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Thesis Objectives 

• Reinforcement learning 
– Combines optimization and machine learning 

• Challenge: Existing methods are unreliable 
– Hard to use, analyze, and trust 

• Objective: Develop more reliable methods  that: 
– Provide better guarantees 
– Are easier to use, analyze, understand 

• My approach:  
1. Deepen understanding of basic principles 
2. Build algorithms based on the basic principles 
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Application: Managing River Dam 

Reservoir 

Irrigation 

Water Inflow 

Electricity Price 
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Application: Managing Blood 
Inventories 

•  Managing blood inventory 

– Minimize shortage – demand 
that is not satisfied 

– Maximize utilization –use 
before it perishes 

• Take advantage of blood-
type compatibility 
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Stochastic Supply 
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Domain Model 

• Markov Decision Process 
– States (grid) 
– Actions: 

• Optimal value function – 
best utility of being in each 
state 

• Optimal policy –  decision 
each state 

• Optimal state visitation 
frequencies – how much 
time in each state 
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Maximize rewards 
Infinite horizon: discount: γ 
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Value Function and Policy 

• True solution: policy 

• Calculate policy      from VF     

– Take the best greedy action 

• Calculate VF for policy 

– Add rewards  for policy 

• Policy visitation frequencies 

– How much time policy spends in a state 

– Upper bound (importance of a state)  
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Approximate Value Function 

• Too large – must approximate 

• Value function based on state 
features 

 

 

 

• Linear value function 
approximation 

• Representable value functions 
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Restrict The Space of Value Functions 

Small number of features 

• Value function represented 
a small number of features 

L1  Regularization 

• Large number of features 

• Small volume 

Representable value functions 
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Value Function Approximation: 
Objectives  

• How good is a policy     ?  

• Expected policy loss 

• Robust policy loss 

• How good is a value function    ? 

– Quality of a greedy policy   

• Desirable bounds: for some      

Optimal  
value function 

Initial 
distribution 
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Components of Value Function 
Approximation 

Samples 
Examples of state 

transitions 
Level = 1 

Level = 10 
Level = 12 

Features: 
Representation 

Water level 

Algorithm 

Value Function 

Policy 
Level 1-> Discharge 5 
Level 2-> Discharge 7 
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Error Bounds in Value Function 
Approximation 

Samples 

Features 

Algorithm 
Value 

Function 
Policy 
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Policy 
Loss 

Online Error 
Bounds 

Offline Error 
Bounds 

How good is the 
policy? 

How good is the  
value function? 

How good is the  
algorithm? 
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Objectives 
• If solved a problem using RL then patent it [Powell 

2007] 
 

• Major challenge: Off-the-shelf methods that are 
easy to use by non-practitioners 
 

• I propose algorithms guided by error bounds 
– Strong guarantees & easy analysis 
– Good practical performance 

• Easier to use, because we know: 
– When they work 
– Why they do not work 
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Why Is It Difficult? 

• Many components must interact; 
balance errors: 
– Representational error: Due to features 

 

– Sampling error: Due to missing samples 

 

– Algorithmic error: Due to approximate 
optimization 

• Better understand components to 
understand interaction 

 

Samples 

Features 

Algorithm 
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My Approach * 

MDP Algorithm Approximation 
Bounds ?? 

•How good is the result? 

Algorithm ?? 
• How to minimize the 

bounds? 

Approximation Bounds 

Classical Iterative Algorithms 

 Optimization-based algorithms 

Approximate Dynamic Programming = Value Function Approximation 
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Main Contributions 

• Bottom-up: From simple to 
complex 

• New and improved methods for  

1. Tight online error bounds 

2. VFA algorithms with strong 
guarantees 

3. Evaluating sample quality 

4. Automatically selecting features 
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Features 

VFA Algorithm 

Value Function 

Policy 
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Outline 

1. Framework 
 Value function approximation 

2. Optimization-based Formulations 
 Approximate linear and bilinear 
 programming 

3. Sampling Bounds 
 How good are samples 

4. Feature Selection 
 How to select good features 

Samples 

Features 

VFA Algorithm 

Value Function 

Policy 
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FRAMEWORK AND ITERATIVE 
ALGORITHMS 
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Value 
Function 

Policy 
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Bellman Operator    

• Propagates the expected value backwards 

– Transition probabilities 0.5 

 

 

 

• Bellman residual 

– BR: | 8 – (0.5*10+0.5*20) | = |8 – 15| = 7  

– Measures self-consistency of the value function 
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Online Error Bounds:  
Robust Policy Loss 

Optimal  
value function 

Policy 
value function 

Approximate  
value function 

Bellman residual 

Discount factor 

19 

Robust Policy 
Loss 
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Online Error Bounds:  
Expected Policy Loss * 

Optimal  
value function 

Policy  
value function 

Approximate  
value function 

Bellman residual 

Discount factor 
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Online Error Bounds:  
Expected Policy Loss (Distribution) * 

Optimal  
value function 

Policy  
value function 

Approximate  
value function 

21 

Upper bound on state 
visitation frequencies 
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Approximate Policy Iteration 

• Difficulty: Bellman operator is nonlinear 

• API: Classical iterative VFA algorithm 

 

 

 

 

• Bellman operator is linear for a fixed policy 

• Based on policy iteration 

 

Sample 
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Value Function 

Policy 

June 7th 2010 22 



Approximate Policy Iteration 

• No convergence guarantees 

• Do not know when to stop 
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Offline Bounds for API * 

• Approximation Error Bounds 

 

 

• No convergence 

• Large constants 

– Possibly larger than value function 

Desirable  
bound 
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OPTIMIZATION-BASED 
FORMULATIONS 

Samples 

Features 

VFA 
Algorithm 

Value 
Function 

Policy 
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Main Idea 

• Minimize online bounds – the bounds should be 
as tight as possible 
 
 
 
 
 
 
 

• For now assume that all samples are known 
 

Value function 

Online error bound 

Policy loss 

Offline error bound 
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Approximate Linear Programming 

• Classical approximation 
method 

• Formulation 
– Constraints: transitions 

– Variables: features 

• Guaranteed to converge 

 

• Usually based on LP for 
MDPs 
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Approximate Linear Programming as 
an Optimization-based Method * 

• LP to minimize online error bounds 

• Robust policy loss cannot be LP (P<NP) 

 

 

• Expected policy loss as LP 

 

– Easy to formulate as an LP when        is fixed 

– Visitation frequencies        depend on  
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• Bound for opt-basedALP 

 

 

 

• Good value of         is often unknown 

– Bound approximate value function 

ALP: Offline Error Bounds * 

Closest approximation June 7th 2010 29 



ALP: Practical Performance * 

• Applied to blood inventory management 

 

 

 

 

 

• The bound is tight 

 

 

 

 

Generic-ALP 

 Myopic 

Solution quality 
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• Minimize a tighter online bound 

 

• Linear program: 

 

 

• Offline error bound 

RALP: Alternative Formulation* 

Does not depend on: 
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Approximate Linear Programming 

• RALP: good performance  

• Alternatives necessary 
– Bounds are loose  

– Needs prior knowledge 

 

– Often does not work 

• Why use ALP? 
– Easy to solve & analyze 

– Sometimes works well 

 

Blood inventory management 
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Approximate Bilinear Programming 

 

 

• Approximate policy iteration 

 

• Approximate linear program 

 

• Approximate bilinear program Policies 

Values 

Policies 

Values 

Policies 

Values 
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Approximate Bilinear Programming: 
Derivation * 

• Formulations for all online error bounds 

• Robust policy loss 

 

 

• Expected policy loss (no prior knowledge) 

 

 

• Expected policy loss (prior knowledge) 
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Approximate Bilinear Programming * 
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ABP: Offline Error Bounds * 

• Approximate Bilinear Programming 
 

 
 

• Approximate Linear Programming 
 

 
 

• Approximate Policy Iteration 
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Solving Approximate Bilinear Programs 

• Value function approximation is NP hard 

• Simple approximate algorithm 
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Approximate Bilinear Programming * 

• ABP Guarantees 
– Tight value function approximation 
– Convergence 
– Match performance of API 

 
• ABP, ALP works well in  

– Benchmark problems 
– Reservoir management 

 
• Opportunity for better 

– Algorithms 
– Analysis 

Expected Policy Loss Robust Policy Loss 

Er
ro

r 

Mountain Car 

Benchmark Chain Problem 
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SAMPLING ERROR 

Samples 

Represent
ation 

VFA 
Algorithm 

Value 
Function 

Policy 
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Solution Based On Samples 

• Problems with many states 

• Reservoir management  

– State = water level 

– Would have solve the problem for all water levels 

– ALP: One constraint per state 

• Challenge: Bound policy loss due to sampling 

• No practical bounds exist 

– Too loose or impossible to compute 
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Types Of Sampling Error 

State selection error 

• States that are not sampled 
 

 

Transition estimation error 

• States that are sampled, 
but are not known precisely 

 

Water level 

Weather 

Water level 
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Bounding Sampling Error * 

• Approach: Bounds using the simple analysis of 
optimization-based VFA 

• Regularized representable value functions 

 

– State selection error: how different are unsampled 
states 

– Transition estimation error:  how different are 
state transitions from the true value 
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Sampling: Offline Error Bounds * 

• Bounds on policy loss 

– ALP  

 

– ABP 

 

 

• Assumptions too general to be useful directly 

– How to estimate them? 
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State Selection Error: Local Modeling 
Assumption 

• States that are close are similar 

• Seen a Lipschitz continuity 

States 

Sample 

R
ew

ar
d
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Basic Approach * 

• How to use that samples are known? 

• Map the states to samples 
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Problems with Local Modeling 

• Assumption must apply to the full state space 

– Bounds are too loose to be useful 

 

– Functions tend to be  
constant with small 
discountinuities 

 

• Hard to estimate the similarity 
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Better Bounds * 

• Use the global structure of the problem 

• Usually more than a single sample available 

• Map a state to multiple samples 

 

 

 

• Linear segments do not incur any error 
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Bayesian Regression Assumption * 

• Local modeling: 

– Worst-case guarantees: pessimistic assumptions 

– Local analysis 

• Use Bayesian regression to generalize to 
unsampled states 

– Take advantage of global structure 

– Expectation instead of hard bounds – easy to specify 

• Drawback: 

– Probabilistic guarantees 
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• Gaussian processes 

 

• Tight bounds (10-
100x tighter than 
LM) 

• Flexible 
assumptions 

• Can be used in 
practice 

 

Comparison To Local Modeling * 
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Transition Estimation Error * 

• Offline error bound 
 
 

• Depends on the number of samples 
 

• The bound is tight 
 

• Need many weather  
patterns need to be 
sampled per volume 
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Common Random Numbers 

• The bounds are tight because state are 
estimated independently 

 

• Idea: Use the same  
weather to evaluate 
every volume 
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Common Random Numbers * 

• Growth function 

– How similar is behavior for all kinds of volumes 

 

 

– Independent of number 
of samples 

• Similar concept to  
VC dimension 

 

 
Common Random Numbers June 7th 2010 53 



Sampling Error 

• Approximate Policy Iteration [Farahmand et al. 2009] 

 

– Theoretically interesting 

– Hard/impossible to use in practice  

• Approximate Bilinear Programming 

 

– Easy to use general properties 

– Can be used in practice (limited) 
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FEATURE SELECTION 

Samples 

Features 

VFA 
Algorithm 

Value 
Function 

Policy 
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Choosing Features 

• Must approximate the value function 

• Need a small number of features 

– Optimization problems easy to solve 

– Minimizes sampling error 

 

• Features are hard to choose 

– Must know which states are important 

 

 

Possible binary features in reservoir management: 
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Number of Features and Solution 
Quality * 

Solution quality 

 

 

 

 

Automatically choose features based on 
sampling bounds 
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Selecting Features To Balance Errors* 

 

 

 

 

 

 

• Determine the global minimum 
– Homotopy method: efficiently calculate the solution 

for all values of  
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Automatic Feature Selection 
ALP 

Regular ALP 

Automatic 
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Feature Selection 

• When sampling bounds available 
– Can select appropriate features/regularization 

 

• Performance does not decrease with more 
features 
– Flexibility in specifying features 

 

• Outperforms other algorithms in benchmark 
problems 
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CONCLUSION 
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Conclusion 

• Iterative algorithms have weak guarantees 
– Unreliable 
– Hard to analyze 

 
• New & improved optimization-based algorithms 

– Decouple objective from algorithm 
– Strong guarantees 
– Easy to analyze and use 

 
• (More) Practical sampling bounds: Use Gaussian processes 

 
• Feature selection: Balance feature complexity with samples 
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 Algorithms for Value Function 
Approximation 

Classical Iterative Algorithms 

• Based on MDP algorithms 

 

 

• Simple algorithms 

 

• Complex analysis 
– Weak guarantees 

– Hard to analyze  

– Hard to use 

 Optimization-based Algorithms 

• Based on value-function 
bounds 

 

• More complex algorithms 

 

• Simple analysis 
– Strong guarantees 

– Sampling bounds 

– Feature selection 
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Contributions 

• Analysis of API [NIPS08, ECML/ML09] 

• New, robust VFA formulations [ICAPS08] 

– ALP: new derivation and formulation [ICML09] 

– ABP: robust/expected policy loss [NIPS09,JMLR?] 

• Sampling bounds and feature selection 
– New better sampling bounds [ICML10,NIPS?] 

– Methods for feature selection [IJCAI07,ICML10] 

• Mathematical optimization algorithms 
– Homotopy methods  [ICML10] 

– Bilinear program solvers [AAAI07,JAIR09] 

 
June 7th 2010 64 



Future Work: Error Bounds in VFA 

Samples 

Features 

Algorithm 
Value 

Function 
Policy 

Policy Loss 
Online Error 

Bounds 

Offline Error 
Bounds 

How good is  
policy 

How good 
value function 

How good is  
algorithm 

Sampling 
Error Bounds 

Representation 
Error Bounds 

How good is  
representation 

How good are 
samples 
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APPENDIX 
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MATHEMATICAL OPTIMIZATION 
ALGORITHMS 

Samples 

Features 

VFA 
Algorithm 

Value 
Function 

Policy 
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Algorithmic Considerations 

• Optimization-based formulation require 
solving optimization problems 

• Approximate linear programs 

– Solving large linear programs 

– Mature solvers that can solve large problems 

• Approximate bilinear programs 

– NP hard to solve optimally 

– Few solvers are available 
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Solving Approximate Linear Programs 

• Small number of features 

– Easy to solve 

 

 

• Large number of features 

– Harder to solve 
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Homotopy Methods for  
Approximate Linear Programs * 

• Solve for large ALPs with regularization 

Important:  Address degenerate 
solutions – dual regularization 
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Solving Bilinear Programs 

• Few bilinear program solvers 

• Easier to solve when the number of bilinear 
terms is small 

– Method for solving such BPs (*) 

• An instance of a global optimization problem 

– Concave quadratic minimization 

– Mixed integer linear program 

• Commercial solvers available 
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Standard MILP Transformation 

 
 
 
 
 
 
 
 
 

• Hard to analyze 
• MILP solvers work very poorly 
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MILP Formulation of ABP * 

 

• Orders of 
magnitude faster to 
solve 

 

• Easier to analyze 

 

• Still not fast enough 
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OTHER SLIDES 
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Types of Algorithm 

• Policy based: policy search 
– Does not explicitly use a value function 

– Great results, but hard to analyze 

• Value function based: approximate dynamic 
programming 
– Calculate value function as an intermediate step 

– Stronger guarantees, good performance 

All efficient methods for sequential decision problems estimate value function as an 
intermediate step. 

Richard Sutton, MSRL 2009 
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Lower Bounds on API Performance * 

• A trivial bound can be tighter for sufficiently 
high discount factors 

 

 

• Impossible to get bounds in terms of the best 
approximation 
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Algorithms for VF Approximation 

• Combines features and 
samples 

• Resembles machine learning 
regression 

Samples Representation 

Algorithm 

Value Function 
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Relationship To Machine Learning 

• No distribution in regression 

• Distribution depends on the policy 

– policy depends on the value function 

• The guarantees must be different 
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Value Function Approximation 

 

 

 

Optimal  
Value Function 

Features Approximate 
Value Function 
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The Bound Is Tight * 

 

 

 

 

 

 

• Modify ALP to reduce the bound 

– Improve practical performance 
June 7th 2010 80 



Why Approximation Fails? * 

• Virtual Loop 
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Expanding Constraints * 

• Roll out selected constraints 

– Use dual values 

 

• Offline error bounds 
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Simple Approximate Algorithm for ABP 

• Motivates approximate policy iteration  

• Converges 

 API Optimistic API 
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Automatic Feature Selection 
ABP 

• ALP relies on convexity 

• ABP is NOT convex 

– But can use a similar property 
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Future Work: Modeling 

• Data is used directly  

– Not enough data 

– Incorporating prior knowledge? 

 

• Interaction of models and 
optimization 

– Integrate machine learning components 
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Future Work: Optimization-based 
Algorithms 

• Optimization-based ADP methods in practice 

– Performance? 

– What is a good value function? 

– Implications for iterative algorithms? 

 

• Algorithms for linear/bilinear programs 

• Tighter bounds 

– Better ways to samples 
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