# Optimization-Based Approximate Dynamic Programming

Marek Petrik

**Committee members:** 

Shlomo Zilberstein Andrew Barto Sridhar Mahadevan Ana Muriel Ronald Parr

# **Thesis Objectives**

- Reinforcement learning
  - Combines optimization and machine learning
- Challenge: Existing methods are unreliable

   Hard to use, analyze, and trust
- **Objective:** Develop more reliable methods that:
  - Provide better guarantees
  - Are easier to use, analyze, understand

#### • My approach:

- 1. Deepen understanding of basic principles
- 2. Build algorithms based on the basic principles

#### **Application: Managing River Dam**



#### Application: Managing Blood Inventories

- Managing blood inventory
  - Minimize shortage demand that is not satisfied
  - Maximize utilization –use before it perishes
- Take advantage of bloodtype compatibility



# Domain Model

- Markov Decision Process
   States (grid) S
  - Actions:  $\mathcal{A}$
- Optimal value function best utility of being in each state
- Optimal policy decision each state
- Optimal state visitation frequencies – how much time in each state



**Maximize** rewards Infinite horizon: discount: γ

# Value Function and Policy

- True solution: policy
- Calculate policy  $\pi$  from VF v– Take the best greedy action
- Calculate VF for policy  $v_{\pi}$ – Add rewards for policy
- Policy visitation frequencies
  - How much time policy spends in a state  $\,\,oldsymbol{\mathcal{U}}_{oldsymbol{\pi}}$
  - Upper bound (importance of a state)  $\mathcal{U}_{\pi}$



# **Approximate Value Function**

- Too large must approximate
- Value function based on state features

- = 1 - = 4

- Linear value function approximation
- **Representable** value functions



#### **Restrict The Space of Value Functions**

#### Small number of features

• Value function represented a small number of features

#### L<sub>1</sub> Regularization

- Large number of features
- Small volume

 $\tilde{v} = \Phi \times x$   $\tilde{v} = \Phi \times x$ 

**Representable value functions** 

$$\mathcal{M} = \{ \mathbf{v} = \Phi x \, | \, \|x\|_{1,e} \le \psi \}$$

#### Value Function Approximation: Objectives

- How good is a policy  $\pi$  ?
- Expected policy loss  $|v^*|$
- **Robust** policy loss  $\|v^* v_{\pi}\|_{\infty}$
- How good is a value function v? – Quality of a greedy policy  $\pi$
- Desirable bounds: for some *C*

$$\|v^* - v_{\pi}\|_{1,\alpha} \leq c \min_{v \in \mathcal{M}} \|v^* - v\|_{\infty}$$

Optimal

value function

Initial

distribution

#### Components of Value Function Approximation





# Objectives

- If solved a problem using RL then patent it [Powell 2007]
- Major challenge: Off-the-shelf methods that are easy to use by non-practitioners
- I propose algorithms guided by error bounds
  - Strong guarantees & easy analysis
  - Good practical performance
- Easier to use, because we know:
  - When they work
  - Why they do not work

# Why Is It Difficult?

- Many components must interact; balance errors:
  - Representational error: Due to features
  - Sampling error: Due to missing samples
  - Algorithmic error: Due to approximate optimization
- Better understand components to understand interaction



# My Approach \*

#### Classical Iterative Algorithms



#### Optimization-based algorithms



#### Approximate Dynamic Programming = Value Function Approximation

June 7th 2010

# Main Contributions

- Bottom-up: From simple to complex
- New and improved methods for
  1. Tight online error bounds
  - 2. VFA algorithms with strong guarantees
  - 3. Evaluating sample quality
  - 4. Automatically selecting features



# Outline

#### 1. Framework

Value function approximation

#### 2. Optimization-based Formulations Approximate linear and bilinear programming

#### 3. Sampling Bounds How good are samples

4. Feature Selection How to select good features





#### FRAMEWORK AND ITERATIVE ALGORITHMS

## Bellman Operator L

• Propagates the expected value backwards

- Transition probabilities 0.5



• Bellman residual v - Lv

- BR: | 8 - (0.5\*10+0.5\*20) | = |8 - 15| = 7

- Measures self-consistency of the value function

### Online Error Bounds: **Robust** Policy Loss



#### Online Error Bounds: Expected Policy Loss \*



## Online Error Bounds: Expected Policy Loss (Distribution) \*



# **Approximate Policy Iteration**

- Difficulty: Bellman operator is **nonlinear**
- API: Classical iterative VFA algorithm



- Bellman operator is linear for a fixed policy
- Based on *policy iteration*

## **Approximate Policy Iteration**

- No convergence guarantees
- Do not know when to stop



Iteration

## Offline Bounds for API \*

Approximation Error Bounds

$$\limsup_{k \to \infty} \|v^* - v_{\pi^k}\|_{\infty} \leq \frac{2}{(1-\gamma)^3} \limsup_{k \to \infty} \|\tilde{v}_k - L\tilde{v}_k\|_{\infty}$$

- No convergence
- Large constants  $\gamma = 0.99 \quad \frac{1}{1-\gamma} = 100 \quad \frac{1}{(1-\gamma)^3} = 1000000$ - Possibly larger than value function

$$\limsup_{k \to \infty} \|v^* - v_{\pi^k}\|_{\infty} > c\min_{v \in \mathcal{M}} \|v - v^*\|_{\infty}$$
 Desirable bound



#### OPTIMIZATION-BASED FORMULATIONS

## Main Idea

Minimize online bounds – the bounds should be as tight as possible



For now assume that all samples are known

## **Approximate Linear Programming**

- Classical approximation method
- Formulation
  - Constraints: transitions
  - Variables: features
- Guaranteed to converge
- Usually based on LP for MDPs



Bellman constraints

#### Approximate Linear Programming as an Optimization-based Method \*

- LP to minimize online error bounds
- Robust policy loss cannot be LP (P<NP)</li>

$$\|v^* - v_{\pi}\|_{\infty} \leq \frac{1}{1-\gamma} \|L\widetilde{v} - \widetilde{v}\|_{\infty}$$

• Expected policy loss as LP

$$\|v^* - v_{\pi}\|_{1,\alpha} \leq \alpha^{\mathsf{T}}(v^* - \tilde{v}) + \bar{u}_{\pi}^{\mathsf{T}} [\tilde{v} - L\tilde{v}]_+$$

– Easy to formulate as an LP when  $\overline{u}_{\pi}$  is fixed

– Visitation frequencies  $ar{u}_\pi$  depend on  $ar{v}$ 

## ALP: Offline Error Bounds \*

 Bound for opt-basedALP  $\|v^* - v_{\pi}\|_{1,\alpha} \leq \frac{2\overline{u}_{\pi}^{\mathsf{T}} 1}{1 - \gamma} \min_{v \in \mathcal{M}} \|v^* - v\|_{\infty}$  $\propto \frac{2}{(1-\gamma)^2} \min_{v \in \mathcal{M}} \|v^* - v\|_{\infty}$ • Good value of  $\overline{u}_{\pi}$  is often unknown - Bound approximate value function  $\|v^* - \tilde{v}\|_{1,c} \le \frac{2}{1-\gamma} \min_{v \in M} \|v^* - v\|_{\infty}$ 

Closest approximation

### ALP: Practical Performance \*

• Applied to blood inventory management



### **RALP: Alternative Formulation\***

- Minimize a tighter **online** bound  $\min_{\boldsymbol{v}\in\mathcal{M}} \left( \overline{\boldsymbol{u}}^{\mathsf{T}} (\mathbf{I} - \gamma P^*) - \alpha^{\mathsf{T}} \right) (\tilde{\boldsymbol{v}} - \boldsymbol{v}^*) + \overline{\boldsymbol{u}}^{\mathsf{T}} [L\boldsymbol{v} - \boldsymbol{v}]_+$
- Linear program:



• Offline error bound

$$\|v^* - v_{\pi}\|_{1,lpha} \propto rac{1}{1-\gamma} \min_{oldsymbol{v} \in \mathcal{M}} \|oldsymbol{v} - v^*\|_{\infty}$$
  
Does not depend on:  $1/(1-\gamma)^2$ 

### **Approximate Linear Programming**

- RALP: good performance
- Alternatives necessary

   Bounds are loose
  - Needs prior knowledge
- $\|v^* v_{\pi}\|_{1,\alpha} \leq \ldots + \overline{u}_{\pi}^{\mathsf{T}} [\widetilde{v} L\widetilde{v}]_{+}$ 
  - Often does not work
  - Why use ALP?
    - Easy to solve & analyze
    - Sometimes works well



Blood inventory management

### **Approximate Bilinear Programming**

• Approximate policy iteration

• Approximate linear program

• Approximate bilinear program





#### Approximate Bilinear Programming: Derivation \*

- Formulations for *all* online error bounds
- *Robust* policy loss

$$\|v^* - v_{\pi}\|_{\infty} \leq rac{1}{1 - \gamma} \| ilde{v} - L ilde{v}\|_{\infty}$$

• Expected policy loss (no prior knowledge)

$$\|v^* - v_{\pi}\|_{1,\alpha} \leq \alpha^{\mathsf{T}}(v^* - \tilde{v}) + \frac{1}{1 - \gamma} \|\tilde{v} - L\tilde{v}\|_{\infty}$$

• Expected policy loss (prior knowledge)  $\|v^* - v_{\pi}\|_{1,\alpha} \leq \alpha^{\mathsf{T}}(v^* - \tilde{v}) + \bar{u}_{\pi}^{\mathsf{T}} [\tilde{v} - L\tilde{v}]_+$ 

#### Approximate Bilinear Programming \*



#### ABP: Offline Error Bounds \*

• Approximate Bilinear Programming

$$\|v_{\pi} - v^*\|_{\infty} \leq \frac{2}{1 - \gamma v \in \mathcal{M}} \|Lv - v\|_{\infty}$$

• Approximate Linear Programming

$$\|v_{\pi} - v^*\|_{\infty} \leq \frac{(2+\gamma)|\mathcal{S}|}{(1-\gamma)^2} \min_{v \in \mathcal{M}} \|v^* - v\|_{\infty}$$

• Approximate Policy Iteration

$$\limsup_{k \to \infty} \|v_{\pi^k} - v^*\|_{\infty} \leq \frac{2}{(1 - \gamma)^2} \limsup_{k \to \infty} \|\tilde{v}_k - v_k\|_{\infty}$$
#### Solving Approximate Bilinear Programs

- Value function approximation is NP hard
- Simple approximate algorithm



# **Approximate Bilinear Programming**

- **ABP** Guarantees •
  - Tight value function approximation
  - Convergence
  - Match performance of API
- ABP, ALP works well in •
  - Benchmark problems
  - Reservoir management
- Opportunity for better
  - Algorithms
  - Analysis











**Expected Policy Loss** 

Robust Policy Loss



#### **SAMPLING ERROR**

# Solution Based On Samples

- Problems with many states
- Reservoir management

   State = water level
   State = water level



- Would have solve the problem for **all** water levels
- ALP: One constraint per state
- Challenge: Bound policy loss due to sampling
- No practical bounds exist

- Too loose or impossible to compute

# **Types Of Sampling Error**

#### State selection error

• States that are not sampled



#### **Transition estimation error**

• States that are sampled, but are not known precisely



# Bounding Sampling Error \*

- **Approach:** Bounds using the simple analysis of optimization-based VFA
- Regularized representable value functions  $\mathcal{M} = \{ \mathbf{v} = \Phi x \, | \, \|x\|_{1,e} \leq \psi \}$
- $\epsilon_p(\psi)$  State selection error: how different are unsampled states
- $\epsilon_s(\psi)$  Transition estimation error: how different are state transitions from the true value

# Sampling: Offline Error Bounds \*

Bounds on policy loss

$$-\operatorname{ALP}_{\|\tilde{v}-v^*\|_{1,c} \leq \frac{2}{1-\gamma v \in \mathcal{M}} \|v-v^*\|_{\infty} + 2\epsilon_c(\psi) + \frac{3\epsilon_s(\psi) + 2\epsilon_p(\psi)}{1-\gamma} - \operatorname{ABP}_{\|\tilde{v}-L\tilde{v}\|_{\infty} \leq \min_{v \in \mathcal{M}} \|v-Lv\|_{\infty} + 2\epsilon_s(\psi) + \epsilon_p(\psi)}$$

 Assumptions too general to be useful directly – How to estimate them?

### State Selection Error: Local Modeling Assumption

- States that are close are similar
- Seen a Lipschitz continuity



## Basic Approach \*

- How to use that samples are known?
- Map the states to samples  $\chi: \mathcal{S} \to \Sigma$



# Problems with Local Modeling

Assumption must apply to the full state space

- Bounds are too loose to be useful

 Functions tend to be constant with small discountinuities



• Hard to estimate the similarity

### Better Bounds \*

- Use the global structure of the problem
- Usually more than a single sample available
- Map a state to multiple samples



 Linear segments do not incur any error Rewarc

# **Bayesian Regression Assumption \***

- Local modeling:
  - Worst-case guarantees: pessimistic assumptions
  - Local analysis
- Use Bayesian regression to generalize to unsampled states
  - Take advantage of global structure
  - Expectation instead of hard bounds easy to specify
- Drawback:
  - Probabilistic guarantees

# Comparison To Local Modeling \*

- Gaussian processes
- Tight bounds (10-100x tighter than LM)
- Flexible assumptions
- Can be used in practice



# Transition Estimation Error \*

- Offline error bound  $\mathbf{P}\left[\epsilon_{s}(\psi) > \epsilon\right] \leq 2|\tilde{\boldsymbol{\Sigma}}|_{a}|\phi| \exp\left(\frac{2(\epsilon/(\psi \cdot \gamma))^{2}}{M_{\phi}n}\right)$
- Depends on the number of samples  $|\tilde{\Sigma}|_a$
- The bound is tight
- Need many weather patterns need to be sampled per volume



### **Common Random Numbers**

• The bounds are tight because state are estimated independently

 Idea: Use the same weather to evaluate every volume



### Common Random Numbers \*

• Growth function  $\tau(m)$ 

- How similar is behavior for all kinds of volumes

$$\mathbf{P}\left[\epsilon_{s}(\psi) > \epsilon\right] \leq 2|\phi| \exp\left(\frac{2(\epsilon/(\psi \cdot \gamma \cdot |\boldsymbol{\tau}(\boldsymbol{m})|))^{2}}{M_{\phi}m}\right)$$

- Independent of number of samples
- Similar concept to VC dimension



# Sampling Error

• Approximate Policy Iteration [Farahmand et al. 2009]

$$\limsup_{n \to \infty} \|v^* - v_n\|_{\infty} \leq \limsup_{n \to \infty} \frac{2\gamma}{(1 - \gamma)^2} \left( c \times C_{\rho,\nu} \max_{i \leq n} \|\epsilon_i\|_{\rho,\nu} + \ldots \right)$$

Theoretically interesting

- Hard/impossible to use in practice
- Approximate Bilinear Programming

 $\|\tilde{v} - L\tilde{v}\|_{\infty} \leq \min_{v \in \mathcal{M}} \|v - Lv\|_{\infty} + 2\epsilon_s(\psi) + \epsilon_p(\psi)$ 

- Easy to use general properties
- Can be used in practice (limited)



#### **FEATURE SELECTION**

# **Choosing Features**

- Must approximate the value function
- Need a small number of features
  - Optimization problems easy to solve
  - Minimizes sampling error

Features are hard to choose

Must know which states are important
 Possible binary features in reservoir management:

 $l \in [1,6] \ l \in [7,10] \ l \in [3,12] \ l \in [10,15]$  . .





#### Number of Features and Solution Quality \*



# Automatically choose features based on sampling bounds

#### Selecting Features To Balance Errors\*



- Determine the global minimum
  - Homotopy method: efficiently calculate the solution for all values of  $\psi$

#### Automatic Feature Selection ALP



#### **Feature Selection**

- When sampling bounds available
   Can select appropriate features/regularization
- Performance does not decrease with more features
  - Flexibility in specifying features
- Outperforms other algorithms in benchmark problems

#### CONCLUSION

# Conclusion

- Iterative algorithms have weak guarantees
  - Unreliable
  - Hard to analyze
- New & improved optimization-based algorithms
  - Decouple objective from algorithm
  - Strong guarantees
  - Easy to analyze and use
- (More) Practical sampling bounds: Use Gaussian processes
- Feature selection: Balance feature complexity with samples

### Algorithms for Value Function Approximation

#### **Classical Iterative Algorithms**

• Based on MDP algorithms

- Simple algorithms
- Complex analysis
  - Weak guarantees
  - Hard to analyze
  - Hard to use

#### **Optimization-based Algorithms**

- Based on value-function bounds
- More complex algorithms
- Simple analysis
  - Strong guarantees
  - Sampling bounds
  - Feature selection

# Contributions

- Analysis of API [NIPSO8, ECML/ML09]
- New, robust VFA formulations [ICAPSO8]
  - ALP: new derivation and formulation [ICML09]
  - ABP: robust/expected policy loss [NIPSO9,JMLR?]
- Sampling bounds and feature selection
  - New better sampling bounds [ICML10,NIPS?]
  - Methods for feature selection [IJCAI07,ICML10]
- Mathematical optimization algorithms
  - Homotopy methods [ICML10]
  - Bilinear program solvers [AAAI07, JAIR09]



#### **APPENDIX**

June 7th 2010



#### MATHEMATICAL OPTIMIZATION ALGORITHMS

# **Algorithmic Considerations**

- Optimization-based formulation require solving optimization problems
- Approximate linear programs
  - Solving large linear programs
  - Mature solvers that can solve large problems
- Approximate bilinear programs
  - NP hard to solve optimally
  - Few solvers are available

#### Solving Approximate Linear Programs

 Small number of features minimize Easy to solve subject to \* Large number of features minimize Harder to solve subject to \* Homotopy Methods for Approximate Linear Programs \*

• Solve for large ALPs with **regularization** 



**Important:** Address degenerate solutions – dual regularization

$$\max_{\substack{y,\lambda\\y,\lambda}} b^{\mathsf{T}}y - \psi\lambda + \frac{1}{\chi}y^{\mathsf{T}}y$$
  
s.t.  $A^{\mathsf{T}}y - e\lambda \leq c$   
 $y,\lambda > 0$ 

$$\min_{x} c^{\mathsf{T}}x + \chi \frac{1}{2} \left\| [Ax - b]_{+} \right\|_{2}^{2}$$
s.t.  $e^{\mathsf{T}}x \le \psi$   
 $x \ge 0$ 

# Solving Bilinear Programs

- Few bilinear program solvers
- Easier to solve when the number of bilinear terms is small
  - Method for solving such BPs (\*)
- An instance of a global optimization problem
  - Concave quadratic minimization
  - Mixed integer linear program
- Commercial solvers available

#### Standard MILP Transformation

$$\begin{array}{ll} \min_{\substack{w,\lambda_1,z,\lambda_2,q_1,q_2 \\ \text{s.t.}}} & s_2^{\mathsf{T}} z + \lambda_1^{\mathsf{T}} b_1 \\ & A_1 A_2^{\mathsf{T}} \lambda_2 - A_1 r_2 + B_1 w \ge b_1 \\ & A_1 A_2^{\mathsf{T}} \lambda_2 - A_1 r_2 + B_1 w \ge b_1 \\ & A_1^{\mathsf{T}} \lambda_1 = r_1 + C y \\ & B_1^{\mathsf{T}} \lambda_1 = s_1 \\ & B_1^{\mathsf{T}} \lambda_1 = s_1 \\ & A_1 A_2^{\mathsf{T}} \lambda_2 - A_1 r_2 + B_1 w - b_1 \le (1 - q_1) M \\ & A_2 A_1^{\mathsf{T}} \lambda_1 - A_2 r_1 + B_2 z - b_2 \le (1 - q_2) M \\ & \lambda_1 \le M q_1 \\ & \lambda_1 \ge 0 \\ & q_1 \in \{0, 1\}^n \\ \end{array}$$

- Hard to analyze
- MILP solvers work very poorly

#### MILP Formulation of ABP \*

$$\min_{\substack{z,\pi,\lambda,\lambda',\nu\\\text{s.t.}}} \mathbf{1}^{\mathsf{T}}z + \lambda'$$

$$z \ge \lambda - (\tau - \pi)$$

$$\lambda + \lambda' \mathbf{1} \ge Av - b$$

$$Av - b \ge \mathbf{0}$$

$$B\pi = \mathbf{1} \quad \lambda, \lambda' \ge \mathbf{0}$$

$$v \in \mathcal{M} \quad \pi \in \{0,1\}^n$$
• Corders of magnitude faster to solve

• Still not fast enough
#### **OTHER SLIDES**

# Types of Algorithm

- **Policy based**: *policy search* 
  - Does not explicitly use a value function
  - Great results, but hard to analyze
- Value function based: approximate dynamic programming
  - Calculate value function as an intermediate step
  - Stronger guarantees, good performance

All efficient methods for sequential decision problems estimate value function as an intermediate step.

Richard Sutton, MSRL 2009

#### Lower Bounds on API Performance \*

• A trivial bound can be tighter for sufficiently high discount factors

$$\limsup_{k \to \infty} \|v^* - v_{\pi^k}\|_{\infty} \leq \frac{c}{1 - \gamma} < \frac{2}{(1 - \gamma)^3} \limsup_{k \to \infty} \|\tilde{v}_k - L\tilde{v}_k\|_{\infty}$$

Impossible to get bounds in terms of the best approximation

$$\limsup_{k \to \infty} \|v^* - v_{\pi^k}\|_{\infty} > c \min_{v \in \mathcal{M}} \|v - Lv\|_{\infty}$$

# Algorithms for VF Approximation

- Combines features and samples
- Resembles machine learning regression





## **Relationship To Machine Learning**

- No distribution in regression
- Distribution depends on the policy
  policy depends on the value function
- The guarantees must be different

#### Value Function Approximation





### The Bound Is Tight \*



Modify ALP to reduce the bound

Improve practical performance

## Why Approximation Fails? \*

• Virtual Loop



## Expanding Constraints \*

Roll out selected constraints
Use dual values

• Offline error bounds

$$\|\tilde{v}_{t} - v^{*}\|_{1} \leq \frac{2}{1 - \gamma^{t}} \min_{v \in \mathcal{M}} \|v^{*} - v\|_{\infty}$$
$$\gamma = 0.99 \ \frac{1}{1 - \gamma} = 100 \ t = 10 \ \frac{1}{1 - \gamma^{t}} = 10.5$$



#### Simple Approximate Algorithm for ABP

- Motivates approximate policy iteration
- Converges



#### Automatic Feature Selection ABP

- ALP relies on convexity
- ABP is NOT convex

– But can use a similar property



### Future Work: Modeling

- Data is used directly
  - Not enough data
  - Incorporating prior knowledge?

- Interaction of models and optimization
  - Integrate machine learning components

### Future Work: Optimization-based Algorithms

- Optimization-based ADP methods in practice
  - Performance?
  - What is a good value function?
  - Implications for iterative algorithms?

- Algorithms for linear/bilinear programs
- Tighter bounds
  - Better ways to samples