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ABSTRACT

Catastrophic events such as hurricanes, earthquakes or floods require emergency responders to rapidly
distribute emergency relief supplies to protect the health and lives of victims. In this paper we develop
a simulation and optimization framework for managing the logistics of distributing relief supplies in a
multi-tier supply network. The simulation model captures optimized stocking of relief supplies, distribution
operations at federal or state-operated staging facilities, demand uncertainty, and the dynamic progression
of disaster response operations. We apply robust optimization techniques to develop optimized stocking
policies and dispatch of relief supplies between staging facilities and points of distribution. The simulation
framework accommodates a wide range of disaster scenarios and stressors, and helps assess the efficacy
of response plans and policies for better disaster response.

1 INTRODUCTION

Disaster response requires that emergency supplies are distributed rapidly and widely across the affected
area. Many national and regional agencies operate supply chains designed to respond to a large variety
of disasters. These supply chains differ significantly from commercial supply chains. First, the delivery
of goods is not driven by optimizing profits but instead by fulfilling humanitarian needs. Second, while
commercial supply chains can be designed and refined to slowly changing customer demand, the supply
chains in disaster response must be set up rapidly with little advance warning and often with little precise
information. Because disasters usually result in improvements in infrastructure and response plans, the next
disaster typically differs significantly from historical patterns. As a result, there is generally insufficient
historical data to construct faithful models of damage and the demand for emergency supplies.

In this paper, we consider the problem of optimizing and simulating inventory levels and deliveries
in a supply chain during a disaster response. These are typical logistical challenges faced by government
emergency management agencies, such as the Federal Emergency Management Agency (FEMA) in the US
or Emergency Management Australia (EMA). Emergency response agencies often rely on supplies that are
stored long-term in a small number of large warehouses; we refer to them as Distribution Centers (DC).
During a response, the response agencies must transport numerous emergency supplies through a number
of intermediate processing points to Points of Distribution (PODs) where they are distributed to the affected
population. We refer to the intermediate processing nodes as Staging Areas (SAs). Once established
during the disaster response, both PODs and SAs can hold inventories to respond to shifting demand needs.
Figure 1 shows an example of a supply chain structure.
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Figure 1: Example of a supply chain of a disaster response agency.

We consider a scenario in which a single commodity is distributed, e.g. bottled water; our models,
however, can be extended easily to handle multi-commodity supply chains. Other common commodities
that are distributed are, for example, meals ready-to-eat, blankets, temporary housing, or medical supplies.

We focus on the supply chain planning during the initial phase of the response. During this phase,
supplies are available only in DCs before the disaster happens. Because there are only a few DCs, it is
essential to initiate the transportation of supplies as early as possible. Often, truck services must be procured
and the shipments initiated long before the precise extent of the damage—and therefore the demand—is
known with any certainty. The challenge from the optimization perspective is that the supplies must be
efficiently pre-positioned during the initial stages of the response in SAs in the affected region in order to
best respond to unknown demand given unknown damage to the transportation network. In addition, the
supplies must be delivered more or less uniformly to the affected population and the optimization models
must scale to large areas with thousands of distribution points.

One of the main innovations of our work is the robust model of demand uncertainty (Ben-Tal, Ghaoui,
and Nemirovski 2009). Robust optimization is an alternative model of uncertainty to the more traditional
stochastic optimization (Zipkin 2000, Porteus 2002, Ben-Tal, Ghaoui, and Nemirovski 2009). It computes
solutions that are guaranteed to work well in all plausible realization of the uncertainty instead of computing
solutions that work well in expectation. Robust solution can also be seen as an immunization against the
effects of the uncertainty.

Compared with stochastic models, the robust model of uncertainty is simpler in terms of both com-
putational and data complexities (Barbarosoglu and Arda 2004). In particular, robust models are typically
easier to solve than stochastic models of uncertainty because their focus is on a single worst case opposed
to the average over stochastic samples. Robust optimization problems are also easier to specify based
on incomplete data. The uncertainty sets only define plausible scenarios and do not require distributions
over realizations. Finally, robust models do not suffer from some of the out of sample extension problems
associated with some of the sample-based stochastic optimization algorithms such as approximate dynamic
programming (Powell 2007, Ben-Tal, Ghaoui, and Nemirovski 2009).

Recently, there has been considerable effort aimed to address optimization problems related to all
stages of disaster mitigation, response, and recovery (Altay and Green 2006). We focus on the immediate
and short-term response to the disaster and do not address the recovery phase or disaster mitigation. In
comparison with previous work, we describe a comprehensive model for immediate disaster response which
includes inventory management, transportation, and simulation. The inventory management is based on a
network flow model similar to Beamon and Kotleba (2006) but with a more detailed treatment of demand
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uncertainties. Because the inventory model abstracts away from the details of the transportation, we are able
to more faithfully model and optimize demand uncertainties during the response. This model is described
in detail in Section 2.

The truck schedules are then computed using a transportation optimization component which models
actual truck routes. The truck schedules are subject to realistic constraints on driving time, road damage,
and traffic. The truck deliveries are computed to match the inventory model deliveries as closely as possible.
Similar logistic models have been used previously but the main difference is that the goal of our model is
to match the pre-computed inventory flows (Haghani and Oh 1996, Sheu 2007). This model is described in
Section 3. The results of the logistic model are then used in conjunction with a simulator that evaluates the
realistic performance of the model. The simulator is described in Section 4 and the results of simulations
on a large-scale earthquake response scenario are summarized in Section 5.

2 INVENTORY MODEL

In this section, we describe the inventory model for the disaster response in greater detail. We are assuming
a single commodity and the general unit measure is a single truck-load. The inventory is held in multiple
nodes with several levels. The shipping model is simplified to a network flow model with a discretized
time interval and fractional truck load shipments.

Network flow models of supply chains have been studied extensively in the literature. In comparison
with existing work, we focus on a tractable representations of demand uncertainties. There are many
uncertainties involved in responding to a disaster: the extent of the demands, travel times, damage to stock
nodes, transportation times and capacities. To simplify our model, we focus only on demand uncertainties;
We briefly discuss extensions to many other types of uncertainties. Unlike traditional approaches, we use
robust optimization models which lead to more tractable models, simpler data requirements, and more
robust solutions. While solutions to robust models can be expected to perform worse on average, the
worst-case performance may be more appropriate in disaster response (Ben-Tal, Ghaoui, and Nemirovski
2009).

Robust optimization models have been recently proposed as an alternative to stochastic optimization
models. Typical stochastic optimization models treat uncertainty as random variables and are formulated
as: miny∈Y E [ f (X ,y)], for a decision variable y, random variable X , and an objective function f . Robust
optimization, on the other hand solves a worst case problem: miny∈Y maxx∈X f (x,y), for a plausible set
of realizations X . While at first sight such formulations may seem too conservative, they have been shown
to work well in many domains when the plausible sets are chosen correctly. The plausible set X can be
either constructed directly from data or from stochastic distributions.

Robust optimization models of inventory management with uncertain demands have been studied
previously (Bertsimas and Thiele 2006). This work showed that many properties of stochastic inventory
control also hold in robust models. However, the model studied by Bertsimas and Thiele (2006) assumes
several important simplifications that limit its applicability to our setting. It assumes that the uncertainty
is restricted to be of a rectangular shape which we define formally below (Iyengar 2005). Rectangular
uncertainty sets intuitively mean that the demand variations are independent across stock nodes and time.
This essentially implies that the plans are computed with respect to the worst case in each node as opposed
to a worst case over all nodes.

In addition to rectangular uncertainty sets, Bertsimas and Thiele (2006) consider only static policies.
Static policies, also known as open-loop control, are easy to compute but do not adjust to new information
about demand uncertainty. Fully adjustable policies, also known as closed loop control, can on the other
hand adjust as new information is update. Adjustable policies are much harder to compute than static
ones. Affinely adjustable policies or controllers represent a compromise between static and fully adjustable
ones (Ben-Tal, Goryashko, Guslitzer, and Nemirovski 2004, See and Sim 2010). Affine controllers represent
a compromise between static policies and fully adjustable policies. Truncated affine controllers represent
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a piecewise extension of affine controllers. These approaches, though, require that the uncertainty is
rectangular to make their computation tractable.

Our model lifts the restriction to rectangular uncertainty sets and can be easily adapted to affinely
adjustable policies. Non-rectangular uncertainty sets, in general, lead to models that are NP-hard to
solve (Ben-Tal, Ghaoui, and Nemirovski 2009). To achieve tractability, we make low-dimensionality
assumptions on the uncertainty sets in the form of a factored representation akin to See and Sim (2010).
That is, the uncertainty set is defined as a combination of a small number of “extreme” scenarios that
introduce limited correlations between plausible demands. Because of the unique needs of disaster response
model, we develop new objective functions that measure the fairness of the coverage over multiple stock
nodes. These measures enable us to quantitatively evaluate the quality of the solutions in contrast with
some previous heuristic approaches (Oh and Haghani 1997).

2.1 Deterministic Formulation

We start by describing a deterministic formulation of the inventory problem. Later we build on this model
to introduce the robust model of uncertainty. The planning horizon is discrete and finite with time steps
T = {0 . . .T}. The supply chain consists of stock-nodes W . There is initial inventory in each stock
node, zw. There is demand at a subset of the nodes Wd ⊆W at each time step t ∈ T and node w ∈WD,
dt,w ∈R+. The storage capacity in terms of truck-loads of each non-demand node w∈W \WD is denoted as
sw ∈R+. The set of transportation links between the nodes form a directed acyclic graph L ⊆W ×W . The
transportation lead time for an edge e∈L in discrete time-steps is denoted as le ∈N. The loading/unloading
throughput at each node w ∈W in terms of truck-loads is qw ∈R+. The costs are defined as follows. The
backlogging cost at node w ∈W is denoted as cw ∈ R+. We ignore the shipping costs in describing the
formulation to reduce clutter. The shipping costs are simply added to the objective.

We use the following decision variables. For any link e ∈L , the inventory shipped along the link
e ∈L during time step t ∈T is denoted as ft,e ∈R+. Alternately, we use ft,v,w for e = (v,w); when there
is no such edge the variable is by definition 0. The inventory level at stock node w ∈W is xt,w ∈ R+ and
the backlog at the node is bt,w = [∑t

u=0 du,w− xt,w]+. Note that for terminal nodes, the value xt,w represents
the total deliveries and not the current inventory. We use [x]+ = max{0,x}. The model makes the following
general assumptions. Stock nodes are used to model all levels of the supply chain, including the points
of demand, but backlogging is allowed only for the demand nodes. Transportation links are unidirectional
and the transportation network is acyclic.

The network flow between the stock nodes can be readily formulated as a linear program. The constraints
in the linear program are as follows for each node w ∈W and time step t ∈ T . The inventory dynamics
of shipments and deliveries are:

x0,w = zw , xt,w ≤ sw , xt,w = xt−1,w + ∑
v∈W

(
ft−lv,w,v,w− ft,w,v

)
, ∑

v∈W

(
ft−lv,w,v,w− ft,w,v

)
≤ qw .

The last constraint limits the flow into and out of a stock node by its throughput. The constraints above
can be abstracted as linear constraints using matrices A f and Ax and a vector b as A f f +Axx≥ b, Note that
as formulated, the constraints do not include the demands. This is intentional to simplify the introduction
of the uncertain demands in the robust formulation.

Assuming that the precise demands d are known, one can formulate the following linear program,
introduced above, with the objective to maximize the coverage across the stock nodes

min
x, f

∑
t∈T
w∈W

cw · [∑t
u=0 du,w− xt,w]+
∑

t
u=0 du,w

s.t. A f f +Axx≥ b (2.1)

This optimization problem, however, suffers from several important shortcomings which we address in
the remainder of the paper: 1) the formulation does not address demand or lead-time uncertainties, and
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2) the coverage that is achieved may be very uneven—easily accessible demand nodes would have much
higher coverage.

2.2 Measures of Coverage Quality

Unfortunately, it is often impossible to satisfy all demand in a disaster response. The goal in disaster
response is, therefore, to achieve the greatest possible demand coverage given the available resources. This
brings up the natural question what is the most fair distribution of the supplies across the region. Simply
using the average coverage, or total demand satisfied, leads to very unequal coverage. Another approach
would be to consider the worst-case backlog over the demand nodes but this leads to plans that are too
conservative and achieve overall low coverage.

To address this issue in a principled way, we describe a new class of fairness measures used to evaluate
the trade-off between deliveries to multiple nodes. These measures are used to combine the coverage levels
or backlog from multiple stock nodes into a single number.
Definition 2.1. A function µ :RW

+ →R represents a backlog fairness measure when it satisfies the following
conditions for any two backlog values instantiations x,y ∈ RW

+ :
1. Normalization: µ(0) = 0.
2. Monotonicity: If x≥ y, then µ(x)≥ µ(y).
3. Convexity: µ(α · x+(1−α) · y)≤ α ·µ(x)+(1−α) ·µ(y) for α ∈ [0,1].
4. Uniform indifference: µ(x+ c ·1) = µ(x)+ c for any c ∈ R.
5. Positive homogeneity: µ(c · x) = c ·µ(x) for any c≥ 0.
This class of fairness measures is inspired by coherent risk measures which are used in stochastic

finance to model risk-averse decision makers (Follmer and Schied 2011). These functions are attractive
both because they have both good properties for the models and are also computationally convenient. Of
particular interest is the following alternative representation of fairness measures as a robust value with
respect to a set of probability measures.
Proposition 2.2 (e.g. (Follmer and Schied 2011)). For any fairness measure µ : RW

+ → R there exists a
set of probability measures Q ⊆ RW

+ such that for any backlog b ∈ RW
+ :

µ(b) = sup
q∈Q

∑
w∈W

qw ·bw.

The representation in Proposition 2.2 makes it possible to integrate the measures with out robust
optimization framework. We call fairness measures polyhedral when the set Q in Proposition 2.2 is a
polytope. Some examples of polyhedral fairness measures are the following. The average backlogs over
all demand nodes: µ(b) = E [b] 1

|W | ∑w∈W bw or the worst-case backlog over the nodes µ(b) = maxw∈W bw.
Note that a convex combination of any two fairness measures remains a fairness measure. The actual
measure that we use is a convex combination of average and AV@R (Follmer and Schied 2011):

µ(b) = (1−λ ) ·E [b]+λ ·CV @R(b) = (1−λ ) ·E [b]+λ min
θ∈R

(
−θ +

1
α

E
[
[X +θ ]+

])
,

where λ and α are parameters that determine importance of uniform coverage.
The fairness measures, as defined above, can be readily extended to measure the coverage across time

steps in addition to measure it across inventory nodes. Then, the deterministic optimization in Equation (2.1)
using the fairness measures is as follows:

min
x, f

max
q∈Q ∑

t∈T
w∈W

qt,w ·
cw · [∑t

u=0 du,w− xt,w]+
∑

t
u=0 du,w

s.t. A f f +Axx≥ b (2.2)

Note that the formulation uses the representation from Proposition 2.2. It can be readily shown that this
optimization problem remains a fractional linear program by taking the dual of the inner maximization.
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2.3 Uncertain Demands

We are now ready to extend the framework for dynamic inventory optimization problems, which can be
used to model supply chains in the disaster response. We will need some additional notation. The demand
is forecasted at the beginning of the optimization. The forecast at each time step t for a node w is denoted
as d̂t,w. The actual realization of the demand is dt,w, and we use d̂t,w = d̂t,w−dt,w to denote the demand
deviation from the forecast.

The robust optimization model assumes a set of plausible demands D ⊆ RT ×W . We describe how
these sets are constructed below. Each element of the set represents a possible realization of the demands
across all nodes and all time steps. We assume that these precise demands are unknown initially and the
precise demand dt,w is observed at time t. The static, or open loop, robust optimization version of Eq. (2.2)
is as follows:

min
x, f

max
d∈D

max
q∈Q ∑

t∈T
w∈W

qt,w ·
cw · [∑t

u=0 du,w− xt,w]+

∑
t
u=0 d̄u,w

s.t. A f f +Axx≥ b (2.3)

Notice that the optimization is over the worst case possible realization of the demand, but the normalization
to compute the coverage is in terms of the forecasted demand. The motivation for using d̄ in the normalization
is to allow for a convex formulation.

2.4 Factored Representation of Uncertainty

Unfortunately, the problem Equation (2.3) is non-convex and may be NP-hard to compute in general (Bert-
simas and Goyal 2011). In particular, the optimization over the worst-case demand realization d leads to
non-convexities. This is because the function [·]+ is convex in d. Bertsimas and Thiele (2006) address this
difficulty by relaxing the problem to rectangular uncertainties, which may lead to solutions that are too
conservative in our setting. This approach is also known as a safe approximation (Ben-Tal, Ghaoui, and
Nemirovski 2009). We take an alternative approach and use uncertainty sets that are non-rectangular but
are simplified by having a small number of extreme points and small dimensionality.

We use a causal representation of the uncertainty. Even though the uncertainty has an effect on a large
number of stock nodes, it is usually caused by a small number of causes which are typically easier to define
than their impacts. These causes result in significant correlations between demand deviations across the
individual nodes. Assume a given set of factors h j

w for j = 1 . . .m and w ∈W . That is, each h j represents a
single cause, such as the location of an earthquake’s epicenter, and the corresponding set of demand nodes
affected by this cause. It is plausible for each of the events to happen, but it is very unlikely for several
of them to influence the demand simultaneously. The uncertainty can be represented:

D =

{
d̄ +∑

j
h j ·ξ j : ∑

j
ξ j = 1, ξ ≥ 0

}
.

This assumes that the factors modify the demand with respect to the forecast. A more general formulation
of this set is D = d̄ + conv

(
{d̂1, d̂2, . . . , d̂n}

)
, with the deviations corresponding to d̂1, d̂2, . . . , d̂n. The

representation of the uncertainty set in terms of its extreme points above has several advantages in our
setting. First, it is often easier to describe most extreme plausible samples than to derive the appropriate
linear inequalities. Second, we propose algorithms that have a polynomial running time in the number of
extreme points. The approach for using the extreme points of the uncertainty set relies on the following
well-known result.
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Theorem 1 Let X be the feasible set defined by the constraints in Equation (2.3). Then, the following
equality holds:

min
x, f∈X

max
d∈D

max
q∈Q ∑

t∈T
w∈W

qt,w ·
cw · [∑t

u=0 du,w− xt,w]+

∑
t
u=0 d̄u,w

= min
x, f∈X

max
d∈extD

max
q∈Q ∑

t∈T
w∈W

qt,w ·
cw · [∑t

u=0 du,w− xt,w]+

∑
t
u=0 d̄u,w

,

where ext represents the extreme points of the polytope.
The proposition follows readily from the convexity of the inner optimization problem in d. Therefore,

the optimal solution will be in one of the extreme points; the restriction to these values therefore does not
influence the optimal objective. Using the extreme points, the optimization can be formulated readily as
a linear optimization problem by taking the dual of the inner optimization problem. The solution of this
linear program is then used in the transportation model to compute actual solutions.

3 TRANSPORTATION MODEL

In this section, we describe a transportation model that builds on the inventory optimization model to
compute truck routes and schedules. The objective of the transportation model is to use a hierarchical
approach to solve the dynamic vehicle routing problem (DVRP) in multi-stage distribution networks with
multiple sources and delivery constraints. The objective of DVRP is to maximize the demand fulfillment
in delivery locations with fairness. This problem can be categorized as a pickup and delivery vehicle
routing problem, where goods are transported between pickup and delivery locations. We schedule and
assign multiple types of vehicles to pick up and deliver commodities among locations in different levels
of distribution networks.

3.1 Problem Description

As with the inventory optimization model, the total time horizon for DVRP is discretized and denoted by
T . We take four-level networks as an example to demonstrate the whole system of DVRP as follows. The
top level locations, which correspond to DCs, have an available inventory for each time t. The second
level locations have commodity requests as the demand, for each time t. Vehicles located at vehicle depots
corresponding to the first level locations deliver available supplies from the first level locations to satisfy
demands at the second level locations. The arrived commodities to a second level location at time period
t and remaining inventory in this location are then available for further shipment from the location at time
period t. The routing is similar for the third and the fourth level. The vehicles starting at a location in level
k only travel between locations in level k and locations in level k+1. Each time they pick up one truck
load at a location in level k and deliver the entire truck load to a location in level k+1 and return back to
k. Therefore, a route for one vehicle consists of a sequence (l1, t1),(l2, t2), · · · ,(l2p+1, t2p+1), where l2i+1
is a location in level k, 0≤ i≤ p; l2 j is a location in level k+1, 1≤ j ≤ 2p; and ti is the arrival time at
location li. The demand satisfaction is evaluated at the bottom level on the network which corresponds to
PODs.

Each location from the lower levels has a demand for each time t. These demands are produced by
the delivery schedule based on the inventory model optimization. Demands at time t can be satisfied by
delivered commodities at time t or earlier. Just as in Section 4 it is important that we consider the fairness
of the distribution. Because the transportation scheduling problem is more intricate than the inventory
management problem, we focus on a specific instance of a fairness measure, as defined in Definition 2.1:

min ∑
w;t∈T

(
α · [btw−dtw/β ]+ +btw

)
. (3.1)

An example of a sensible values of the parameters are α = 0.2 and β = 2. Here bwt and dtw represent the
unsatisfied demand and total demand respectively at location w at time t. Objective Equation (3.1) provides
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a linear fairness judgment, if the unsatisfied demand is more than half of the demand, we add a penalty of
α ·btw; otherwise, it will be just the value btw. The purpose of this penalty is to avoid concentrating the
unsatisfied demand in any particular location.

We describe two algorithms for DVRP, a greedy algorithm, and a column generation refinement. Each
of these algorithms deals with two-level networks, if the network has k levels, we have to apply a two-level
algorithm k−1 times.

3.2 Greedy Algorithm

Assume that we have a two-level network—if there are multiple levels, each pair of levels can be optimized
independently. The greedy algorithm simply assigns trucks loads to trucks based on which is the earliest
available one. At each iteration we send a truck from an upper-level location to a low-level location, and
then back to an upper-level location. To choose which truck to send, we compute for each truck the shortest
two-step trip, and then choose a truck that after this two-step trip would have the minimum total traveling
time. At each iteration we update the inventory and demand of the chosen locations. The procedure iterates
until all demand is assigned or all trucks have reached a time limit.

3.3 Column Generation

Here we develop a column generation approach that builds on the greedy algorithm to compute better routes
at the expense of a higher computing time. We use the greedy algorithm as a subroutine that generates
possible routings, then these routings are used in an integer program that chooses the best combination.

In order to generate routes, we modify the greedy algorithm as follows. At each iteration of the greedy
algorithm, instead of choosing a truck with minimum total traveling time, we choose at random a truck
among the k lowest traveling times. Here k is a parameter that takes the values 3 or 4. This randomization
allows us to generate many different good routings that will be given to the column generation procedure.

We let N be the total number of vehicles which we can use in this two-level problem. V (h) is the
set of routes that is generated for vehicle h by the greedy algorithm. U is the index set of upper level
locations. L is the index set of lower level locations. The inventory arriving at location w at period t is
`it for w ∈U . The demand at location w at period t is denoted by dtw for w ∈L .

The variables of the integer program are as follows. For each route r we have a binary variable xr.
It takes the value 1 if the route is chosen, and 0 otherwise. The variable otw represents the inventory at
location w and period t that is left at this same location for period t +1. The variable ytw is the inventory
at location w and period t left at this location to satisfy demand at later periods. We use b1

tw and b2
tw to

represent the unsatisfied demand at location w at time t. The second variable b2
tw has a higher cost, and

b1
tw ≤ dtw/β . This is to impose fairness in the objective. In each iteration we then solve the following

mixed integer linear program:

max
x,y,b,o

∑
w∈L

∑
t∈T

b1
tw +(1+α) · b2

tw

s.t. ∑
r∈V (h)

xr = 1,

∑
r:(i,t)∈r

xr +otw = `tw +ot−1,w, w ∈U , t ∈T

∑
r:( j,t)∈r

xr +b1
tw +b2

tw + yt−1,w = dtw + ytw, w ∈L , t ∈T

b1
tw ≤ dtw/2 w ∈L , t ∈T ,

In addition, the variables are further constrained as xr ∈ {0,1},ytw,b1
tw,b

2
tw,otw ≥ 0. The variables xr that

take the value one give the desired routing.
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4 SIMULATION

In this section, we describe a simulation framework that we used to evaluate the inventory and optimization
models. The simulation evaluates the optimized inventory and transportation schedules in a complex,
life-like environment under various scenarios and assumptions. The platform used for the simulation was
AnyLogic 6, a Java based simulation tool that supports discrete event, agent based, and system dynamics type
models. The simulator models numerous types of stochasticity and is more granular than the optimization
models. These simulation features can be broken down into three basic parts: the demand model, the supply
model, and the consumption model. As we describe in Section 5, we estimate the simulation parameters
from existing disaster studies.

4.1 Demand Model

The average demand µtC is modeled at the county c level as a fraction of the affected population. The actual
demand is then a random variable with a triangular distribution: δtc∼ Triangular(µtc(1−α),µtc,µtc(1+α))
where α is an adjustable input parameter. We assume that µtc is quadratic function of the time.

To compute the demand at an individual POD, we consider the affected population close to the POD
compared to other PODs nearby. When there is one POD in the county c, we assume that all of the demand
is channeled to this POD. The demand (in person-units) at POD w at time t originating from county c is
dc

tw = δtc ·Nc/|Wc| where Wc represent the set of PODs in the county, and Nc represents the total population
of the county. In counties with no PODs, the contribution of the demand on PODs in other counties is
distributed based on the distance dc

tw = δtc ·Nc/
(

rc
w ·∑u∈Wc

1
rc

u

)
, where rc

w represents the distance from the
center of county c to POD w. Finally, the total demand at POD w at time t given by dtw = ∑c∈Counties dc

tw.

4.2 Supply Model

As described above, the distribution network consists of a hierarchy, with DCs at the top, going down to
PODs at the bottom. Inventory is transported between nodes in the network via trucks. As such, trucks
represent the key agents in the agent-based model of supply distribution.

Trucks attempt to proceed according to the schedule provided by the transportation optimizer. This
schedule can be provided once at the beginning of the simulation, or multiple times throughout the simulation
by having AnyLogic, via a custom Java API, call the optimizers at set intervals through the planning horizon.
As would be the case in a real disaster situation, we model two main elements that may cause a truck to
deviate from its initial schedule.

First, the schedules are conditional on loading and unloading constraints. Each site w in the network
has a loading dock of size nw. This dock is used both for loading and unloading. Second, the travel time
is stochastic, generated according to travel times in ESRI ArcGIS . One of the features of ArcGIS is that
various types of barriers can be added as layers to a given map. This allowed us to model granular road
closures, such as bridges being out, as well as decreased transportation time over wide areas of a map.
In the simulation model, travel times between nodes u and w was thus modeled as: tuw = euw +ρ where
ρ ∼ Triangular(−c,0,c) with euw representing the travel time given by ESRI, and c a parameter.

4.3 Consumption Model

The third component within the simulation defines how the commodity is consumed by victims at the PODs.
In that sense, it forms the interface between the demand model and the supply model. We assume the
commodity is consumed at the beginning of each period. Let stwi represent the available supply at POD w at
the end of period t , and ctw the consumption. Formally, ctw = min

{
st−1,w, d̂t,w

}
and stw = st−1,w+atw−ctw

where atw is the amount of delivered commodity in period t and d̂tw = dtw + γ ·
[ ˆdt−1,w− ct−1,w

]
+

. In other
words, in addition to the demand coming from the demand model, we allow unsatisfied demand from the
previous period to be rolled over into the new period, based on an input rollover parameter γ .
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5 Experimental Results

In this section, we overview the result for an application of the proposed model to a disaster caused
by a hypothetical earthquake in the New Madrid Seismic Zone of the southern and midwestern United
States (Elnashai, Cleveland, Jefferson, and Harrald 2008). This scenario was developed by the Central
United States Earthquake Consortium (CUSEC). Figure 2 depicts the fraction of the population affected,
based on CUSEC models. The two rectangular inner regions show the areas in which the travel time is
increased. In total, the earthquake was projected to affect 6 states, 141 counties (73 of which had some
water infrastructure damage) and 2.7 million people. We evaluated our models using hypothetical but
realistic projections of available response assets and resources. In all three scenarios, we estimated the
following available assets: 8 regional DCs, 30 intermediate staging areas, 366 PODs, 900 top level trucks
(DC to staging area), and unlimited lower level trucks (staging area to PODs).

First, we show the overall coverage achieved for three different scenarios in Figure 3. Since this
disaster has not yet occurred, we do not have a baseline. The baseline, therefore, is based on the described
inventory and transportation models with fixed location of the intermediate SAs. In the optimized asset
deployment scenario, the inventory model is extended to a mixed integer model which can also optimize
which set of SAs to open from a larger subset. Finally, the last model also optimizes available processing
rate at staging areas. As demonstrated in the figure, using optimal asset and staff deployments allows for
significant increases in coverage rates throughout the time horizon. Under these assumptions, increasing
staffing resources seems to have the most impact on achievable coverage.

Next, we evaluate the benefits and losses due to using robust optimization. The more traditional approach
would be to model the demand uncertainty using a stochastic distribution. To make the comparison, we
assume that the demand is distributed according to the assumptions described in Section 4 with the difference
that we assume three uncertainty factors based on the epi-center of the earthquake. We generate the robust
set based on sampled scenarios generated from the assumed distribution. The full planning problem is too
large to solve optimally for the stochastic model when using sample average approximation (SAA) (Shapiro,
Dentcheva, and Ruszczynski 2009). Therefore, we make the comparison on 10% of the staging areas from
a single state (Arkansas) and the demand in that state only. The solution quality is then evaluated with
respect to the mean performance with the assumed distribution. The results in Figure 4 and Figure 5
show that, at least in our application, the robust optimization achieves comparable solution quality to the
stochastic model with a dramatic reduction in computation time.

We also evaluate how the solution quality depends on the fairness measure used in the inventory
optimization model. The optimization using worst-case coverage over PODs leads to unacceptably low
coverage. Figure 6 compares the coverage for the average objective and the fair objective described in
Section 2.

Figure 2: Projected damage intensity
in the disaster scenario simulation.

Figure 3: Response demand coverage for three sim-
ulated scenarios.
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Figure 4: Computation time in seconds.
Figure 5: Relative solution quality with
stochastic quality being 1.

Figure 6: Coverage comparison for uniform and fairness measures.

6 CONCLUSION

We described a simulation and optimization framework for managing the logistics of distributing relief
supplies in a multi-tier supply network. The simulation model captures optimized stocking of relief supplies,
distribution operations at federal or state-operated staging facilities, demand uncertainty, and the dynamic
progression of disaster response operations. We apply robust optimization techniques to develop optimized
stocking policies and dispatch of relief supplies between staging facilities and points of distribution. The
simulation framework accommodates a wide range of disaster scenarios and stressors, and helps assess the
efficacy of response plans and policies for better disaster response.

Our results on a hypothetical, but realistic, projections for damage during an earthquake at New Madrid
Fault zone indicate that our models represent a viable approach for disaster response. The models scale
well even to a large disaster, covering a population of several million people. The scalability is partially
achieved by relying on robust models of uncertainty. The new class of fairness measures that we propose
also offers a flexible modeling framework which preserves the tractability of our approach.
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