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Abstract 

As supply chains become increasingly outsourced, the end-to-end supply network is often spread 

across multiple enterprises. In addition, increasing focus on lean inventory can often create 

significant supply/demand imbalances over a multi-enterprise supply chain. This paper discusses 

a set of integrated analytics for supply/demand synchronization with a new emphasis on customer 

facing actions called demand shaping. Demand shaping is the ability to sense changing demand 

patterns, evaluate and optimize an enterprise supply plan to best support market demand and 

opportunity, and execute a number of demand shaping actions to "steer" demand to align with an 

optimized plan. First, we describe a multi-enterprise cloud-based data model called the Demand 

Signal Repository (DSR) that includes a tightly linked end-to-end product dependency structure 

as well as a trusted source of demand and supply levels across the extended supply chain. 

Secondly, we present a suite of mathematical optimization models that enable on demand up-

selling, alternative-selling and down-selling to better integrate the supply chain horizontally, 

connecting the interaction of customers, business partners and sales teams to procurement and 

manufacturing capabilities of a firm. And finally, we describe findings and managerial insights 

from real-life experiences with demand shaping in a server computer manufacturing environment. 

 

Keywords: Demand shaping, product substitution, configure-to-order, mixed choice models, 

supply chain visibility.  

1. Introduction 

In today’s competitive and dynamic business environment, companies need to 

continually evaluate the effectiveness of their supply chain and look for ways to 

transform business processes to achieve superior customer service and higher 

profitability. Imbalances between supply and demand are the primary reason for 

degraded supply chain efficiency, often resulting in delinquent customer orders, missed 

revenue, and excess inventory. This paper describes a novel supply chain planning and 

execution process that incorporates demand shaping and profitable demand response to 

drive better operational efficiency of the supply chain. The proposed methodology aims 

at finding marketable product alternatives that replace demand on supply-constrained 

products while minimizing expected stock-out costs for unfilled product demand and 

holding costs for left-over inventory. While most prior related literature focuses on the 

concept of Available-To-Promise (ATP) where a scheduling system determines a 

particular product’s availability, this paper proposes a customer-centric approach based 

on customer choice modeling and demand shaping to dynamically incorporate product 

substitutions and up-sell opportunities into the supply-demand planning process. 

 

Demand shaping is a demand-driven, customer centric approach to supply chain 

planning and execution. The aim is to align customer’s demand patterns with a firm’s 

supply and capacity constraints through better understanding of customer’s preferences 

which helps influencing customer’s demand towards products that the firm can supply 

easily and profitably. Demand shaping can be accomplished through the levers of price, 
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promotions, sales incentives, product recommendations, or on the spot upgrades / 

discounts to enables sales teams to close deals for in-stock products.  

 

The underlying principles of demand shaping are centered on three competencies: 

� Customer preference and demand pattern recognition 

� Supply capability analysis that provides improved visibility to the sales force 

on in-stock and out-of-stock products 

� Optimal demand shaping based on advanced customer analytics that estimate 

propensities of customers to purchase alternate products so that the sales force 

can guide customers to “next-best” product options 

 

Detecting customer preferences and demand patterns relies heavily on predictive 

analytics and automated gathering of sales data from every customer touch point, 

including retailer point-of-sales data, channel partner data, and shopping basket or 

checkout data from e-Commerce sales portals. Such data is often stored in a so-called 

Demand Signal Repository (DSR), a cross-enterprise database that stores sales data in a 

format that allows for easy retrieval of information so that a firm can easily query the 

database to identify what's selling, where, when and how. Supply capability analysis 

provides timely information on available product supply to identify imbalances between 

customer demand and available supply. The third competency of optimal demand 

shaping is to steer customer demand to a preferred set of products that optimizes the 

firm’s profitability and revenue while increasing overall serviceability and customer 

satisfaction. 

 

In this paper, we propose a methodology for demand shaping based on mathematical 

models that aim at finding marketable product alternatives in a product portfolio that 

best utilize inventory surplus and replace demand on supply-constrained products. We 

explicitly analyze customer expectations in a dynamic setting utilizing a customer 

choice model that determines how customers evaluate product substitutions if their 

initial product selection is unavailable. Moreover, we present numerical results that 

attempt to quantify the business value of demand shaping in a configure-to-order (CTO) 

supply chain where end products are configured from pluggable components, such as 

hard disks, microprocessors, video cards, etc., an environment where demand shaping is 

most effective. 

2. Related Literature 

 

The demand shaping approach we discuss in this paper has connections to several 

problems in related literature streams. Ervolina and Dietrich (2001) describe an 

application of the implosion technology for order promising in a configure-to-order 

(CTO) manufacturing environment. Building on this approach, Dietrich et al. (2005) 

develop a deterministic implosion model that identifies suitable product configurations 

for an Available-to-Sell process that consume the most surplus inventory and require 

minimal additional component purchasing costs. Market demand, customer preferences, 

or product substitution policies are not considered in their model. Chen-Ritzo (2006) 

studies a similar availability management problem in a CTO supply chain with order 

configuration uncertainty. Ervolina et al. (2009) employ integer programming to 

identify marketable product alternatives in a product portfolio that best utilize inventory 

surplus and replace demand on supply-constrained products. Yunes et al. (2007) apply a 
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customer migration model in conjunction with mixed-integer programming to determine 

the optimal product portfolio at John Deere and Company. A customer migration list 

contains alternative product configuration choices if a customer’s preferred product 

selection is unavailable. Balakrishnan et al. (2005) apply concepts from revenue 

management to investigate how a firm can maximize profits by shaping demand 

through dynamic pricing. Liu and van Ryzin (2008) discuss choice-based optimization 

in the context of network revenue management, and present a static linear programming 

approximation that relates to the approximate dynamic programming formulation 

presented in this paper. Dong et al. (2009) employ a stochastic dynamic programming 

formulation to study inventory control of substitutable products. Finally, Bernstein et al. 

(2011) present a model of assortment customization, similar to the choice-set 

manipulation that we model as a possible lever for demand shaping. 

3. Customer Choice Model 

 

In addition to the product-level demand patterns that can be derived from sales data 

collected at customer touch points, demand shaping requires a detailed model of 

customer decision-making that can be used to predict the success rate of various shaping 

actions. We model customers’ product choices using a discrete-choice framework that 

casts the likelihood of all possible purchase decisions within a parametric form. Our 

framework incorporates product attributes, customer characteristics, and additional 

market signals that may effect customer decisions. The resulting customer choice model 

depicts latent inter-product relationships, and is combined with up-to-date product-level 

forecasts to give a full picture of demand. 

 

Product demand forecasts and customer choice modeling are integrated into a two-stage 

decision process for customer purchases. The first stage occurs prior to demand shaping 

and involves determination of an unshaped product choice for each customer. Our 

assumption is that the distribution of unshaped product choices is, with the exception of 

some random forecast error, represented accurately by product demand forecasts that 

are generated through the traditional planning process. We then allow for a second 

decision stage in which some portion of this forecasted demand is re-allocated by 

various shaping actions that are applied across the product portfolio. The end result is a 

shaped demand that we expect to observe post-shaping. The customer choice model is 

used to predict the degree of redistribution that can be achieved through each possible 

set of shaping actions.  

 

3.1.  Representation of Substitution Probabilities 

 
Customer choice analytics support optimization of shaping actions by generating a 

matrix of substitution probabilities to reflect the rate of demand redistribution between 

product pairs for any potential collection of shaping actions. To start, customers are 

segmented by a combination of customer characteristics and unshaped product choice. 

The set Y  provides a collection of observable customer profiles, used to group 

customers by attributes such as, e.g., sales channel, industry segment, length of 

relationship, etc. For each type y ∈  Y , we obtain at time Tt ∈  an unshaped forecast 

tyjF  of demand for each product j in the product portfolio J . This allows a further 

segmentation by unshaped product choice, so that shaping actions are targeted at a 
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segment JYs ×∈ , with a forecasted segment size stn  equal to the corresponding 

unshaped forecast. Let JYS ×= and partition so that yS  contains those segments 

with customer type y. 

 

For each segment s, we operate within a set As of admissible shaping actions. An 

example of a possible shaping action in As is to “offer product i to segment s customers 

at a 20% discount”. As each segment relates to a specific unshaped product choice j, 

actions for that product are intended to redistribute some portion of product j’s demand 

to elsewhere in the portfolio. Since multiple actions may be applied simultaneously, we 

define an action profile sA

ss Hh 2⊆∈ to characterize the full set of shaping activities 

targeted at segment s. For each action profile, we provide the optimizer with the 

following representation of demand redistribution: 
 

)( ss hV : a |J|-vector of substitution probabilities, such that 
siV  is the proportion of the 

unshaped demand from segment s that is redistributed to product i when the action 

profile sh is applied. 

 

As a result, we are able to represent the predicted shaped demand for any set of 

segment-specific action profiles as )}({
~

Sssty hF ∈ = ∑
∈ ySs

ssst hVn )( , where ytF
~

 itself is a 

|J|-vector of shaped product demands.  

 

As is often done in the discrete-choice literature (Kök and Fisher 2007), we can 

decompose the vector )( ss hV  into the product of a substitution-structure vector 

)( ss hB , and a substitution-rate parameter δ ∈[0,1]. The parameter δ  is an important 

measure of the overall substitutability between products in the market. In our numerical 

tests, we will explore the degree to which effective shaping is dependent on a high value 

ofδ . First, we discuss the estimation of )(⋅sB  from historical orders and customer 

data. 

 

3.2. Estimation with Mixed Logit Models 

 
For any significant number of products and actions, the large number of required 

substitution probabilities makes direct estimation of these values prohibitive. Instead, 

we derive all of the necessary terms from a discrete-choice model containing far fewer 

parameters. An important element of this model is the ability to accurately represent 

customer heterogeneity. In particular, substitution patterns reflect the degree to which 

products draw from overlapping customer pools, which can only be captured 

meaningfully through a heterogeneous model. To this end, we employ a mixed logit 

model of demand (McFadden and Train 2000), which extends the standard logit model 

(McFadden 1974) to incorporate variation in customer preferences. 
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We fit a demand model for each customer type y, using historical orders from the 

customer set yK over the time horizon, HistT . As with the standard logit model, the 

mixed logit model predicts order probabilities as a function of product attributes. At 

time t, customer k has a stochastic valuation of each product j, 

denoted kjtkjtkj

T

kkjt zxu εβα ++= , where jx contains product attributes, 

kjtz contains information on shaping actions applied at time t, { kk βα , } are model 

parameters to be estimated, and kjtε is a stochastic error term. In the server environment 

that we model, attributes in jx include, e.g., CPU speed, hard drive capacity, hard drive 

speed, and GB of memory. The second data term, kjtz , contains factors impacting 

purchasing that may be manipulating through shaping actions. In the simplest case 

kjtz equals the price kjtp , but this vector can be expanded to encompass quoted order 

lead-times, marketing intensity, and other relevant factors. 

 

Under the logit assumption that kjtε are i.i.d. extreme-value distributed, the likelihood 

of purchase for product j, assuming a choice-set ktJ of available products, is: 

)1/(),,,(| ∑
∈

++
+=

kt

kitki
T
kkjtkj

T
k

kt

Ji

zxzx

Jkjt eezxL
βαβα

βα . 

Whereas, in the standard logit model, α and β are constant across customers, the 

mixed logit model allows for these values to vary across the population according to a 

specified mixing distribution )|,( θβαyG , whose parameters can in turn be estimated. 

This can be a continuous distribution, i.e. a normal or lognormal distribution, or a 

discrete distribution, which then gives rise to distinct latent customer segments. In 

practice, we combine a discrete component of preference variation, which introduces 

multi-modality into our preference distribution, with a continuous component that is 

more economical in its use of parameters. The full parameter vectorθ is then estimated 

along with α and β using a maximum likelihood procedure with our historical order 

set. In this case, simulation must be used to evaluate ][ | kty JkjtG LE , since this quantity 

no longer has a closed form. 

 

Under the mixed model of demand, customers’ unshaped product choices reflect on 

their personal values of α and β , giving insight into each customer’s sensitivity to 

shaping actions, and the likelihood of accepting specific substitutes. By conditioning the 

mixing distribution on each customer’s unshaped product choice j (e.g., Revelt and 

Train (1999)), or more generally, on their history of product choices, we obtain an 

individualized mixing distribution, jyG | , that is used to assess various targeted action 

profiles. In particular, we associate, with each action profile sh , a shaping attribute 

vector )(~
shz  and an alternative product set )(

~
shJ . The likelihood of a segment s 

customer, where this dictates a type y and unshaped choice j, accepting substitute i 
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when shaping profile sh is applied, is then provided by the expected value 

[
| jyGE ))](~,,,(

)(
~

| shJkit
hzxL

skt

βα .  

This quantity is computed to populate the 
th

i  entry in )( ss hB . 

 

4. Demand Shaping Optimization 

 

Having outlined customer behavior and the effects of shaping actions, we turn in this 

section to a description of the optimization model that selects our recommended shaping 

actions. The optimization is based on a stochastic view of demand forecasts and is 

formulated as a Markov decision process. Because of the large size of the model, we 

solve it using approximate dynamic programming.  

 

As described above, demand is shaped in the context of a manufacturer which purchases 

and inventories individual components and then uses them to assemble and sell 

products. The demand is shaped over a sequence of time periods, which is indexed as 

,...2,1=t . The set of all component types is denoted by C and the set of all products, 

as above, is denoted by J . The bill of material is represented by U ; that is each 

product Jj ∈  is assembled of ),( cjU  components of type c . Components that are 

not sold are inventoried; the inventory of a component c  at time t is denoted )(cI t . 

 

The planning horizon is infinite and future returns are discounted by a given discount 

factor γ . The purchase of each component is subject to a moderate lead-time l , which 

we assume to be identical across components. The order size cannot be changed once it 

is placed. 

 

Demand shaping, as considered in this paper, can address two main types of the supply-

demand imbalance: 1) deterministic imbalance, and 2) stochastic imbalance. A 

deterministic imbalance is known in advance of the lead time for most components, but 

the supply constraints do not allow to fully satisfy the demand. This kind of imbalance 

typically occurs after an introduction of a new product or during a long-term component 

shortage and it may be mitigated deterministically in advance. Stochastic imbalance is 

not known in advance and only becomes known after it is too late to adjust component 

supply. This kind of imbalance can be caused by an incorrect demand forecast, an 

unexpected last-minute supply disruption, or incorrect planning. 

 

Deterministic and stochastic imbalances in the supply chain not only have separate 

causes, but also require different solution approaches. Since a deterministic imbalance is 

known within the lead-time of most components, the demand can be shaped into other 

products and the supply can be adjusted accordingly. Since a stochastic imbalance 

occurs only after it is too late to modify the component supply, it can only be mitigated 

by keeping appropriate inventories and shaping the excess demand into products that are 

available in the inventory. The model described here addresses both deterministic and 

stochastic supply-demand imbalances. 
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Components are ordered based on a build-to-order supply policy—that is the supply 

matches the expected demand. This assumption is made to simplify the model; in most 

actual applications, the orders would be based on the solution of a newsvendor 

optimization problem. The actual solution that we use is based on approximate dynamic 

programming and in essence generalizes the news-vendor solution to multiple stages. 

Since the supply is assumed to match the product demand, we can ignore component 

supplies in our model. In addition, all unused components are automatically inventoried 

with no expiration. 

 

We model the customers using the customer-choice model defined above. In particular, 

the set S  represents the customer segments with a forecasted size stn  at time t for a 

segment s . The forecast is assumed to be made at time lt − , the latest time when the 

supply can be adjusted. Because the forecast must be made in advance, we allow for 

stochastic disturbances t∆ in demand, which will lead to imbalances between supply 

and the unshaped demands. As a result, the realized segment size is a random variable 

stN with mean stn . The realization of this value at time t  becomes known only at time 

1+t .  

 

The realized demand disturbances are normally distributed with mean 0. The 

distribution used in the model can be arbitrary and can be fit to historical data. The 

variance of this distribution depends on an external stochastic process of demand 

variability. Here, we consider a single-dimensional model of variability, denoted ϑ . 

The variability itself evolves as a normally distributed martingale with fixed variance 

and zero mean. The demand disturbances ∆  across the products are usually negatively 

correlated with a larger variance in individual products than the total demand. We use 

ϑ∆ to denote the covariance matrix. 

 

The realized, unshaped customer demand is modified by taking shaping actions from 

the set sH ; which includes a no-shaping action option. As described above, the 

probability of a customer from segment s buying a product i  after a shaping action sh  

is taken is )( ssi hV . Applying action profiles Sssh ∈}{ at time t results in a realized, 

shaped demand of tyD
~

= ∑ ∈ ySs ssst hVN )( . At the start of the horizon, tyD
~

is a 

random vector, whose realization will depend on realized values of stN for ySs ∈ . 

 

The inventory of component type c  is subject to a per-item holding cost )(ccH . 

Taking any shaping action h  carries a fixed cost )(hcS —such as the cost of 

advertising—and variable costs )(hcV —such as product discounts—which are a 

function of the segment size. The marginal profit for a product j  is )( jcM . Finally, 

the customer model assumes no backlogging---all demand that cannot be satisfied is 

lost. The overall objective is then to minimize the sum of lost sales due to the product 

being unavailable, the cost of shaping actions, and the holding costs.  
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We are now ready to formulate the stochastic optimization problem. If desired, we 

allow for specific action profiles to be applied to only a portion of a segment. As such, 

our decision variables tπ  represent the probability of taking each shaping action sh at 

every time step t  for each segment s . These probabilities are denoted as ),( st hsπ .  

 

The main optimization problem in demand-shaping is stochastic due to the uncertain 

nature of the demand forecasts and can be modeled as a Markov decision process 

(MDP) (Puterman 2005). The Markov state at time t  is represented by the inventory of 

all products, the demand variability, and the demand forecast. Demand forecast evolves 

stochastically as described above; the demand variability evolves as a martingale. The 

Bellman optimality condition for a value function ),,( tttt nIv ϑ is as follows: 
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 (1) 

 

Here, we use )( jqt  to represent how many products can be build from the available 

components  and )1,0(∈γ to represent the discount factor.  

 

The optimization variables in the problem above are constrained as follows. The first 

constraint ensures that the shaped demands D
~

are based on the shaping action 

probabilitiesπ : 

∑ ∑
∈ ∈

⋅⋅=
y ssSs Hh

stssjsttyj hshVND ),()(
~

π     for all Yy ∈ and Jj ∈ .  

The second constraint ensures that the number of the products sold corresponds to the 

inventory of each component type: 

)(),()( cIcjUjq tt ≤⋅                  for all Jj ∈  and Cc ∈ . 

Note that due to the assumption of the supply matching the deterministic demand n , we 

can assume that the demand with no shaping is 0. This assumption allows us to study 

the effects of stochastic imbalances alone and can be easily relaxed. There are additional 

constraints that ensure that the probabilities of shaping actions in each segment sum to 1 

and that the inventories are correctly tracked across time periods. 

 

The optimization problem in Eq. (1) is too large to be solved directly because the value 

function is defined for continuously many states. Instead, we solve the MDP using 

approximate linear programming, which is a version of approximate dynamic 

programming (Powell 2008). Normal distributions are approximated by the Gauss-

Hermite quadrature. The shaping decisions are then chosen greedily with respect to the 

approximate value function. 
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5. Numerical Experiments 

In this section, we evaluate the effectiveness of demand shaping, as it is depicted in 

Sections 3 and 4, in minimizing backlogging costs that result in the presence of 

unbalanced supply and demand. We simulate a production/sales environment that is 

modeled on a realistic problem setting taken from IBM’s server supply chain. The 

simulation has two parameters – the demand variability ϑ  and the substitution rate δ – 

that may be altered to create alternative settings. Within this two dimensional space, we 

compare the expected backlogging costs that arise both with and without shaping to 

assess the value of shaping optimization, and to highlight its sensitivity to the two 

control parameters. 

 

The details of our simulation are as follows: we begin with true historical forecasts and 

realized customer orders from the hard drive options portfolio supporting IBM’s System 

X line of servers. We link the forecasts directly into the above model to populate F , 

while we use customer and order data to estimate a substitution structure framework B . 

We assume a baseline level of supply that exactly covers the forecasted demand, but 

simulate the stochastic process ∆ of demand disturbances to induce supply imbalances, 

with the potential to correct these through shaping. Our product set consists of 16 hard 

drives, and we model customer decisions on the basis of hard drive capacity, speed, 

interface type, and – a potential shaping lever - price. We assume that any unfilled 

demand will result in lost sales, and evaluate supply chain performance by the 

percentage of sales that are lost. Results are averaged across 15 simulation runs for each 

setting. Simulations cover a 30 week horizon, with a discount rate γ = 5% and a cost of 

1% of unit revenue for holding inventory across periods. 

 

Figure 1 plots the percentage of sales lost across a range of simulation environments. 

Each curve is generated at a particular δ (i.e. low, moderate, or high substitutability), 

andϑ is varied from zero up to a setting with a coefficient of variation of 22.5% for 

each product demand. The δ = 0 case provides a baseline where no demand can be 

shaped, and the improvement from this case illustrates the value of shaping in each 

setting.  

 

The directions of performance improvement for our shaping optimization are quite 

intuitive. As variability is increased, there is a greater inherent mismatch between 

forecasts and realized demand. This increases lost sales in all settings, but also presents 

a larger opportunity to increase performance through shaping. As such, the value of 

shaping, measured by the performance gap from the δ = 0 case, widens with increasing 

ϑ . In conjunction, shaping actions become more effective as the degree of 

substitutability between products is increased, so that the value of shaping increases in 

the direction of δ as well. When both variability and substitutability are high, the 

impact of shaping can be dramatic. For example, with high variability andδ = 1, we 

observe a reduction in lost sales from 13.1% down to only 2.4% with shaping. 
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Figure 1: Percentage of sales lost in simulated experiments with demand shaping. 

 

 

As substitutability is increased from 0, we observe a sharp jump downwards in lost sales 

resulting from only weak substitutability. For example, in the high variability case, 

shaping with a conservative substitution rate of δ  = 0.4 delivers a relative reduction of 

60% in lost sales compared to not shaping. It thus appears, from a product assortment 

perspective, that only a modest amount of substitutability is needed to successfully 

implement demand shaping. Interestingly, this result provides something of a demand-

side analog to the result of Jordan and Graves (1995) on the steepness of initial returns 

to production flexibility. A deeper analysis of the interactions between demand shaping 

and production flexibility may indeed prove worthwhile for future study. 

  

With regards to variability, we observe that the gap in lost sales between each δ curve 

and the no-shaping curve will increase with ϑ in most cases (the exception is with δ = 

0.2, where the gap increases at first, before reaching a threshold where it seems that 

potential shaping actions are being exploited fully). Despite this trend in performance, it 

is apparent that additional variability drives a steady increase in lost sales percentage 

along each curve. Thus, while shaping can soften the deleterious effects of mismatched 

supply, a comprehensive approach aimed at improved forecast accuracy and/or reduced 

lead-times is most beneficial. To this end, however, we note that demand shaping will 

often be the simplest of available measures to implement, and may come at a relatively 

small cost to the manufacturer. With a strictly supply-side focus, the investment 

required to achieve a comparable reduction in lost sales can often be prohibitive. 

 

6. Conclusion 

In this paper, we have described a mathematical model for demand shaping that aims at 

finding marketable product alternatives in a product portfolio that best utilize inventory 

surplus and replace demand on supply-constrained products. We outlined demand 

shaping actions that improve inventory positions with early and efficient actions to 
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address surplus materials, and shift demand to available and profitable products through 

dynamic pricing. Our numerical results showed that more flexible customers are more 

profitable customers. Market intelligence and data analytics can identify these more 

flexible customers via market models. For example, a very price-sensitive client may 

only be presented with two sales recommendations – both of which are alternative-sells 

or one alternative sell and one down sell. A more price insensitive client may be 

presented with five dynamic sales recommendations – three are up-sells and two are 

alternative sells (no down sells). This stratification of clients by price sensitivity and the 

approach to dynamic sales recommendations will be essential to achieving the business 

results we have identified.  
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