Fast Bellman Updates for Robust MDPs

Chin Pang Ho¹, Marek Petrik², Wolfram Wiesemann¹

1. Imperial College,

2. University of New Hampshire

More Reliable Reinforcement Learning

Medicine and other domains need policies with low failure probability

Transition probabilities estimated from data ⇒ errors

Errors compound in reinforcement learning

 Small errors in probabilities ⇒ large impact on policy quality (bad things happen)

Robust Markov Decision Processes

- + Flexible model of imprecise transition probabilities
- + Policies resistant to model errors
- + Computing policies is poly-time
- Slow in practice

Contribution: Fast algorithms for common RMDPs

Robust Bellman Update

Solve RMDPs using (approximate) value iteration

• Bellman update:

$$Bv = \max_{a} \left(r_{s,a} + \gamma \cdot \overline{p}_{s,a}^{\mathsf{T}} v \right)$$

• Robust Bellman update:

$$Lv = \max_{a} \min_{p} \left\{ r_{s,a} + \gamma \cdot p^{\mathsf{T}} v : \|p - \bar{p}_{s,a}\| \le \psi_{s,a} \right\}$$

Robustness Flavors: Rectangularity

• State-action-Rect: Independent errors

$$Lv = \max_{a} \min_{p} \left\{ r_{s,a} + \gamma \cdot p^{\mathsf{T}} v : \|p - \bar{p}_{s,a}\| \le \psi_{s,a} \right\}$$

• State-Rect: Correlated errors

$$Lv = \max_{\pi} \min_{p_a} \left\{ \sum_{a} \pi(a) \left(r_{s,a} + \gamma \cdot p_a^{\mathsf{T}} v \right) : \right.$$
$$\left. \sum_{a} \| p_a - \bar{p}_{s,a} \| \le \psi_s \right\}$$

Robustness Flavors: Distance Metric

 L_1 Norm

$$\|\underline{p} - \bar{p}_{s,a}\|_1 \le \psi$$

Weighted L_1 Norm

$$||p - \bar{p}_{s,a}||_{1,w} \le \psi$$

- Find the worst-case probability \min_{p} ?
- Linear programming: (weighted) L_1 norm as a distance metric

- Find the worst-case probability \min_{p} ?
- Linear programming: (weighted) L_1 norm as a distance metric

Timing Robust Bellman updates: Inventory optimization, 200 states and actions, $\psi=0.25$, Gurobi LP solver

Bellman update: 0.04 s

- Find the worst-case probability \min_{p} ?
- Linear programming: (weighted) L_1 norm as a distance metric

Timing Robust Bellman updates: Inventory optimization, 200 states and actions, $\psi=0.25$, Gurobi LP solver

Bellman update: 0.04 s

	Distance Metric	
Rectangularity	L_1 Norm	\mid w- L_1 Norm \mid
State-action	1.1 min	1.2 min
State	16.7 min	13.4 min

LP scales as $\geq O(n^3)$.

- Find the worst-case probability \min_{p} ?
- Linear programming: (weighted) L_1 norm as a distance metric

Timing Robust Bellman updates: Inventory optimization, 200 states and actions, $\psi=0.25$, Gurobi LP solver

Bellman update: 0.04 s

	Distance Metric	
Rectangularity	L_1 Norm	w- L_1 Norm
State-action	1.1 min	1.2 min
State	16.7 min	13.4 min

LP scales as $\geq O(n^3)$. Must solve for every state and iteration!

Prior Work: Fast Algorithms

Rectangularity		e Metric w- L_1 Norm
State-action	$O(n \log n)$?
State	?	?

Problem size: $n = \text{states} \times \text{actions}$

$O(n \log n)$ algorithm:

- Robust dynamic programming (lyengar 2006)
- MBIE (Strehl et al, 2008), used in UCRL2, ...
- Does not extend to other robustness types

Prior Work: Fast Algorithms

Rectangularity	L_1 Norm	e Metric $ $ w- L_1 Norm	
State-action	$O(n \log n)$?	
State	?	?	
Problem size: $n = \text{states} \times \text{actions}$ Better solutions			

$O(n \log n)$ algorithm:

- Robust dynamic programming (lyengar 2006)
- MBIE (Strehl et al, 2008), used in UCRL2, ...
- Does not extend to other robustness types

Our Contribution: Fast Robust Updates

Worst-case complexity, new results highlighted

	Distance Metric	
Rectangularity	L_1 Norm	\mid w- L_1 Norm \mid
State-action	$O(n \log n)$	$O(k n \log n)$
State	$O(n \log n)$	$O(k n \log n)$

Problem size: $n = \text{states} \times \text{actions}$ Structural constant: $k \leq \text{states}$

Our Contribution: Fast Robust Updates

Worst-case complexity, new results highlighted

	Distance Metric	
Rectangularity	L_1 Norm	w- L_1 Norm
State-action	/	$O(k n \log n)$
State	$O(n \log n)$	$O(k n \log n)$

Problem size: $n = \text{states} \times \text{actions}$ Structural constant: $k \leq \text{states}$

Homotopy Continuation Method

Our Contribution: Fast Robust Updates

Worst-case complexity, new results highlighted

	Distance Metric	
Rectangularity	L_1 Norm	w- L_1 Norm
State-action	$O(n \log n)$	$O(k n \log n)$
State	$O(n \log n)$	$O(k n \log n)$

Problem size: $n = \text{states} \times \text{actions}$ Structural constant: $k \leq \text{states}$

 Bisection + Homotopy Method: randomized policies in combinatorial time!

Our Contribution: Practical Complexity

Timing Robust Bellman updates: Inventory optimization, 200 states and actions, $\psi = 0.25$, Gurobi LP solver / Homotopy + Bisection

	Distance Metric	
Rectangularity	L_1 Norm	w- L_1 Norm
State-action	1.1 min / 0.6s	1.2 min / 0.8s
State	16.7 min / 0.7s	13.4 min / 1.2s

Bellman update: 0.04 s

How It Works

 Homotopy Method: Similar to LARS for LASSO, few linear segments, easy to trace

How It Works

 Homotopy Method: Similar to LARS for LASSO, few linear segments, easy to trace

• Bisection: Small dimensionality of the dual + fast homotopy

Summary of Contributions

- New fast methods for wider variety of robust Bellman Updates
- Pseudo-linear time complexity
- Computes primal solutions, not only duals (skipped)
- Empirical results: 500 40,000 × speedup over Gurobi LP (skipped)
- Also useful in model-based exploration (MBIE,UCRL2,...)

Poster: Hall B # 87