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Thesis Objectives

Reinforcement learning

— Combines optimization and machine learning
Challenge: Existing methods are unreliable
— Hard to use, analyze, and trust

Objective: Develop more reliable methods that:
— Provide better guarantees

— Are easier to use, analyze, understand

My approach:
1. Deepen understanding of basic principles
2. Build algorithms based on the basic principles



Application: Managing River Dam

Irrigation
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Application: Managing Blood

Inventories
« Managing blood inventory prochasticSupply.
— Minimize shortage — demand ! l: !
that is not satisfied : .
. e A 0 AB
— Maximize utilization —use
before it perishes Blood Bank

* Take advantage of blood-

type compatibility [ ‘ ] [ ]

Hospital 1 Hospital 2
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Domain Model

e Markov Decision Process

— States (grid) S 16€> 13€~ 6 = 9

A — - -

* Optimal value function — 17 3 6
best utility of being in each A -

state | N 1361 | 12 g9

* Optimal policy — decision 1‘ 4 A

each state 0| 1b6 | 9

—how much Maximize rewards

time in each state Infinite horizon: discount: y
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Value Function and Policy

* True solution: policy

* Calculate policy 7T from VF VU 1?"%36' 6'>§
— Take the best greedy action 1,«2 11| 8| 6
e Calculate VVF for policy U e e
— Add rewards for policy 1‘ 4
T . N

* Policy visitation frequencies

— How much time policy spends in a state
— Upper bound (importance of a state)
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Approximate Value Function

Too large — must approximate

Value function based on state

features

©O=1@=4

Linear value function
approximation

© 0 00
00 0 0

©0® 0 0

© @ 0|0

Representable value functions
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Restrict The Space of Value Functions

Small number of features L, Regularization

* Value function represented ¢ Large number of features
a small number of features  « small volume

" <
Representable value functions Izl < v

M={v=>zx||z]1< 1V}
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Value Function Approximation:
Objectives

How good is a policy 7T ?

Expected policy loss
Robust policy loss

Optimal

o=

|’U* — VU lloo

How good is a value functionU?

— Quality of a greedy policy 7T

Desirable bounds: for some

|v* — vr| 1,

< cmin |[v*
veM

value function

Initial
distribution

_’UHoo



Components of Value Function

Approximation
4 I
© © Features: . .,
Q0 Representation Value Function
i Water level
f ‘\ j\
p
Algorithm

\_
\ 4
e N A
) 4 Samples N Policy —i
o) Example§ _Of state Level 1-> Discharge 5 <
| transitions Level 2-> Discharge 7 | 4

|
Level =1 \_ )

Level = 10
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Error Bounds in Value Function

M Approximation

[ Features } Z v M s U

Value
Algorithm H Function H Policy }

Offline Error Online Error
> Bounds Bounds
How good is the How good is the How good is the

algorithm? value function? policy?

June 7th 2010 11



Objectives

If solved a problem using RL then patent it (powell
2007]

Major challenge: Off-the-shelf methods that are
easy to use by non-practitioners

| propose algorithms guided by error bounds
— Strong guarantees & easy analysis

— Good practical performance

Easier to use, because we know:

— When they work

— Why they do not work



Why Is It Difficult?

 Many components must interact;
balance errors:

— Representational error: Due to features [ Features J
: Due to missing samples [ ]
- | N
— Algorithmic error: Due to approximate [ Algorithm ]

optimization

* Better understand components to
understand interaction



My Approach *

Classical Iterative Algorithms

Bounds ??
MDP Algorithm Approximation :
e How good is the result?
“2"‘_)50%0”0*—%"00 < Iim_}sotépﬁ (c X Cp,,,rpganx”ei”p,,, + )
Optimization-based algorithms
Algorithm ?? R
o Approximation Bounds
* How to minimize the
bounds?

17 — L]|oo < Ek}llv — Lv||oo + €s(9) + ep(2))

Approximate Dynamic Programming = Value Function Approximation
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Main Contributions

* Bottom-up: From simple to

complex
* New and improved methods for
1. Tight online error bounds [Vame Function]
2. VFA algorithms with strong [\
guarantees [\ﬁAAmmﬂMn]
==
4. Automatically selecting features

[ Features J
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Outline

1. Framework

Value function approximation | Value Function |

2. Optimization-based Formulations T
Approximate linear and bilinear | veaalgorithm |
programming A T

3. Sampling Bounds _samples_|
How good are samples

4. Feature Selection (reatures.|

How to select good features
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ures
VFA
Algorithm

FRAMEWORK AND ITERATIVE
ALGORITHMS

00000000000



Bellman Operator L

* Propagates the expected value backwards

— Transition probabilities 0.5

* Bellman residual v — Lv
—BR: | 8—(0.5*%10+0.5%20) | = |8 - 15| =7
— Measures self-consistency of the value function

June 7th 2010
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Online Error Bounds:
Robust Policy Loss

Robust Policy Policy Approximate
Loss value function value function

pd
1
< Lv

Bellman residual

Optimal
value function

Discount factor
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Online Error Bounds:
Expected Policy Loss *

Policy Approximate
value function value function
4 N
I /1,\ N
) —C)l10 < )+ ; L] of

Optimal

. Bellman residual
value function

Discount factor
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Online Error Bounds:
Expected Policy Loss (Distribution) *

Approximate
value function

value function
O <" Q-+l - 13

Policy

Optimal Upper bound on state
value function visitation frequencies
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Approximate Policy Iteration

Difficulty: Bellman operator is nonlinear
API: CIassicaI iterative VFA algorithm

Value Functlon

\ =

Bellman operator is linear for a fixed policy

Based on policy iteration



Approximate Policy Iteration

* No convergence guarantees
* Do not know when to stop

25000

20000

15000

10000

Solution Quality

5000

O 5 10 15 20 25 30 35 40
June 7th 2010 Iteration

23



Offline Bounds for API *

* Approximation Error Bounds

im sup|lv™—v_klec
k—o00

* No convergence
* Large constants

limsup ||v" — v_klleo > ¢
k—o00 :

June 7th 2010

Desirable
bound



Features ]

VFA Value Polic
Algorithm Function y

OPTIMIZATION-BASED
FORMULATIONS

00000000000



Main ldea

e Minimize online bounds — the bounds should be
as tight as possible

A

<— Online error bound

\

Policy loss

>
Value function

* For now assume that all samples are known

June 7th 2010
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Approximate Linear Programming

* Classical approximation ”}j” ch
method SE
* Formulation s.t. Av=>b
B o . Q0
Constraints: transitions v e M ole
— Variables: features
e Guaranteed to converge Average

minimize 4@4— value
e Usually based on LP for

MDPs subject to B*U = U

J 7th 2010 27
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Approximate Linear Programming as
an Optimization-based Method *

e LP to minimize online error bounds

* Robust policy loss cannot be LP (P<NP)
1

lv* = vrlleo < T M0 = vlleo

* Expected policy loss as LP
|v* = vall1,q < o' (v* =) + iy [ — L] 4

— Easy to formulate as an LP when w57 is fixed
— Visitation frequencies 7., depend on U



ALP: Offline Error Bounds *

* Bound for opt-basedALP

2ul1
v — v < T min ||lv* — v
| ll1,a < 1 — ~ veM | loo
2

X
(1—7)
 Good value of . is often unknown

— Bound approximat2e value funetier
|v* — ’17“1,0 < M
1 —?

June 7th 2010 Closest approximation




ALP: Practical Performance *

* Applied to blood inventory management

Solution quality
e

Generic-ALP

Myopic

*

?
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RALP: Alternative Formulation®

* Minimize a tighter online bound

: T * T\ ¢~ * T
1!)’25&( (I—fyP)—a)('u—'u) [Lv —v] 4
* Linear program:

min ch
v
S.t.
e Offline error bound
1
v — X —— min ||lv = v*
| |11, T I oo

Does not depend on: 1 /(1 — 7)2

31
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Approximate Linear Programming

e RALP: good performance L
e Alternatives necessary l

— Bounds are loose |

— Needs prior knowledge I I I
o ~velio <.+l Lo, o A B H

— Often does not work

* Why use ALP?

— Easy to solve & analyze
— Sometimes works well

Blood inventory management
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Approximate Bilinear Programming




Approximate Bilinear Programming:
Derivation *

Formulations for a/l online error bounds
Robust policy loss

HU* — UW”oo <

1

Hﬂ_ L’EHOG

Expected policy loss (no prior knowledge)

1

[v" —vrll1,0 < @' (0" =) + =17~ L]l

Expected policy loss (prior knowledge)

|v™ — v 1,0

<aT

(v* =) + i) [6 — L),



Approximate Bilinear Programming *

Bellman residual

policy
min 7T A4 N . é
[ AN 0 minimize % «| |- value
s.t. Br=1 Av—-b2>0
T>0 )\—I—)\’12Av—b .* :' Policy
AN >0 constraints

subject to

veM
Q* _ B Bellman
constraints
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ABP: Offline Error Bounds *

* Approximate Bilinear Programming

2 .
|vr — ’U*Hoo < 1~ - rg}cl”L’U — V|00
— v

* Approximate Linear Programming

(2+’Y)|5|
(1-7)2 v

lor — v7][oo < minflv* —vlleo

* Approximate Policy Iteration

limsupljv_r — vl < 51im sup||vg — vl
k—o0 ( _7) k—00

June 7th 2010
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Solving Approximate Bilinear Programs

* Value function approximation is NP hard

* Simple approximate algorithm

Bellman residual

minimize

subject to

Solve LP Solve LP

June 7th 201d)011(3y with minimal residual Value with minimal residual
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Approximate Bilinear Programming *

e ABP Guarantees

— Tight value function approximation

— Convergence

— Match performance of API

e ABP ALP works well in
— Benchmark problems

Error

— Reservoir management Benchmark

* Opportunity for better

— Algorithms
— Analysis

ABP ABPexp ABPh ALP API

Expected Policy Loss

Mountain Car

OAPI LSPI ALP  API

Chain Problem

[|[v* — vx|loe
o - N w IS o o

ABP ABPexp ABPh ALP API

Robust Policy Lass



Represent
ation

VFA Value
Algorithm Function

l Samples I

SAMPLING ERROR

June 7th 2010
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Solution Based On Samples

Problems with many states minimize @]
Reservoir management subject o D*U U
— State = water level il il

— Would have solve the problem for all water levels
— ALP: One constraint per state

Challenge: Bound policy loss due to sampling

No practical bounds exist
— Too loose or impossible to compute



Types Of Sampling Error

State selection error Transition estimation error

e States that are not sampled <+ States that are sampled,
but are not known precisely

™ Weather

HNdvdd

Water level

Water level

June 7th 2010 42



Bounding Sampling Error *

* Approach: Bounds using the simple analysis of
optimization-based VFA

* Regularized representable value functions

M= {v=dz||z|1, <V}

ep(1))— State selection error: how different are unsampled
states

es(1))— Transition estimation error: how different are
state transitions from the true value

June 7th 2010 43



Sampling: Offline Error Bounds *

* Bounds on policy loss

CAP 3es (1)) + 26p()

v—o* < ——minllv—2* ¢ '
07l < 12 mip o=l b 2ec(0)+ 22 2

— ABP
|V — Lo]|oo < Min [lv — Lolloo + 2€5(1)) + €p(¥)
veM

* Assumptions too general to be useful directly
— How to estimate them?



State Selection Error: Local Modeling
Assumption

e States that are close are similar

e Seen a Lipschitz continuity

>

States



Basic Approach *

* How to use that samples are known?
* Map the statesto samples X : S — 2




Problems with Local Modeling

* Assumption must apply to the full state space

— Bounds are too loose to be useful

— Functions tend to be ><

constant with small
discountinuities

* Hard to estimate the similarity



Better Bounds *

e Use the global structure of the problem
* Usually more than a single sample available
 Map a state to multiple samples

xS — ¥l

W

* Linear segments do not incur any error
/(,\\\

|// =

Reward




Bayesian Regression Assumption *

* Local modeling:
— Worst-case guarantees: pessimistic assumptions
— Local analysis
* Use Bayesian regression to generalize to
unsampled states
— Take advantage of global structure
— Expectation instead of hard bounds — easy to specify
* Drawback:

— Probabilistic guarantees



Comparison To Local Modeling *

Gaussian processes

0.8

Tight bounds (10- 07
100x tighter than |
LM) 04/
Flexible & 03}
assumptions |
Can be used in o4
practice 017

-0.2

0 2 4 6 8 10
k(S)



Transition Estimation Error *

Offline error bound

P ea(4) > o] < 2|5 al6| exp (

2(e/(¢

Mq_gn

-7))2)

Depends on the number of samples |i\a

The bound is tight

Need many weather
patterns need to be
sampled per volume

4000 f A
3000 ,’ """"""""
’ : :
’ 3 3
2000",’"" S
1 f :
I ; ;
10000
i : 1
0 i i
0 100 200




Common Random Numbers

* The bounds are tight because state are
estimated independently

10000
o Idea : U Se t h e Sa m e g8ooo | Uncertainty For Common Random Number
6000 -
weather to evaluate
| True Value
every volume ol

0
Uncertainty For Independent Samples

-2000

_4000 1 1 1 1 1 J
90 100 110 120 130 140 150

State



Common Random Numbers *

e Growth function

— How similar is behavior for all kinds of volumes

2(e/(¢-v-| |))2)

P [es(#) > ] < 2/¢| exp (

Mgm
— Independent of number 4% SPPETEEEEEEE
of samples o0l =T
* Similar concept to ool
VC dimension 1°°°'F ””””””””
00 160 260 300



Sampling Error

e Approximate Policy Iteration (rarahmand et al. 2009]

lim su *— < limsu
n_mop”?’ Unloo < n—>oop(]_ Y.

(c x Cppmaxlieillpy + - )
— Theoretically interesting
— Hard/impossible to use in practice
* Approximate Bilinear Programming
5~ Lilloo < min o — Lvfloo + 2¢s(4) + p(v)

— Easy to use general properties
— Can be used in practice (limited)



VFA Value Polic
Algorithm Function Y

srme |

FEATURE SELECTION

00000000000



Choosing Features

: _ Q|0
* Must approximate the value function [gTg
* Need a small number of features
— Optimization problems easy to solve oo
|
— Minimizes sampling error
Piing K

e Features are hard to choose

— Must know which states are important
Possible binary features in reservoir management:

le[1,6] L€ [7,10] 1€ [3,12] I € [10,15] ., ..



Number of Features and Solution
Quality *

Solution quality

True L1 Error
- N
o O

-
o

(=T

0 10 20 30 40
Features

Automatically choose features based on



Selecting Features To Balance Errors*

6

/Total error
o Global minimum
© 4# /
c
8 N /
e 3 RS Representational error a
S ~. presentational
- S
w 2 S<o Lo
\\\\\\ it ~
gt Ty
A R R . -~
1 ~<——sampling error -~
0 1 ] I I |
0 2 4 6 8 10

Y

Determine the global miriimum

— Homotopy method: efficiently calculate the solution
for all values of



Automatic Feature Selection

Automatic

June 7th 2010

True L1 Error

307

Regular ALP
\é—

N
o

=
(8]

AN
-

ALP

——ALP
——RALP

Features

| — , ~—
10 20 30 40
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Feature Selection

* When sampling bounds available
— Can select appropriate features/regularization

e Performance does not decrease with more
features

— Flexibility in specifying features

e Qutperforms other algorithms in benchmark
problems



CONCLUSION



Conclusion

Iterative algorithms have weak guarantees
— Unreliable
— Hard to analyze

New & improved optimization-based algorithms
— Decouple objective from algorithm

— Strong guarantees

— Easy to analyze and use

(More) Practical sampling bounds: Use Gaussian processes

Feature selection: Balance feature complexity with samples



Classical Iterative Algorithms

Algorithms for Value Function
Approximation

Based on MDP algorithms

Simple algorithms

Complex analysis
— Weak guarantees
— Hard to analyze
— Hard to use

Optimization-based Algorithms

e Based on value-function
bounds

More complex algorithms

Simple analysis

— Strong guarantees
— Sampling bounds
— Feature selection



Contributions

* Analysis of API /nipsos, Ecvit/miog)

* New, robust VFA formulations jicarsos)
— ALP: new derivation and formulation [icviLo9)
— ABP: robust/expected policy loss [niPsog,imLR?]

 Sampling bounds and feature selection
— New better sampling bounds jicviLio,niPs?)
— Methods for feature selection [iicaioz,icviLio]

* Mathematical optimization algorithms
— Homotopy methods [icviio)
— Bilinear program solvers [AAA107,JAIR09]

June 7th 2010
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Future Work: Error Bounds in VFA

M Representation How good is
Error Bounds represe ntation
Features
> X M=o

Value
> Algorithm H Function H Policy }

Offline Error Online Error

Bounds Bounds

Sampling
Error Bounds

How good is How good  How good is
algorithm  value function policy
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MATHEMATICAL OPTIMIZATION
ALGORITHMS



Algorithmic Considerations

* Optimization-based formulation require
solving optimization problems
e Approximate linear programs
— Solving large linear programs
— Mature solvers that can solve large problems
* Approximate bilinear programs

— NP hard to solve optimally
— Few solvers are available



Solving Approximate Linear Programs

e Small number of features  minimize *U
— Easy to solve & a
subject to * U =

| —/

* Large number of features

minimize *U
— Harder to solve

subject to B*U = U

June 7th 2010 69



Homotopy Methods for
Approximate Linear Programs *

* Solve for large ALPs with regularization

——
- wm
__——
—_
-
-

- - = = Mosek(R) Solver
Homotopy

4
Regularization: y

6

Important: Address degenerate
solutions — dual regularization

1
max bly —yx+ ~y'y
YA X
st. Aly—ex<c

y,A >0

min Tz + X% 1Az — b1 |
st. ez <
x>0



Solving Bilinear Programs

Few bilinear program solvers

Easier to solve when the number of bilinear
terms is small

— Method for solving such BPs (*)
An instance of a global optimization problem

— Concave quadratic minimization
— Mixed integer linear program

Commercial solvers available



Standard MILP Transformation

min sz + M by
w,A1,2,A2,41,92
S.t. A]_AEAQ —Airo+ Biw > by AQAIA]_ — Aor1+ Boz > by
Al =71+ Cy Ay =ro+CTx
B\ = s1 Bl =55

A1AINo — Ayro + Biw — b1 < (1 — q1)M
AsAIN) — Aory + Boz — by < (1 — g2)M

M < Mq A2 < Mgop
A >0 A2 >0
q1 € {0: l}n Q2 € {09 l}n

* Hard to analyze
 MILP solvers work very poorly



min
2,7, v

MILP Formulation of ABP *

1TZ )\/

2> A= (1 — 7) ‘ Order§o(1; f

A4 N1 > Av— b magnitude faster to
solve

Av—02>0

Br=1 X\XX>0
veM r=efo,1) ° Easiertoanalyze

* Still not fast enough
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Types of Algorithm

* Policy based: policy search
— Does not explicitly use a value function
— Great results, but hard to analyze

* Value function based: approximate dynamic
programming
— Calculate value function as an intermediate step
— Stronger guarantees, good performance

All efficient methods for sequential decision problems estimate value function as an

intermediate step.
Richard Sutton, MSRL 2009




Lower Bounds on APl Performance *

* A trivial bound can be tighter for sufficiently
high discount factors

lim sup ||v* || - 2
v — v _klloo <
k—roc P CR

lim sup |1 — LUg|| oo
* Impossible to get bounds in terms of the best
approximation

limsup|lv —v >cmin ||lv — Lo
m sup v —v_k|loo min | | oo



Algorithms for VF Approximation

* Combines features and [Represe"taﬁm H ]
samples N

* Resembles machine learning [ Algorithm ]
regression J

O\
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Relationship To Machine Learning

* No distribution in regression
* Distribution depends on the policy

— policy depends on the value function

 The guarantees must be different
A

O\




Value Function Approximation

1 1 1 1 11

Soddddes

4
State

Features Optimal Approximate
Value Function Value Function
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The Bound Is Tight *

25
2%--*--7--*---*---%---*
0 '°f ALP Solution
S
101 Closest Approximation| (Value Function|]

State

 Modify ALP to reduce the bound

— Improve practical performance

June 7th 2010

80



Why Approximation Fails? *

e Virtual Loop

Value Functionf
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Expanding Constraints *

 Roll out selected constraints
— Use dual values

e Offline error bounds

2 min [[v* — v||
1 — vyt veM >

|9 — v™[|1 <

1
vy=099 —— =100 ¢t =10
1—v 1—v

= 10.5



Simple Approximate Algorithm for ABP

* Motivates approximate policy iteration
* Converges

Bellman Residual

API Optimistic API
6r 10 & } Minyimize
Minimize *
4-__{ ______ *-.’4____*-__. c_g 8 | . o
proximate Value Function -?, 6 pproximate Value Function
2] i
s Y
0 E ol
e
2 e e e e m g = —— - 0
£ g —
4 Maximize . | ) Fixed Lower Bound ‘
0 2 State 4 6 0 2 State 4 6
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Automatic Feature Selection
ABP

* ALP relies on convexity
* ABP is NOT convex

— But can use a similar property




Future Work: Modeling

e Datais used directly
— Not enough data
— Incorporating prior knowledge?

* |Interaction of models and
optimization

— Integrate machine learning components



Future Work: Optimization-based
Algorithms

* Optimization-based ADP methods in practice
— Performance?
— What is a good value function?
— Implications for iterative algorithms?

* Algorithms for linear/bilinear programs

* Tighter bounds
— Better ways to samples



