
Quantitative Comparative Evaluation of
2D Vector Field Visualization Methods

David H. Laidlaw∗

Department of Computer Science
R.M. Kirby∗

Division of Applied Mathematics

J. Scott Davidson, Timothy S. Miller, Marco da Silva∗
Department of Computer Science

William H. Warren, Michael Tarr†
Department of Cognitive and Linguistic Sciences

Brown University, Providence, RI 02912

Abstract
We present results from a user study that compared six visualiza-
tion methods for 2D vector data. Two methods used different distri-
butions of short arrows, two used different distributions of integral
curves, one used wedges located to suggest flow lines, and the fi-
nal was line-integral convolution (LIC). We defined three simple
but representative tasks for users to perform using visualizations
from each method: 1) locating all critical points in an image, 2)
identifying critical point types, and 3) advecting a particle.
Results show different strengths and weaknesses for each

method. We found that users performed better with methods that:
1) showed the sign of vectors within the vector field, 2) visually
represented integral curves, and 3) visually represented the loca-
tions of critical points.
These results provide quantitative support for some of the anec-

dotal evidence concerning visualization methods. The tasks and
testing framework also provide a basis for comparing other visual-
ization methods, for creating more effective methods, and for defin-
ing additional tasks to further understand tradeoffs among methods.
They may also be useful for evaluating 2D vector on 2D surfaces
embedded in 3D and for defining analogous tasks for 3D visualiza-
tion methods.

CR Categories: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Evaluation/methodology I.3.8 [Computer Graph-
ics]: Applications J.2 [Computer Applications]: Physical Sciences
and Engineering
Keywords: Scientific Visualization, User Study, Line-integral
Convolution, Two-dimensional Vector Fields, Streamlines, Iconic
Textures, Image-guided Streamlines, Jittered Grid Icons, Critical
Point, Advection, Fluid Dynamics, Fluid Flow

1 Introduction
Scientific visualization strives to display measurements of physical
quantities so the underlying physical phenomena can be interpreted
accurately, quickly, and without bias. In experimental sciences,
great care is taken in choosing where the measurements will be

∗{dhl,rmk,jsdavids,tsm,mds}@cs.brown.edu
†{William Warren,Michael Tarr}@brown.edu

made so that inferences about the underlying phenomena will be
correct. How important is it to craft visualizations analogously,
carefully placing arrows, curves, or other visual icons that display
the data? What are the best ways to craft visualizations?
Questions like these about how to best design visualizations

have been addressed in many references [1, 2, 3] with qualitative
or anecdotal advice. For example, Ware [3] suggests that vectors
placed on a regular grid are less effective than vectors placed in
a streamline-like fashion. Despite such rules of thumb, however,
quantitative studies of visualization methods are still very limited.
Our quantitative study of these questions began with a hypoth-

esis of the form “When visualizing 2D vector fields, arrows dis-
tributed using method X are more effective than arrows distributed
using method Y.” We proposed to test the hypothesis with a user
study. To perform the test we needed to define “more effective,”
“method X,” and “method Y.” We defined “more effective” via the
performance of users on a set of three tasks described in Sec. 2.
If users could perform the tasks more accurately and quickly using
one of the methods, we would consider that method more effective.
“X” and “Y” were initially the first two methods in the list below,
but as we designed the experiment, we realized that broader cover-
age of the existing methods would be more valuable. We converged
on the following six visualization methods:

1. GRID: icons on a regular grid,

2. JIT: icons on a jittered grid [5],

3. LIT: icons using one layer of a visualization method that bor-
rows concepts from oil painting [6],

4. LIC: line-integral convolution [7],

5. OSTR: image-guided streamlines [8], and

6. GSTR: streamlines (integral curves) seeded on a regular
grid [8].

We refer to each visualization method by its abbreviated name
throughout the paper.
Because they form the kernel of the experiments, we first discuss

the experimental tasks in Sec. 2. Details of the different visualiza-
tion methods follow in Sec. 3. Sec. 4 presents the experimental
design, including details of the setup and stimuli. Results are pre-
sented and discussed in Sec. 5, and conclusions drawn in Sec. 6.

143

vis01
Presented at IEEE Visualization 2001October 21 - October 26, 2001San Diego Paradise Point Resort, San Diego

Figure 1: The experimental setup for the critical point location task.
The user must choose all of the critical points in a given vector
field. The LIT method is shown, but each user sees all six methods
during the course of the experiment.

2 2D Vector Tasks
The tasks that we defined to evaluate the effectiveness of visual-
ization methods were carefully constructed to satisfy two main cri-
teria. First, they needed to be representative of what users of a
visualization typically do. Second, they had to be testable – they
had to be simple and quick enough that a user could perform them
enough times for us to calculate meaningful statistics. That implies
that there exist quantitative measures of accuracy for each task, and
that it be possible to generate sufficient instances of each.
We searched the literature and interviewed fluids researchers to

identify representative tasks. Two of the tasks, locating critical
points and identifying their types, were derived from the motivation
for the development of many of the visualization methods that we
are testing. Critical points are the salient features of a flow pattern;
given a distribution of such points and their types, much of the re-
maining flow field and its geometry and topology can be deduced,
since there is only a limited number of ways that the streamlines
can be joined. Beyond their import for the interpretation of vector
fields, these tasks are testable: we can measure how accurately a
user determines the number, placement, and type of a collection of
critical points in a given image.
Fig.1 shows an example stimulus for locating all the critical

points in a vector field. The LIT method is used in this example.
A user picks each critical point with the mouse and presses return
when finished. Chosen points may not be deleted or moved because
editing operations tend to significantly increase the variability of
response time, making statistical comparisons more difficult. For a
task that does not permit editing, mistakes will, instead, reduce ac-
curacy. We felt that this was an appropriate tradeoff. The locations
of all chosen points and the time to choose them is recorded.
Fig. 2 shows an example stimulus for identifying the type of a

critical point in a vector field. A pre-image with a red dot appears
for one half second before the visualization, indicating the location
of a critical point. The user then selects the type of critical point
from the five choices at the bottom of the display: attracting focus,
repelling focus, attracting node, repelling node, saddle. The type
and time to choose it are recorded.
In addition to these critical-point tasks, we identified a third task

Figure 2: The experimental setup for the critical point type identi-
fication task. A red dot appears for one half second before the visu-
alization indicating the critical point to identify. The user chooses
the type for that critical point from the list of icons at the bottom.

Figure 3: The experimental setup for the advection task. The user
must choose the point on the circle where a particle advected from
the center will end up.

that is different in character from the other tasks yet important in
interpreting 2D vector fields. This task is motivated by an implicit
criterion sometimes mentioned when qualitatively examining vi-
sualization methods: the ability of a method to show the flow di-
rection. We attempted to quantify this criterion by introducing an
advection task. In this task, the user must identify the location on a
circle that a particle dropped in the center will end up.
Fig.3 shows an example stimulus for performing the advection

task using OSTR. The user chooses the point where a particle ad-
vected from the center dot will intersect the circle and then presses
return on the keyboard to move to the next stimulus. The chosen
point and the elapsed time from presentation to pressing return are
recorded. A small red icon in the lower left corner indicates the
signed direction of the vector. This is needed for LIC, which does
not capture the sign of the vector field; it is included in all of the

144

methods to avoid biasing results.
In summary, the three tasks are:

• choosing the number and location of critical points in an im-
age,

• identifying the type of a critical point, and

• predicting where a particle starting at a specified point will
advect.

The tasks that we have chosen are testable and, we believe, rep-
resentative of many of the the real uses of these visualizations.
As such, they are potentially predictive of the performance of real
users in using these kinds of visualizations. Of course, these three
tasks do not encompass all possible tasks for which a fluids sci-
entist would use vector visualization. For example, combinations
or modified versions of these tasks may be more or less difficult
than straightforward generalizations would predict. However, per-
formance on these tasks seems reasonably likely to generalize to
performance on other similar or aggregate tasks.

3 Visualization Methods and Data
To accomplish the user study, we required a controlled set of stim-
uli. We first generated approximately 500 2D vector fields and then
created six visualizations for each field as stimuli, one for each vi-
sualization method.
We used matlab [10] to generate the 2D vector fields. Each field

was represented by a regular grid of 700 by 700 vectors and was
generated in the following manner: nine random locations uni-
formly distributed on the interval [0, 1] × [0, 1] were chosen. At
each random location, a vector was generated such that both com-
ponents of each random vector were chosen from a uniform ran-
dom distribution between -1.0 and 1.0 The x and y components
of these nine vectors along with a regular grid of 700 by 700 uni-
formly spaced points were input to the matlab function griddata
using the ‘v4’ option (for matlab’s spatial interpolating function),
which in turn provided x and y vector components for the interpo-
lated vector field at each of the 700 by 700 grid points.
To calculate the user accuracy on the critical-point tasks, we

needed to know the correct locations and types of all critical points
within these vector datasets. The critical points were located in
each vector field using a 2D Newton-Raphson method. We used
150 random initial positions for each field. Once a critical point
was located, matlab routines formed the local Jacobian of the field
at the critical point and determined the eigenvalues of the Jaco-
bian, which determine the type of a critical point. The method was
verified against the TOPO module of the FAST visualization envi-
ronment [11] for several of the fields, and showed no errors. Data
fields were discarded if they contained fewer than one or more than
four critical points.
Six visualizations were generated for each vector field, one for

each visualization method. The visualizations for one vector field
are shown in Fig. 4. Both GRID and JIT were generated using
standard matlab plotting routines. LIC [7] and LIT [6] were im-
plemented locally. OSTR and GSTR images were made with code
from Turk and Banks [8].
Each of the visualization methods has parameters that influ-

ence the images that are create, for example, the path integration
length in LIC, or the grid spacing in GRID. For five values in a
range for each parameter, we created three test images for each
method. Each of the authors independently and subjectively esti-
mated which value of a parameter would be best for performing
each of the tasks. We then viewed them as a group and came to a

consensus value for each parameter based on the tasks that we were
planning. We were generally in accord on the best parameter value
for a given task, but that setting sometimes differed across tasks.
We tried to choose a compromise value that would work as well as
possible for all three tasks. The following paragraphs describe the
parameter values we chose.
For GRID, a uniformly-spaced lattice of 29 × 29 points was

used to span [−1, 1] × [−1, 1]. To find the x and y values of the
vector at each of the given points in the lattice, matlab’s ‘interp’
routine with ‘spline’ setting was used to interpolate down from the
700x700 point data set to the 29x29 point data set. The vectors
were created by giving the x, y, vx, vy arrays to the matlab routine
‘quiver,’ which graphically displays vector icons. The automatic
scaling provided by quiver was used; no special parameters where
passed to quiver.
For JIT, a uniformly-spaced lattice of 35 × 35 points was used

to span [−1, 1]× [−1, 1]. For each point, (x, y), an offset was com-
puted in both the x and y directions. The offset was uniformly dis-
tributed in [− δ

2 ,
δ
2]×[−

δ
2 ,

δ
2] where δ denotes the spacing between

uniformly-spaced grid points. Once a jittered grid was created,
both the interp and quiver functions were used as in the uniform
grid case to interpolate and graphically represent the vectors.
For LIT a triangle shaped wedge with a base one quarter its

length represented the flow at points in the field. The area of each
wedge was proportional to the speed at its center, and the wedges
were placed using a uniform random distribution such that they
would overlap at most 40% along their long direction and would
maintain clear space between wedges of at least 70% of their width.
Wedges that would not have satisfied this spacing were not kept.
Strokes were placed until 250 consecutive attempts failed the spac-
ing criteria. The overall size of the wedges was scaled so that there
would be about 2000 strokes in each image.
For LIC we used a box-shaped convolution kernel of width 20

pixels. The convolution was performed on a noise image where
each pixel value was set to a uniform random value in the interval
[0, 1]. To correct for loss of contrast due to the convolution, we
applied an intensity mapping that took intensity I to I(4/(I+1)

5).
For OSTR and GSTR, the code from reference [8], version 0.5,

was first modified to allow batch running without a graphical dis-
play and then to have the optimization process stop after 60 sec-
onds without requiring manual intervention. OSTR was invoked
with opt 0.017 given to the stplace program, GSTR was in-
voked with square 23 .2 (streamlines 20% of the image width
each centered on a square grid of 23 points in each direction), and
both were plotted with ‘fancy arrows.’ All other options to OSTR
and GSTR were left as the defaults.

4 Experimental Design

4.1 Timing and Training
Fig. 5 shows the timing of the study. Users first see a text display
for general training describing the goals of the experiment and the
three tasks in general terms. There follow three parts of the exper-
iment, one for each task. Within each part, an initial text display
describes the task in more detail. The user is then shown a stimu-
lus image and performs an instance of the task. Additional stimuli
are presented, grouped by visualization method. In a pilot study,
two users were found to converge to reasonable accuracy after 8
examples. Therefore, within each group for a given method, an
initial untimed subgroup of 8 stimuli provides an opportunity to
learn the task for that method. For each of these untimed cases, the
correct answer is provided after the user completes the instance so

145

GRID JIT LIT

LIC GSTR OSTR

Figure 4: One of the approximately 500 vector field visualized with each of the six visualization methods.

task N
text
training

task N
method M
practice

task N
method M
timed

general
text
training

loop for 6 methods

loop for 3 tasks

Figure 5: Ordering of tasks in the experiment.

that users are consistently trained before the timed tasks. After the
training period, the user performs 20 timed instances.

A java program written specifically for this experiment pre-
sented the stimuli and recorded the data. The program pre-loaded
all images at the beginning of a block so that timing would be con-
sistent for each stimulus. The several-second pause before each
block, however, did cause some small problems we discuss later.

To avoid biasing results, the ordering of tasks and of visualiza-
tion methods within the tasks were each counterbalanced with a
replicated randomized Latin square design [12]. For the testing
(timed and recorded) phase of each task, 120 images were gen-
erated; each block of 20 images within that 120 was assigned to
a visualization type per user, counterbalanced with a randomized
Latin square design.

4.2 Subject Pool

Subjects were undergraduate science majors. We wanted subjects
that might use such tools in the future for their work, but who had
not yet started to do so. All subjects had previously studied applied
math but had not studied fluid mechanics.
We deliberately chose not to use fluids researchers because we

felt they might perform with a bias toward tools similar to those
they already use. Future testing of this expert population, however,
is likely to provide additional useful insight.
The study was designed for multiples of six subjects; data for

twelve subjects was successfully acquired and is reported here.
Users were paid.

5 Results and Discussion

Graphs here show the results of the data analysis. They are or-
ganized so that higher values on the vertical axes indicate greater
error or slower performance (i.e., are worse). The horizontal axis
shows the six visualization methods. Mean values are shown with
error bars that are plus or minus one standard error. In some cases,
the statistics were calculated on logarithms, to result in geometric
means, and so the error bars will not appear symmetric.
Some discussion and details of the analysis, including thresholds

and significance, follow. F and p values are shown in Table 1.

146

1

10

100

GRID JIT LIT LIC OSTR GSTRAb
so

lu
te

 A
ng

ul
ar

 E
rro

r (
de

gr
ee

s)

Visualization Method

Figure 6: Geometric mean absolute angular error for advection
task.

0

2

4

6

8

10

GRID JIT LIT LIC OSTR GSTR

Ta
sk

 E
xe

cu
te

 T
im

e
(s

ec
.)

Visualization Method

Figure 7: Geometric mean time to perform advection task.

5.1 Advecting a Particle

For the advection task, error was measured as the absolute angle
error between the user-chosen intersection point and the correct
intersection. Statistics were calculated on the log of the absolute
angle error to normalize the distribution against the observed floor
effect. Error results are shown in Fig. 6.
Error was highest with LIC. We conjecture that LIC images suf-

fered because they do not display the sign of the vector field. The
single icon in the corner is too difficult to propagate across the im-
age to correct for this. Task accuracy appears to be slightly bet-
ter for OSTR than for some of the other methods. This may be
because the uniform distribution of integral curves throughout the
field offers a single integral curve to follow for many advection
cases. Most of the other methods require chaining together many
icons to perform advection.
Tasks performance times are shown in Fig. 7. Statistics for this

measure were also calculated on the log of the time to normalize
against the observed floor effect. LIC was slowest, perhaps again
due to directional ambiguities. OSTR was fastest, perhaps due to
its uncluttered streamlines.
For this task, OSTR appears to be both accurate and fast com-

pared to the other methods, with GSTR comparably accurate, but a
bit slower.

0

0.2

0.4

0.6

0.8

1

GRID JIT LIT LIC OSTR GSTR

Fr
ac

tio
n

In
co

rre
ct

Visualization Method

Figure 8: Fraction of images with incorrect number of critical
points identified.

5.2 Locating Critical Points

Fig. 8 shows the fraction of images with an incorrect number of
critical points identified. GRID and JIT are generally less accurate
by this measure, but it is notable how inaccurate all of the methods
are. We postulate that this may be because critical points near the
edge of a visualization are difficult to identify as inside or outside.
A critical point slightly outside the image may be identified as in-
side, or vice versa. In some ways, this task is also an aggregate of
several location tasks, which makes it subject to more error.
A second error measure for this task is the distance from the cho-

sen critical points to the actual critical points (see Fig. 9). Statistics
for this distance were calculated on the log of the distance as a nor-
malizing transform. Statistics in the top graph were calculated for
cases where the number of critical points chosen matched the num-
ber of critical points present in the image. The lower graph shows
statistics for all cases, with critical points matched to chosen points
as closely as possible. In both cases a least-squares fit was used to
find the closest critical points.
For both sets of statistics, GRID and JIT were less accurate. The

other methods were comparable.
Fig. 10 shows performance times for the six methods; statistics

were calculated on the log of the time due to the observed floor
effect and were taken over all images. LIC and LIT are relatively
fast, with GSTR a bit slower for this task. The timing statistics
calculated using only images with the correct number of critical
points identified were not statistically significant.
For this task, LIT and LIC appear to be fast and accurate relative

to the other methods; GSTR is a bit slower, but relatively accurate.

5.3 Identifying Critical Point Type

Statistics on the fraction of critical points identified incorrectly are
shown in Fig. 11. As might be expected, the methods that show
some continuity (LIT, OSTR, and GSTR) work somewhat better
than those that do not. Once again, error rates for LIC are likely
higher because it does not show the sign of the vector.
GSTR was relatively fast, with OSTR and LIC next, as shown

in Fig. 12.
For this task, GSTR is both quick and accurate, relative to the

other methods, with OSTR and LIT second and third, respectively.

147

0

0.05

0.1

0.15

0.2

GRID JIT LIT LIC OSTRGSTREr
ro

r M
ag

n.
 (f

ra
c.

 o
f i

m
ag

e
wi

dt
h)

Visualization Method

0

0.05

0.1

0.15

0.2

GRID JIT LIT LIC OSTRGSTREr
ro

r M
ag

n.
 (f

ra
c.

 o
f i

m
ag

e
wi

dt
h)

Visualization Method

Figure 9: Geometric mean error magnitude for locating critical
points task. Error magnitude is the distance between a user-chosen
point and the nearest critical point. The top graph shows only cases
where the chosen number of points matched the actual number of
critical points. The bottom graph shows all cases; as many chosen
points as possible were matched with critical points.

0

2

4

6

8

10

GRID JIT LIT LIC OSTR GSTR

Ta
sk

 E
xe

cu
tio

n
Ti

m
e

(s
ec

.)

Visualization Method

Figure 10: Geometric mean time to count and locate critical points.
This computation was done over all images, not just those an-
swered correctly.

5.4 Analysis Details

Statistics were computed using all the results (after any transforma-
tion such as the logarithm) of a given user for a given visualization
type and task. The base F degrees of freedom were 5 and 55; the

0

0.2

0.4

0.6

0.8

1

GRID JIT LIT LIC OSTR GSTR

Fr
ac

tio
n

In
co

rre
ct

Visualization Method

Figure 11: Fraction of critical points with type misidentified.

0

2

4

6

8

10

GRID JIT LIT LIC OSTR GSTR

Ta
sk

 E
xe

cu
tio

n
Ti

m
e

(s
ec

.)

Visualization Method

Figure 12: Geometric mean time to identify critical point type.

Geisser-Greenhouse correction, also known as Box ε̂, was then ap-
plied [12]. Statistics are presented in Table 1.
We removed 5 observations from the analysis because it ap-

peared that users mistakenly clicked multiple times. This conjec-
ture is supported by the fact that the cases occurred at the begin-
ning of a group of images for a task/method pair, where there was
a pause for images to load. For the counting task, two users each
had two successive images with a 0 response time recorded and no
critical points selected (for LIC and GRID); in the type identifica-
tion task one user had one image with a 0 response time (for LIC),
Those 5 observations were dropped from all subsequent analysis.
For the critical point location task, the number of critical points

ranged from 1 to 4 with a median of 3 and mean of 2.683. For
the advection task angular error, Batschelet [13] states that circular
statistics are unnecessary for angular differences if the sign of the
angular difference does not matter, and therefore standard linear
statistics were used on the absolute value of the angular error.

5.5 Normalizing Visualization Methods
We attempted to normalize the visualization methods by setting
their parameters to optimal values for our tasks. However, the nor-
malization might have been done more rigorously. With different
tuning of the methods, results might have been different. We did
attempt to balance the parameters to perform as well on all of the
tasks as possible. A more formal study for each method could have
more objectively measured performance of users with each method

148

Advection ln |θerr|: F2.35,25.8 = 43. 5, p = 1. 73× 10−9
Advection, no LIC ln |θerr|: F3.55,39.0 = 20. 5, p = 5. 52× 10−7
Advection ln time: F2.96,32.6 = 4. 55, p = 0. 00924
Locating (correct n) ln distance: F2.68,29.5 = 14. 4, p = 1. 04× 10−5
Locating (all) ln distance: F3.33,36.6 = 8. 79, p = 0. 000103
Locating (correct n) ln time: F2.72,29.9 = 2. 09, p = 0. 128
Locating (all) ln time: F3.31,36.4 = 2. 90, p = 0. 0437
Locating fraction errors: F2.98,32.8 = 5. 71, p = 0. 00298
Type ID ln time: F2.71,29.8 = 10. 1, p = 0. 000141
Type ID fraction errors: F3.01,33.1 = 2. 62, p = 0. 0669

Table 1: Statistics computed for the various comparisons.

using different parameter settings and perhaps chosen the parame-
ters more objectively.
We considered an alternative normalization as well: creating im-

ages that had a comparable “density.” However, we were not able
to define density for all methods and also found that the optimal pa-
rameter settings for different methods produced images with den-
sities that were quite different. As a simple example, the GRID
and the JIT methods were very similar, and yet the optimal num-
ber of icons different by 45%. Given the difficulties in specifying
this approach, we opted for the optimal parameter setting described
above.

5.6 Subject Pool
Our choice of naive subjects presents another issue. Visualization
tools are typically used by experts. Experts have different prefer-
ences, abilities, and styles, and these will all influence their per-
formance. Further testing using experts would likely provide more
insight into the relative strengths and weaknesses of the different
methods.

5.7 Data
Our randomly constructed 2D vector datasets were not drawn from
experimental or computational fluid flow examples. However, they
are 2D vector fields, well sampled, with good continuity, and with
moderate numbers of critical points. They also contain the differ-
ent types of critical points in the ratios one would expect for fluid
flow data. Fluid researchers found their appearance representative.
While an alternative construction or source of data might be inter-
esting to test, particularly if it was representative of incompressible
flow or some other constrained type of vector field, we felt that the
construction we used was a reasonable compromise.

6 Conclusions
Conclusions are difficult to draw from a study like for a number
of reasons. First, the differences between some methods on some
tasks were not statistically significant. Second, the causes of signif-
icant performance differences are difficult to identify conclusively.
Further, the results are limited to the specific simple tasks tested,
making them difficult to generalize. Our original hypothesis about
the distribution of arrows remains unevaluated – GRID and JIT per-
formed indistinguishably, except for critical point locating, where
one was a little faster and the other a little more accurate. The two
arrow-based methods, however, did not perform well against the
other more-continuous methods.
Assuming roughly equal importance for all three tasks both in

accuracy and timing, GSTR was the best overall performer. Accu-
racy was relatively high for all tasks, and performance time low for

all but the critical point location task, where it was in the middle of
the pack. OSTR and LIT could probably be classed as second and
third, respectively. All three had roughly equivalent accuracy. LIT
was slower for advection and typing than GSTR, although it was
faster for locating critical points. OSTR was slower for locating
and typing critical points, but slightly faster for advection.
The good performance of GSTR on these tasks is interesting be-

cause it consists of integral curves seeded on a regular grid. While
some sources suggest that that seeding will introduce biases into
the visualization, those biases don’t seem to have hindered per-
formance in this case. Perhaps the fact that the streamlines are
significantly longer than the grid spacing hides a bias that might
otherwise be introduced.
While the performance of specific methods is interesting, it is

perhaps more valuable to look at common aspects of the methods
that may explain good performance. Using such information, it
may be possible to modify or combine the methods to increase per-
formance. Several factors seemed to be correlated with methods
that performed well. First, methods that had some visual represen-
tation for integral curves support better performance on all tasks.
These included OSTR, GSTR, LIC, and LIT. Second, methods that
showed the sign of the vector permitted better performance on the
advection and critical point type identification tasks. LIC was the
only method that did not clearly indicate vector sign. Third, meth-
ods that had some visual indication of critical point location per-
formed better on the critical point location task. These included
LIC, where critical points were indicated by the anomalous struc-
ture of the flow near the critical points, LIT, where the area of the
wedge shapes shrink to leave clear blank regions around critical
points, and GSTR, where the overlapping streamlines tend to clus-
ter near the critical points.
In summary, we have presented comparative performance re-

sults for three 2D vector visualization tasks using six visualiza-
tion methods. The choice of tasks clearly influences the results.
The tasks seem representative of the types of tasks that fluids re-
searchers want to be able to perform from visualizations, although
they could clearly be augmented. Our results show differences
among the methods and suggest that the methods that show direc-
tionality, indicate critical points, and attempt to visually represent
integral curves support better performance.

7 Acknowledgments
Thanks to J. J. Braider for his helpful comments on the paper. This
work was partially supported by NSF (CCR-0086065). Opinions
expressed in this paper are those of the authors and do not neces-
sarily reflect the opinions of the National Science Foundation.

References
[1] E. R. Tufte. The Visual Display of Quantitative Information.

Graphics Press, Cheshire, Connecticut, 1983.

[2] William S. Cleveland. The Elements of Graphing Data.
Wadsworth, 1985.

[3] Colin Ware. Information Visualization: Perception for De-
sign. Morgan Kaufmann, New York, 2000.

[4] Inc. Amtec Engineering. Tecplot. Amtec Engineering, Inc.,
Bellevue, WA 98005, 1988-1998.

149

[5] Mark A. Z. Dippé and Erling Henry Wold. Antialiasing
through stochastic sampling. In B. A. Barsky, editor, Com-
puter Graphics (SIGGRAPH ’85 Proceedings), volume 19,
pages 69–78, July 1985.

[6] R. Michael Kirby, H. Marmanis, and David H. Laidlaw. Visu-
alizing multivalued data from 2d incompressible flows using
concepts from painting. In Proceedings Visualization ’99.
IEEE Computer Society Press, 1999.

[7] Brian Cabral and Leith (Casey) Leedom. Imaging vector
fields using line integral convolution. In James T. Kajiya, ed-
itor, Computer Graphics (SIGGRAPH ’93 Proceedings), vol-
ume 27, pages 263–272, August 1993.

[8] Greg Turk and David Banks. Image-guided streamline place-
ment. In Holly Rushmeier, editor, SIGGRAPH 96 Confer-
ence Proceedings, Annual Conference Series, pages 453–
460. ACM SIGGRAPH, Addison Wesley, August 1996. held
in New Orleans, Louisiana, 04-09 August 1996.

[9] David J. Field, Anthony Hayes, and Robert T. Hess. Contour
integration by the human visual system: Evidence for a local
‘association field’. Vision Research, 33(2):173–193, 1993.

[10] Inc. Mathworks. Matlab. Mathworks, Inc., Natick, MA,
1999.

[11] A. Globus, C. Levit, and T. Lasinski. A tool for visualizing
the topology of three-dimensional vector fields. In Visualiza-
tion ’91, pages 33–40, 1991.

[12] Scott E. Maxwell and Harold D. Delaney. Designing Exper-
iments and Analyzing Data: A Model Comparison Perspec-
tive. Wadsworth Publishing Company, Belmont, CA, 1990.

[13] Edward Batschelet. Circular Statistics in Biology. Academic
Press, 1981.

150

