OS 725/825 & 11 725
L ecture 12
Network Security

October 6, 2025



Authentication

Basic I1dea;
use “flipped” public/private key cryptography

only possessor of private key could have encrypted something that
decrypts using its public key

Problem: Replay Attack

solution: use of a nonce

Still unaddressed: We need a trusted way to obtain someone’s
public key



Authentication - Basics

(1) A “encrypts” the message: Epivka(M)>C and sends it to B
(2) B “decrypts” the message: Dpuoka(C)>M
(3) 1If M “looks OK”, its sender is authenticated

* the assumption is that recipient can tell the difference between a valid message and a
random string of bits that would be the result of decryption with a wrong key



\essage Integrity

Basic idea:
use public/private key cryptography
send a hash of a message (aka message digest) ...
... encrypted using sender’s private key

f hash of the received message agrees with decrypted received hash, it
IS assumed that the message was not altered In transit

Problems:
need a cryptographic hash function

need a secure method for public key distribution



Cryptographic hash function

H(M) > m

Even the smallest change in message M results in a significant
‘unpredictable” change of the hash value m

t is infeasible to find two distinct messages, M+ and Mo, with the
same hash value: H(M1) = H(M>)

1t Is Infeasible to modity a message M to get M In a way that the
hash value remains the same: H(M) = H(M’)

... Must be easy to compute

M is arbitrarily large, m is small and fixed-size (100’s of bits)



\Vlessage Integrity

A
M

|
(M) —
|

|

m(

l
C

|
EprivkA(m) < digest authentication

B
V]
V]
; . |
- hash function h(M)
if m==m’ SR
| msg Integrity M
message digest is verified o n

C

message digest encrypted with
senders private key




Cryptographic hash functions

VIDS - Message Digest Algorithm
1992, R. Rivest, digest size 128 bits

SHA-1 - Secure Hash Algorithm

1995, NSA, digest size 160 bits
SHA-2

2001 NSA designed, variants SHA-256 and SHA-512
SHA-3

2012 public competition winner, 2015 NIST-designated hashing
standard (SHAKE variant allows arbitrary output length)




Certificates

Solving the public key distribution problem

Shared trust (having somebody’s public key) helps:

When both A and B trust C
= A can establish trust with B (and vice versa)

Where to start?

WhO to trust

how IS the initial trust established
Solution: Certificate Authority (CA)



Certificates

Goal: A wants to prove its identity to B
Given: A and B trust CA (both have CA's public key)

Broad approach: Public key certificate

A’'s public key encrypted with CA's private key (ensures integrity of the
key)

... plus additional information

Use: A presents its certificate when initiating communication
with B



Certimcates - Questions

Vian in the Middle Attack: How does B know that it is A's
certificate and not an impostor’s one”

Include A’s identification (hostname, human-readable info)

Replay Attack: Attacker overhears/requests A certificate and
presents it when pretending to be A

Use nonce encrypted with A’'s private key during communication

Compromised certificate: Either A's or CA’s private keys are
compromised

Limited validity and certificate revocation



Certificates - Issyance

A gets a certificate from a CA
A generates public/private key pair
A generates a Certificate Signing Request (CSR)
CA (hopefully) makes sure that it interacts with A and not an impostor

CA encrypts the certificate (public key + A’s identification + ...) with its
own private key

certificate is delivered to A (can be done securely since A has CA’S
oublic key)



Certificates - Use

B authenticates A

B requests a certificate from A together with a nonce

A sends back the certificate together with the nonce encrypted with A's
private key

B decrypts the certificate with CA’'s public key and verifies that it was
iIssued to A

B decrypts the nonce using A's public key and verifies that the value
matches the value sent



