A  PROOF OF LEMMA 2

Proof. From the boundedness of the features (by L) and
the rewards (by Rax), we have

14|z = l[E[pr¢e A/ ]2

< max,||p(s)$(s)(Ag(s)) " [I2
< Pmaxinax; ||¢(s)]|2maxs||p(s) — 74/ (s)]]2
l2maxs ([[@(s)[]2 +VI[¢(s)[]2)

< pmaxmaxs||¢)(5)
< (14 7)pmaxL?d.

The second inequality is obtained by the consistent in-
equality of matrix norm, the third inequality comes from
the triangular norm inequality, and the fourth inequal-
ity comes from the vector norm inequality ||¢(s)||2 <
||¢(5)||soV/d < L~/d. The bound on ||| can be derived
in a similar way as follows.

|[b]]2 = HE[PtQSt?“t]HQ
< max||p(s)$(5)7(5) |

< Pmaxmax; |[¢(s)||[2maxs|[r(s)]]2
S pmaxLRmax-

It completes the proof. O

B PROOF OF PROPOSITION 3

Proof. The proof of Proposition 3 mainly relies on Propo-
sition 3.2 in Nemirovski et al. [2009]. We just need to
map our convex-concave stochastic saddle-point problem
in Eq. 14, i.e.,

: L. 9
min maax (L(ﬂy) =(b—Ab,y) - 2IyIM)
to the one in Section 3 of Nemirovski et al. [2009] and
show that it satisfies all the conditions necessary for their
Proposition 3.2. Assumption 2 guarantees that our fea-
sible sets © and Y satisfy the conditions in Nemirovski
et al. [2009], as they are non-empty bounded closed con-
vex subsets of R?. We also see that our objective func-
tion L(#,y) is convex in § € © and concave iny € Y,
and also Lipschitz continuous on © x Y. It is known
that in the above setting, our saddle-point problem in
Eq. 14 is solvable, i.e., the corresponding primal and dual
optimization problems: mingce [ maxyey L(f,y)] and
maxycy [mingee L(6,y)] are solvable with equal opti-
mal values, denoted L*, and pairs (6*,y*) of optimal so-
lutions to the respective problems from the set of saddle
points of L(¢,y) on © x Y.

For our problem, the stochastic sub-gradient vector G is
defined as

G(0,y) = [ 7%5?’7;) } = { —(by — A0 — Myy)

This guarantees that the deterministic sub-gradient vector
0.y~ | 9000.9) ] _ { E[Go(0,y)] ]
9(6.9) [ ~g,(0.9) ~E[G,y(0,9)]
is well-defined, i.e., go(0,y) € OpL(6,y) and g,(6,y) €
Oy L(0,y).

We also consider the Euclidean stochastic approximation
(E-SA) setting in Nemirovski er al. [2009] in which the
distance generating functions wg : © = Rand w, : Y —
R are simply defined as

1 1
wo = 3018, wy = 3l

modulus 1 w.r.t. || - ||2, and thus, ©° = © and Y° =Y (see
pp- 1581 and 1582 in Nemirovski et al. 2009). This allows
us to equip the set Z = © x Y with the distance generating

function

wo(0)  wy(y)
2D3 2D
where Dy and D, defined in Assumption 2.

+

w(z) =

Now that we consider the Euclidean case and set the norms
to £2-norm, we can compute upper-bounds on the expecta-
tion of the dual norm of the stochastic sub-gradients

E[lIGo(0,y)l1Z0] < MZg, E[lIG,0.9)I12,] < M2,

where || - ||.,9 and || - ||, are the dual norms in © and Y,
respectively. Since we are in the Euclidean setting and use
the /5-norm, the dual norms are also ¢5-norm, and thus, to
compute M, g, we need to upper-bound E [||Gy(6,y)|3]
and E [[|Gy (0, )|[3]-

To bound these two quantities, we use the following equal-
ity that holds for any random variable x:

Ell|z[3] = Ellle — pall3] + |13,
where 11, = E[z]. Here how we bound E [||Gy(6,9)|[3].

E [[IGa(0,9)|3] = E[l|A{ y|[3]
=E[|A{y— ATyl3] + [|ATyll3
< a3 + (||All2]lyl|2)?
< o3+ ||A|[3R?,

where the first inequality is from the definition of o3 in
Eq. 20 and the consistent inequality of the matrix norm,
and the second inequality comes from the boundedness of
the feasible sets in Assumption 2. Similarly we bound
E [||Gy (6, y)||3] as follows:

E[[|Gy (6, )|13] = E[[|b: — Af — Myy|[3]
= ||b— A6 + My||3
+E[[be — Af — Myy — (b— A0 — My)|[3]
< (Ilbll2 + [|All[16]]2 + 7llyl|2)* + oF
< (IIbll> + (1All2 + 7)R)* + o7,



where these inequalities come from the definition of o
in Eq. 20 and the boundedness of the feasible sets in As-
sumption 2. This means that in our case we can compute
M f 0 M. fy as

My = o3 +||All3R?,
2
Mz, = (IIbl]2 + (JAl]2 + 7)R)” + o,

*Y

and as a result
M? =2D§M? o+ 2D; M7, = 2R*(M? 5+ M?,)
2
= B2 (0 + |AIBR? + (IBll2 + (4]l + T)R)?)
< (R? 2/|A]ls + ) + R(o + ||b]|2))*,

where the inequality comes from the fact that Va,b,c >
0,a2 +b?+ c? < (a+ b+ c)?. Thus, we may write M, as

M, = R*(2||A|l2 +7) + R(o +||b|]2).  (39)

Now we have all the pieces ready to apply Proposition 3.2
in Nemirovski et al. [2009] and obtain a high-probability
bound on Err(6,,, 7,), where 0, and 7, (see Eq. 18) are
the outputs of the revised GTD algorithm in Algorithm 1.
From Proposition 3.2 in Nemirovski et al. [2009], if we set
the step-size in Algorithm 1 (our revised GTD algorithm)
to oy = iﬂ, where ¢ > 0 is a positive constant, M, is
defined by *Eq. 39, and n is the number of training samples
in D, with probability of at least 1 — J, we have

Err(0n, gn) < \/g(8+2 log %)RZ (2||A|\2 +7+ Hbllz%) '

(40)

Note that we obtain Eq. 40 by setting ¢ = 1 and the “light-
tail” assumption in Eq. 22 guarantees that we satisfy the
condition in Eq. 3.16 in Nemirovski et al. [2009], which is
necessary for the high-probability bound in their Proposi-
tion 3.2 to hold. The proof is complete by replacing || A||2
and ||b||2 from Lemma 2. O

C PROOF OF PROPOSITION 4

Proof. From Lemma 3, we have
V — 9, = (I —~IIP)"'x
[(V —1IV) + @C~ (b — A8,)].

Applying ¢5-norm w.r.t. the distribution £ to both sides of
this equation, we obtain

IV = alle <|[(I —ATIP) ¢ x (41)
([[V =TIV |[¢ + [|®C~ (b — Aby)||¢).

Since P is the kernel matrix of the target policy 7 and II is
the orthogonal projection w.r.t. £, the stationary distribution

of 7, we may write

1
I —~IOP) Y| < —.
L

Moreover, we may upper-bound the term [[®C~'(b —
AB,,)||¢ in (41) using the following inequalities:

||¢)071(b - Aén)”ﬁ

S H(I)C_l(b - Aén)HQ V gmax
< |@[l2/|CH]21l(b — A8n)||as-1 v/ TEmax

< (IVAD(L) /2800, ) e

L —
; \/QdT&naxErr(em gn)?

where the third inequality is the result of upper-bounding
I|(b — A8,)||,; using Eq. 28 and the fact that v =
/[|IC7HZ2 = 1/ Amax(C™1) = Ain(C) (v is the smallest
eigenvalue of the covariance matrix C'). O

D PROOF OF PROPOSITION 5

Proof. Using the triangle inequality, we may write
IV = nllle < |[on — @0%[[¢ + ||V — DO7[|c.  (42)

The second term on the right-hand side of Eq. 42 can be
upper-bounded by Lemma 4. Now we upper-bound the first
term as follows:

_ * (12
|[on — 26|
_ n * 12
~ |28, - 20"
= |l6n — 6712

<100 = 0[Py - all(ATMTEA) T[] [C2
=1 A(n — )13 (AT M A) T[] [C]]

— 40, — b2, , T
- ||A0n b|‘h[*10,min(ATM_1A)7

where 7 = omax(C) is the largest singular value of
C, and 0ppin (AT M1 A) is the smallest singular value of
AT M~!A. Using the result of Theorem 1, with probability
at least 1 — 4, we have

1 _ —
5”149” - b”?wﬂ < TémaxErr(0n, Un). (43)

Thus,

2 TC 7—5 max a

— *[12 —
o, — @0%|[¢ < mErr(Gmyn) (44)

From Eqs. 42, 32, and 44, the result of Eq. 33 can be de-
rived, which completes the proof. O



