
Low-rank Feature Selection for Reinforcement Learning

Bahram Behzadian and Marek Petrik
Department of Computer Science

University of New Hampshire
{bahram, mpetrik}@cs.unh.edu

Abstract

Linear value function approximation is a common approach
to solving large reinforcement learning problems. Because
designing good approximation features is difficult, automatic
feature selection is an important research topic. We propose
a new method for feature selection, which is based on a
low-rank factorization of the transition matrix. Our approach
derives features directly from high-dimensional raw inputs,
such as image data. The method is easy to implement using
SVD, and our experiments show that it is faster and more sta-
ble than alternative methods.

Introduction
Most reinforcement learning methods for solving problems
with large state spaces rely on some form of value function
approximation (Sutton and Barto 1998; Szepesvári 2010).
Linear value function approximation is one of the most com-
mon and simplest approximation methods, expressing the
value function as a linear combination of features, which are
provided in advance.

While linear value function approximation is less power-
ful than modern deep reinforcement learning, it is still im-
portant in many domains. In particular, linear models are in-
terpretable and need relatively few samples to reliably com-
pute a value function. Features also make it possible to en-
code prior knowledge conveniently. Finally, the last layer in
deep neural networks, used for reinforcement learning, of-
ten calculates a linear combination of the underlying neural
network features.

A significant limitation of linear value function approx-
imation is that it requires good features, which is, fea-
tures that can approximate the optimal value function well.
This is often difficult to achieve since good a priori esti-
mates of the optimal value functions are rarely available.
Considerable effort has therefore been dedicated to meth-
ods that can automatically construct useful features for lin-
ear value function approximation. Examples of methods
that construct features, or select good features from a large
set, include proto-value functions (Mahadevan and Mag-
gioni 2007), diffusion wavelets (Mahadevan and Maggioni
2006), Krylov bases (Petrik 2007), BEBF (Parr et al. 2008),
L1−regularized TD (Kolter and Ng 2009), and ALP (Petrik
et al. 2010).

Recently, Song et al. (2016) proposed a new feature selec-
tion method, linear feature discovery (LFD) which can reli-
ably map many raw low-quality features—such a sequence
of images—to a few meaningful ones. This method con-
structs a linear encoder and a linear decoder that preserve
the Markov property, that is, the encoder maps the raw fea-
tures of each state to a low-dimensional space in such a way
that the transition to the next state is linear. The decoder then
maps states back to the high-dimensional space. Although
the efficiency of this method has been shown empirically, a
theoretical explanation of when and how it works has been
lacking.

As with all data-driven methods, feature construction (or
selection) must make some simplifying assumptions about
the problem structure, which reduces the number of nec-
essary samples. We show, in this paper, that LFD assumes
that the matrix of transition probabilities can be approxi-
mated using a low-rank matrix. Using low-rank approxi-
mation has led to significant successes in several machine
learning domains, including collaborative filtering (Murphy
2012), and more recently Markov chains (Rendle, Freuden-
thaler, and Schmidt-Thieme 2010) and reinforcement learn-
ing (Ong 2015).

As another contribution, we propose Low-Rank Approxi-
mation (LRA), a new feature selection method based on the
low-rank factorization of the transitions and rewards. Our
approach simplifies LFD, speeds it up by orders of magni-
tude, and is easier to implement and analyze. Just like LFD,
it leverages the low rank of the transition probability matrix
to dramatically reduce the number of samples necessary to
reliably approximate the value function. The advantage of
using truncated SVD for Low-rank approximation over co-
ordinate decent (used by LFD) is that SVD has a closed form
solution and it is proven to be optimal under certain condi-
tions. On the other hand, the coordinate descent approach
does not guarantee to provide an optimal solution. For ex-
ample, when the objective function is a non-smooth multi-
variate function, coordinate decent most likely finds a local
minimum. LRA also provides an upper bound for Bellman
error function.

The remainder of the paper is organized as follows. First,
we describe the general framework of linear value function
approximation and some new properties that are relevant to
feature selection. Next, we show how LFD assumes that

the transition matrix is low-rank and how to speed up the
method. Then, we describe LRA, the new feature construc-
tion method. We also present connections with other feature
construction algorithms and empirically compare LRA with
LFD.

Linear Value Function Approximation
In this section, we summarize the relevant background on
linear value function approximation and feature construc-
tion. We also derive a new representation for computing
fixed point solutions, which will be instrumental in under-
standing LFD and deriving LRA.

We consider a reinforcement learning problem formulated
as a Markov decision processes (MDP) with states S, ac-
tions A, transition probabilities P : S × A × S → [0, 1],
and rewards r : S × A → R (Puterman 2005). The val-
ues P (s, a, s′) denote the probability of transitioning to
state s′ after taking action a in state s. Our objective is to
compute a stationary policy π that maximizes the expected
γ−discounted infinite-horizon return. It is well-known that
the value function vπ for a policy π must satisfy the follow-
ing equality (e.g., (Puterman 2005)):

vπ = rπ + γPπvπ , (1)

where Pπ and rπ are the matrix of transition probabilities
and the vector of rewards, respectively, for the policy π.

Value function approximation becomes necessary in
MDPs with large state spaces. Linear value function approx-
imation approximates the value function as a linear combi-
nation of features φ1, . . . , φk ∈ R|S|, which are real vectors
over states. Using a vector representation, the approximate
value function ṽπ can be expressed as follows:

ṽπ = Φw,

for some vector w = {wi, . . . , wk} of scalar weights that
quantify the importance of features. Here, Φ is the feature
matrix of dimensions |S| × k ; the columns of this matrix
are the features φi.

Numerous algorithms for computing linear value approx-
imation have been proposed (see e.g., (Sutton and Barto
1998; Lagoudakis and Parr 2003; Szepesvári 2010)). In this
work, we focus on fixed-point methods that compute the
unique vector of weights wπ

Φ that satisfy the projected ver-
sion of equality (1):

wπ
Φ = (Φ>Φ)−1Φ>(rπ + γPπΦwπ

Φ)

= Φ+(rπ + γPπΦwπ
Φ) .

(2)

Here, the operator X+ denotes the Moore-Penrose pseudo-
inverse of X (e.g., Golub and Van Loan (2013)). This equa-
tion can be derived by applying the orthogonal projection
operator Φ(Φ>Φ)−1Φ> to both sides of (1).

The fixed-point solution in (2) can also be seen as a linear
compression of the transition matrix and reward vector (Parr
et al. 2008; Szepesvári 2010). The “compressed” transition
matrix PπΦ and reward vector rπΦ are computed as:

PπΦ = (Φ>Φ)−1Φ>PπΦ rπΦ = (Φ>Φ)−1Φ>rπ (3)

The fixed-point weights wπ
Φ are then computed as a value

function for this compressed model to satisfy the following
set of linear equations:

wπ
Φ = rπΦ + γPπΦwπ

Φ . (4)

The following proposition shows that the compressed
model is a solution to an optimization problem. This prop-
erty, which we believe has not been pointed out before, will
serve to provide the new interpretation of LFD (Song et al.
2016).
Proposition 1. The compressed transition probability ma-
trix PπΦ and rewards rπΦ in (3) are the optimal solutions to
the following problems:

PπΦ = arg min
W
‖ΦW − PπΦ‖2F

rπΦ = arg min
w
‖Φw − rπ‖22

Before proving the proposition, it is important to describe
its intuitive meaning. The interpretation for rπΦ is straightfor-
ward as it simply minimizes the distance between the true
and approximate rewards. To understand the objective for
PπΦ , recall that the operator Φ lifts a compressed value func-
tion w to a value function v in the original state space. Thus,
the operator PπΦ applies the original transition probabilities
to a lifted value function, while the operator ΦW first applies
the compressed transition probabilities and then lifts the re-
sult to the full original state space. The compressed matrix
PπΦ is chosen to minimize the difference between these two
operators. Also, Theorem 2 below shows that the objectives
in Proposition 1 above can be used directly to bound the
Bellman error.

Proof of Proposition 1. The result follows by algebraic ma-
nipulation from Equation (4) in (Parr et al. 2008), but we
provide a direct and simpler proof.

The expression for rπΦ is simply the solution to the or-
thogonal projection problem. The expression for PπΦ fol-
lows from the optimal solution to the Frobenius linear re-
gression. To derive the optimal solution, recall that ‖A‖2F =
Tr(A>A) and therefore:

‖ΦW − PπΦ‖2F = Tr(ΦW − PπΦ)>(ΦW − PπΦ)

Taking the derivative of this function with respect to W and
noting that d

dW Tr f(W) = Tr d
dW f(W), since trace is a

linear operator, we get:

d

dW
Tr(ΦW − PπΦ)>(ΦW − PπΦ) =

= W>Φ>Φ− Φ>(Pπ)>Φ = 0

Multiplying by (Φ>Φ)−1 on the right finishes the proof.

Since we want to construct features that can be used to
represent a good value function, it is important to quan-
tify how good such a function is. The standard bound on
the performance loss of a policy computed using, for exam-
ple, approximate policy iteration, can be bounded as a func-
tion of the Bellman error (e.g., (Williams and Baird 1993;
Puterman 2005)). The following theorem shows that the

Bellman error can be decomposed into two components: an
error in the compressed rewards and an error in the com-
pressed transition probabilities.

Theorem 2 (Song et al. 2016). Given a policy π and fea-
tures Φ, the Bellman error of a value function v = Φwπ

Φ
satisfies:

BEΦ = (rπ − ΦrπΦ)︸ ︷︷ ︸
∆π
r

+γ (PπΦ− ΦPπΦ)︸ ︷︷ ︸
∆π
P

wπ
Φ .

Notice that the terms ∆π
r and ∆π

P are related to the objec-
tive values in Proposition 1. The Bellman error can be upper
bounded as follows:

‖BEΦ ‖2 ≤ ‖∆π
r ‖2 + ‖∆π

P ‖2‖wπ
Φ‖2 ≤

≤ ‖∆π
r ‖2 + ‖∆π

P ‖F ‖wπ
Φ‖2

The second inequality holds since ‖X‖F ≥ ‖X‖2. There-
fore, Proposition 1 shows that the compressed model is cho-
sen to minimize an upper bound on the Bellman error.

Equipped with the properties above, we are ready to an-
alyze when and why LFD works, as well as to propose a
faster algorithm that uses only truncated SVD to compute
the low-rank approximation.

LFD: Linear Feature Encoding
In this section, we describe a new interpretation of LFD as
a low-rank approximation of the matrix of transition prob-
abilities. Algorithm 1 illustrates a simplified version of the
Linear Feature Discovery algorithm, which does not con-
sider the rewards vector and approximates the value function
instead of q-function. This helps to explain when one may
expect the method to construct useful features and when it
may fail. The original algorithm can be found in (Song et al.
2016).

Algorithm 1: LFD: Linear Feature Discovery for a fixed
policy π (Song et al. 2016).

1 D ← random(k,m);
2 while Not Converged do

// solve arg minE ‖AED − PπA‖2F
3 E ← A+PπAD+ ;

// solve arg minD ‖AED − PπA‖2F
4 D ← (AE)+PπA
5 end
6 return E

The LFD algorithm starts with a large number of raw fea-
tures, such as ones that come from images. We denote the
raw feature matrix as A. As with the feature matrix Φ, each
column ofA represents a raw feature, and each row accounts
for a sampled state. The number of unique states sampled is
n, and the number of raw features is m. Thus, the dimen-
sions of A are n×m.

It might be natural to ask why raw features must be com-
pressed. Clearly, using Φ which is a linear transformation
of the raw features in A will only further restrict the set of

value functions that can possibly be represented. One could
simply compute wπ

A using (2). If the number of samples is
unlimited, then wπ

A is guaranteed to be no worse than wπ
Φ.

Samples and computational power are usually limited, how-
ever, in which case wπ

A will almost surely overfit the sample.
Restricting the set of features to Φ reduces the risk of over-
fitting and, indeed, serves as a regularization method.

LFD, a simplified version of which is summarized in Al-
gorithm 1, selects k features that linearly combine the raw
features in A using an encoder Eπ with dimensions m× k.
A new encoder is constructed whenever approximating the
value function of a policy π. Thus, the new feature matrix
for a policy π is Φπ = AEπ . The counterpart to the en-
coder is a decoder Dπ of dimensions k × m. The decoder
maps the smaller set of features to the raw features and only
serves to evaluate the quality of the approximation. Song et
al. (2016) introduce an encoder and decoder for both tran-
sition probabilities and rewards, but we focus only on the
transition probabilities to simplify the presentation.

The LFD algorithm is motivated by the theory of pre-
dictive optimal feature encoding described in Song et al.
(2016). An encoder Eπ is predictively optimal if there ex-
ist decoders Dπ

s and Dπ
r such that:

AEπDπ
s = PπA

AEπDπ
r = rπ

The following theorem shows that a predictively optimal
controller can be used to construct optimal features.

Theorem 3 (Theorem 7 in (Song et al. 2016)). Let Eπ be a
predictively optimal controller. Then, the Bellman error with
features Φ = AEπ is zero: BEΦ = 0.

In other words, Theorem 3 shows that if Φ can predict the
next raw features PπA and rewards rπ , then the approxi-
mate value function equals the true value function.

While the above-described motivation is compelling, it
suffers from two main limitations. First, it does not allow for
an approximately predictive optimality when ‖AEπDπ

s −
PπA‖ is merely small rather than being 0. Second, there is
no guarantee that such an Eπ exists for a given set of raw
features A even if the number of features k is unlimited. To
summarize, it is unlikely that a truly predictively optimal
encoder exists and there are no approximation guarantees
when it does not.

We argue that there is a better explanation for why LFD
works and which assumptions it makes about the problem
structure. It uses Proposition 1 to show that LFD approx-
imates PπA using a low-rank matrix. Low-rank matrix fac-
torization is a common approach to regularizing large and
noisy matrices such as PπA . To show how LFD does this,
consider the following low-rank version of the approxima-
tion in Proposition 1:

min
W
‖AW − PπA‖2F subject to rank(W) ≤ k (5)

Notice that without the rank constraint the solution would
simply be PπA = A+PπA.

Perhaps the most common and practical method for en-
forcing a rank constraint on a matrix, such as the W in (5),

is to express it as a product of two low-dimensional matrices.
Thus let:

W = ED

for someE andD of dimensionsm×k and k×m. Replacing
W by ED in (5) gives us a new optimization problem:

min
E∈Rm×k

min
D∈Rk×m

‖AED − PπA‖2F . (6)

Notice that if there exists a predictively optimal encoder of
dimension k then the optimal objective value in (6) is 0.

LFD, summarized in Algorithm 1, solves (6) by coordi-
nate descent. It alternatively computes the optimal E and D
values while assuming that the other one is fixed. Values Eπ
and Dπ are then the minimizers of (6).

We believe that our explanation addresses the problems
with the original motivation of LFD, which assumes there
exist a perfect encoder. We show that it is not necessary to
achieve the equality, but it is sufficient to achieve a small
objective value in (6). Recall that the objective value in
‖AED − PπA‖F is directly related to the Bellman error,
as Theorem 2 and the discussion below it show.

More important, our explanation shows that LFD is likely
to work when the transition probability matrix Pπ has a
good low-rank approximation. This is particularly the case
if the raw features are very expressive, such as when A = I.
When there is no such approximation, or if the raw features
A are not good, then LFD is likely to lead to a significant
Bellman error in approximating the value function and a po-
tentially bad policy.

Previous work has established that LFD often constructs
good features, but solving the optimization problem in (6)
is challenging and can be time-consuming. In the next sec-
tion, we propose a faster optimization method and empiri-
cally demonstrate its advantages.

LRA: Low-Rank Approximation for Feature
Construction

In this section, we propose a new method for selecting fea-
tures. It assumes that Pπ is low rank, like LFD, but runs in
orders of magnitude faster.

LRA is also based on low-rank approximation, but we
solve a relaxed version the optimization problem in (6) as
follows:

min
E∈Rm×k

min
D∈Rk×m

‖ED −A+PπA‖2F . (7)

The optimization must also include the reward function and
will therefore become:

min
E∈Rm×k

min
D∈Rk×m+1

‖AED − [PπA, r
π
A]‖F ,

since PπA = A+PπA and rπA = A+rπ .
The optimization problem (7) is closely related to the LFD

optimization problem (6). The main difference between the
two approaches is where the low-rank constraint is applied.
LFD looks for a low-rank compressed model with a small
number of features. LRA, on the other hand, first computes
the transition probabilities matrix and afterward looks for

a low-rank approximation. There is no significant differ-
ence between the Bellman error bounds that they imply. It
is likely, however, that a more detailed theoretical analysis
would reveal their differences, but this is beyond the scope
of the present paper.

Although LRA’s objective is quite similar to LFD’s ob-
jective, it is nevertheless much easier to solve. As the ma-
trix approximation lemma, or Eckart-Young-Mirsky theo-
rem, shows, all that is needed to recover E and D is to com-
pute the top k singular vectors of PπA (Eckart and Young
1936).

Assume the following singular value decomposition of
PπA:

PπA =

m∑
i=1

σiuiv
>
i = UΣV >,

where the singular values σi are sorted non-increasingly. We
can define matrices Σ1 ∈ Rk×k, U1 ∈ Rm×k and V1 ∈
Rm×k with the following decomposition:

U = [U1 U2] , Σ =

[
Σ1 0
0 Σ2

]
, V = [V1 V2] .

The matrix approximation lemma then implies that an opti-
mal (not unique) solution to (5) is:

Eπ = U1,

Dπ = Σ1V
>
1 .

The matrices U1,Σ1, V1 can be computed using the trun-
cated SVD. Also, the optimal objective value is:∥∥EπDπ −A+PπA

∥∥
F

=
√

(σ2
k+1 + . . .+ σ2

m)

We empirically analyze the performance of LRA over
simple and moderately complex synthetic problems. We also
discuss the advantages and disadvantages of LRA when
compared to other feature construction methods.

Empirical Evaluation
Here, we compare our method (LRA) with linear feature dis-
covery (LFD). We do not compare with other feature con-
struction methods, since Song et al. (2016) present an ex-
tensive empirical comparison of LFD with radial basis func-
tions (RBFs) (Lagoudakis and Parr 2003), and random pro-
jections (Ghavamzadeh et al. 2010), and others.

First, we compare the quality of LRA and LFD solutions
on a range of synthetic randomly-generated problems. The
goal is to ensure that the methods behave similarly regard-
less of the number of samples, or the type of the raw features
that are used. Second, we use an image-based version of the
cart-pole benchmark to show that the methods perform simi-
larly even in more complicated settings. This more-complex
problem is also used when comparing the computational
complexity of the two approaches.

Synthetic Problems
To compare the low-rank approximation method (LRA) with
the linear feature discovery algorithm (LFD), we start with
an uncontrolled policy evaluation problem with a small

number of states. Since we assume a fixed policy through-
out these experiments, we omit all references to it. The data
matrix A ∈ Rn×m only contains the states where n denotes
the number of states and m the length of each raw feature,
with Φ ∈ Rn×k using k features.

The synthetic problems that we use throughout this sec-
tion have 100 states. The rewards r ∈ R100 are generated
uniformly randomly from the interval of [0, 10). The transi-
tion probabilities P ∈ [0, 1]100×100 are generated from the
uniform Dirichlet distribution. To ensure that the rank of P
is at most 40, we compute P as a product P = XY , where
X and Y are small-dimensional . The discount factor we
use is γ = 0.95.

We now proceed by comparing LFD and LRA in a se-
quence of increasingly complex settings. In particular, we
distinguish between cases based on whether the transition
probabilities are sampled or known and whether the raw fea-
tures are tabular or non-tabular. To evaluate the quality of
the value function approximation, we compute the Bellman
residual of the fixed-point value function, which is a stan-
dard metric used for this purpose. Recall that the Bellman
error can be expressed as

BE = ∆r + γ∆PwΦ,

where wΦ is the value-function given in (4). All results we
report in this section are an average of 100 repetitions of
the experiments. All error plots show the L2 norm of the
Bellman error.

Case 1: Known transition probabilities and tabular raw
features. In this case, the true transition probabilities P
are assumed to be known and the raw features are an identity
matrix: A = I. The reward function is also known.

This is the simplest setting, under which LRA simply
reduces to a direct low-rank approximation of the transi-
tion probabilities. That is, the LRA optimization problem
reduces to:

min
E∈Rm×k

min
D∈Rk×m

‖ED − P‖2F .

Similarly, the constructed features will be Φ = E and:

∆P = PE − EPΦ PΦ = (E>E)−1E>PE

∆r = r − ErΦ rΦ = (E>E)−1E>r

Figure 1 depicts the Bellman error in this case. Note that
the errors are 0 for k ≥ 40. This is because the rank of P
is 40. Since the transition probabilities are known precisely,
both methods succeed in recovering them when k ≥ 40. The
results also show that the two methods perform identically
in this simple setting. The only difference between them is
the lower running time of LRA.

Case 2: Sampled transition probabilities and tabular raw
features. The true transition probabilities are not known,
and the transition matrix needs to be estimated from sam-
ples. The features are tabular and thus A = I.

Instead of the transition probabilities matrix, we are given
a set of simulated samples from the transition probabili-
ties P and estimate Ã and its corresponding output matrix

Ã′ = PA. We use 50 consecutive samples to estimate these
values. In this case, LRA solves the following optimization
problem:

min
E∈Rm×k

min
D∈Rk×m

‖ED − Ã+Ã′‖2F .

The features that we use are Φ = ÃE.
Figure 2 shows Bellman error for this case. For a small

number of features, the methods are identical, but the solu-
tion quality of LFD degrades with respect to LRA for inter-
mediate numbers of features. Since when A = I both LRA
and LFD solve an identical optimization problem, we hy-
pothesize that this drop in solution quality is due to the fact
the LFD finds only locally optimal solutions. When matrix
P is noisy, it appears that LFD fails to find the globally op-
timal solution.

Case 3: Known transition probabilities and image-based
raw features. As in Case 1, we assume that the transition
probabilities are known, but now the raw features A are not
tabular, but rather simulate an image representation of states.
The matrix A is generated by randomly allocated zeros and
ones similar to the structure of a binary image.

Figure 3 compares the Bellman error between LFD and
LRA features. Interestingly, just as in Case 1, the two meth-
ods have essentially the same performance. This is surpris-
ing because the corresponding optimization problems are
quite different for structured raw features (that is when A
is not an identity matrix).

Case 4: Sampled transition probabilities and image-
based raw features. This case combines sampled transi-
tion probabilities with image-like features, as in Case 3.

Figure 4 compares the Bellman error between LFD and
LRA features. Just as in Case 2, LRA appears to be much
more stable when the transition probabilities are not known
and must be sampled.

It is worth noting that this section deals with very small
MDPs with only about 100 states. In actual MDP problems
with enormous and high-dimensional state spaces, the gap
between the Bellman error of the two methods would likely
be larger. In the next section, we compare the two methods
using a much larger and more challenging benchmark prob-
lem.

Cart Pole
These experiments evaluate the similarity between the linear
feature encoding approach and our LRA method on a mod-
ified version of Cart-Pole, which is a more complex rein-
forcement learning benchmark problem. Unlike in the stan-
dard setting, the controller must learn a good policy by sim-
ply observing the image of the cart and the pole. The con-
troller does not have direct access to the position of the cart
or the angle of the pole. This problem is also large enough
that the computational time plays a more important role, so
we also compare the computational complexity of the two
methods.

0 5 10 15 20 25 30 35 40

Number of Features

0.0

0.5

1.0

1.5

2.0

B
E
=
¢
R
+
°
¢
©
w
©

Bellman Error: LFD vs. LRA

LFD
LRA

Figure 1: Known transition probabilities and tabular raw
features (Case 1).

0 5 10 15 20 25 30 35 40

Number of Features

0.00

0.05

0.10

0.15

0.20

0.25

B
E
=
¢
R
+
°
¢
©
w
©

Bellman Error: LFD vs. LRA

LFD
LRA

Figure 2: Sampled transition probabilities and tabular raw
features (Case 2).

0 5 10 15 20 25 30 35 40

Number of Features

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
E
=
¢
R
+
°
¢
©
w
©

Bellman Error: LFD vs. LRA

LFD
LRA

Figure 3: Known transition probabilities and image-based
raw features (Case 3).

0 5 10 15 20 25 30 35 40

Number of Features

0.00

0.05

0.10

0.15

0.20

0.25

B
E
=
¢
R
+
°
¢
©
w
©

Bellman Error: LFD vs. LRA

LFD
LRA

Figure 4: Known transition probabilities and image-based
raw features (Case 4).

To obtain the training data, we collected the desired num-
ber of trajectories with the starting angle, and angular veloc-
ity sampled uniformly on [0.1, 0.1]. Cart position and veloc-
ity are set to zero at the beginning of each episode. None of
the algorithms see the true state of cart pole. The algorithm
was given two consecutive, rendered, gray-scale images of
the cart pole. Each image has 52 × 35 pixels, so the raw
state is a 52× 35× 2 = 3640−dimensional vector. We used
k = 50 features for both LFD and LRA similar to state prop-
erties in (Song et al. 2016).

We implemented LFD as described by Song et al. (2016)
and followed an analogous setup when implementing LRA.
The training data sets are produced by running the cart for
[200, 400, 600, 800] episodes with a random policy. We then
run policy iteration to iterate up to 50 times or until there is
no change in the A′ = PA matrix.

The learned policy was later assessed 50 times to obtain
the average number of balancing steps. Figure 5 displays the
average number of steps during which the pole kept its bal-

ance using the same training data sets for LFD and LRA.
This result shows that the policies obtained from these meth-
ods are equivalent. The threshold for LFD was fixed to a
small number 0.0003. Otherwise, LFD results in larger Bell-
man error in comparison to LRA in all synthetic problems.

We also evaluate the average running time of LFD and
LRA for a single function call with k = 50. Figure 6 de-
picts the result of this comparison. The computation time of
LRA grows very slowly as the number of training episodes
increases; at 800 training episodes, the maximum number
of episodes tested, LRA is 20 times faster that LFD. There-
fore, LFD would likely be impractical in large problems with
many training episodes.

Related Feature Selection Methods
Although numerous feature selection methods have been
proposed in the last decade, we limit our discussion to those
methods most relevant to LRA.

200 300 400 500 600 700 800

Number of training episodes

1400

1450

1500

1550

1600

1650

1700

St
ep

s
Number of balancing steps: LFD vs. LRA

LRA
LFD

Figure 5: Number of balancing steps with k = 50

200 300 400 500 600 700 800

Number of training episodes

200

400

600

800

1000

Se
co

nd

Mean running time for single call: LFD vs. LRA

LRA
LFD

Figure 6: Mean running time with k = 50

Perhaps the simplest and most general method is based
on random projections; it makes no assumptions, and it runs
quickly (Ghavamzadeh et al. 2010) Another class of meth-
ods has been inspired by LASSO and uses L1 regulariza-
tion to select meaningful features (Kolter and Ng 2009;
Petrik et al. 2010; Johns, Painter-Wakefield, and Parr 2010).
These methods make no assumptions about the structure of
the matrix of transition probabilities but simply seek to find
a small set of relevant features. They are likely to work even
when the transition matrix is not low-rank, but may require
a larger set of samples.

A class set of methods that is most similar to LRA re-
lies on the eigenvalues of some form of the probability ma-
trix and includes proto-value functions and Krylov meth-
ods (Mahadevan 2005; Petrik 2007). The main difference is
the objective and how the features are selected.

Probably the closest approach to LRA is a method for a
low-rank approximation based on Robust PCA (Ong 2015);
this method, however, has a much higher computational
complexity and only works directly with the matrix of tran-
sition probabilities.

Conclusion
In this paper, we showed that LFD—a recently proposed fea-
ture selection method—is a form of low-rank approximation
to the matrix of transition probabilities. When the transition
matrix is low-rank or at least can be approximated well us-
ing a low-rank matrix, one would expect LFD to perform
well. On the other hand, if no such approximation exists, the
method is likely to fail.

The main limitation of LFD is that it involves solving a
difficult optimization problem, which makes the algorithm
impractical for solving problems with large state spaces. We
address this limitation by proposing an alternative optimiza-
tion algorithm, LRA, which involves a more direct low-rank
matrix approximation. In our formulation, the low-rank ap-
proximation can be derived directly from an SVD of a “com-
pressed” transition probabilities matrix.

Our empirical results show that LRA computes value

functions that are as good as those that are computed using
LFD but can do so several orders of magnitude faster. Even
in the cart-pole problem, which is a relatively simple bench-
mark problem, we observed up to almost 20 fold speedup in
feature computation time. Also, while LFD needs to know
the number of features to select in advance, the SVD-based
LRA can select the number of features on the fly based on
the decay of singular values.

Acknowledgments
We thank the anonymous reviewers for detailed comments
that helped to improve this paper significantly. This work
was in part supported by the National Science Foundation
under Grant No. IIS-1717368.

References
Eckart, G., and Young, G. 1936. The approximation of one-
matrix by another of lower rank. Psychometrika 1:211218.
Ghavamzadeh, M.; Lazaric, A.; Maillard, O.-A.; and Munos,
R. 2010. LSTD with Random Projections. In Neural Infor-
mation Processing Systems (NIPS).
Golub, G. H., and Van Loan, C. F. 2013. Matrix Computa-
tions.
Johns, J.; Painter-Wakefield, C.; and Parr, R. 2010. Lin-
ear Complementarity for Regularized Policy Evaluation and
Improvement. Advances in Neural Information Processing
Systems (NIPS) 23 1009–1017.
Kolter, J. Z., and Ng, A. Y. 2009. Regularization and feature
selection in least-squares temporal difference learning. In
Proceedings of the 26th annual international conference on
machine learning, 521–528. ACM.
Lagoudakis, M. G., and Parr, R. 2003. Least-squares
policy iteration. Journal of machine learning research
4(Dec):1107–1149.
Mahadevan, S., and Maggioni, M. 2006. Value function
approximation with diffusion wavelets and laplacian eigen-
functions. In Advances in neural information processing
systems, 843–850.

Mahadevan, S., and Maggioni, M. 2007. Proto-value func-
tions: A laplacian framework for learning representation and
control in markov decision processes. Journal of Machine
Learning Research 8(Oct):2169–2231.
Mahadevan, S. 2005. Proto-value functions: Developmen-
tal reinforcement learning. In International Conference on
Machine Learning.
Murphy, K. 2012. Machine Learning: A Probabilistic Per-
spective.
Ong, H. Y. 2015. Value Function Approximation via Low
Rank Models. arXiv.
Parr, R.; Li, L.; Taylor, G.; Painter-Wakefield, C.; and
Littman, M. L. 2008. An analysis of linear models, lin-
ear value-function approximation, and feature selection for
reinforcement learning. In Proceedings of the 25th interna-
tional conference on Machine learning, 752–759. ACM.
Petrik, M.; Taylor, G.; Parr, R.; and Zilberstein, S. 2010.
Feature selection using regularization in approximate linear
programs for Markov decision processes. In International
Conference on Machine Learning.
Petrik, M. 2007. An analysis of laplacian methods for value
function approximation in mdps. In IJCAI, 2574–2579.
Puterman, M. L. 2005. Markov decision processes: Discrete
stochastic dynamic programming. John Wiley & Sons, Inc.
Rendle, S.; Freudenthaler, C.; and Schmidt-Thieme, L.
2010. Factorizing personalized Markov chains for next-
basket recommendation. In International conference on
World wide web (WWW), 811–820.
Song, Z.; Parr, R. E.; Liao, X.; and Carin, L. 2016. Linear
feature encoding for reinforcement learning. In Advances in
Neural Information Processing Systems, 4224–4232.
Sutton, R. S., and Barto, A. 1998. Reinforcement learning.
Szepesvári, C. 2010. Algorithms for reinforcement learn-
ing. Synthesis lectures on artificial intelligence and machine
learning 4(1):1–103.
Williams, R. J., and Baird, L. C. 1993. Tight performance
bounds on greedy policies based on imperfect value func-
tions. Technical report, Technical report, College of Com-
puter Science, Northeastern University.

