy that attempts to mini-
mize risk. Experimental results on random trees and the slid-
ing tile puzzle suggest that the new Nancy method provides
results superior to traditional approaches. This work shows
how an agent in a general real-time search setting can benefit
from explicitly metareasoning about its uncertainty.
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