
CS 725/825 & IT 725
Lecture 12
Network Security
October 6, 2025

Authentication
‣Basic idea:
- use “flipped” public/private key cryptography
- only possessor of private key could have encrypted something that

decrypts using its public key

‣Problem: Replay Attack
- solution: use of a nonce

‣Still unaddressed: We need a trusted way to obtain someone’s
public key

Authentication - Basics

(1) A “encrypts” the message: EprivkA(M)➛C and sends it to B
(2) B “decrypts” the message: DpubkA(C)➛M
(3) if M “looks OK”*, its sender is authenticated

C

A B

EprivkA(M)➛C DpubkA(C)➛M

privkB

pubkB

privkA

pubkA

(2)(1)

* the assumption is that recipient can tell the difference between a valid message and a
random string of bits that would be the result of decryption with a wrong key

Message Integrity
‣Basic idea:
- use public/private key cryptography
- send a hash of a message (aka message digest) …
-… encrypted using sender’s private key
- if hash of the received message agrees with decrypted received hash, it

is assumed that the message was not altered in transit

‣Problems:
- need a cryptographic hash function
- need a secure method for public key distribution

Cryptographic hash function

‣ Even the smallest change in message M results in a significant
“unpredictable” change of the hash value m
‣ It is infeasible to find two distinct messages, M1 and M2, with the

same hash value: H(M1) = H(M2)
‣ It is infeasible to modify a message M to get M’ in a way that the

hash value remains the same: H(M) = H(M’)
‣… must be easy to compute
- M is arbitrarily large, m is small and fixed-size (100’s of bits)

H(M) ➛ m

Message Integrity
MM M

h(M)

m

h(M)

m
m’

EprivkA(m)
c c

DpubkA(c)
c

if m == m’
 msg integrity

is verified

hash function

message digest

message digest encrypted with
senders private key

A B

digest authentication

Cryptographic hash functions
‣MD5 - Message Digest Algorithm
- 1992, R. Rivest, digest size 128 bits

‣SHA-1 - Secure Hash Algorithm
- 1995, NSA, digest size 160 bits

‣SHA-2
- 2001 NSA designed, variants SHA-256 and SHA-512

‣SHA-3
- 2012 public competition winner, 2015 NIST-designated hashing

standard (SHAKE variant allows arbitrary output length)

Certificates
‣Solving the public key distribution problem
‣Shared trust (having somebody’s public key) helps:
-When both A and B trust C

 ⇒ A can establish trust with B (and vice versa)

‣Where to start?
- who to trust
- how is the initial trust established

‣Solution: Certificate Authority (CA)

Certificates
‣Goal: A wants to prove its identity to B
‣Given: A and B trust CA (both have CA’s public key)
‣Broad approach: Public key certificate
- A’s public key encrypted with CA’s private key (ensures integrity of the

key)
-… plus additional information

‣Use: A presents its certificate when initiating communication
with B

Certificates - Questions
‣Man in the Middle Attack: How does B know that it is A’s

certificate and not an impostor’s one?
- Include A’s identification (hostname, human-readable info)

‣Replay Attack: Attacker overhears/requests A certificate and
presents it when pretending to be A
- Use nonce encrypted with A’s private key during communication

‣Compromised certificate: Either A’s or CA’s private keys are
compromised
- Limited validity and certificate revocation

Certificates - Issuance
‣A gets a certificate from a CA
- A generates public/private key pair
- A generates a Certificate Signing Request (CSR)
- CA (hopefully) makes sure that it interacts with A and not an impostor
- CA encrypts the certificate (public key + A’s identification + ...) with its

own private key
- certificate is delivered to A (can be done securely since A has CA’s

public key)

Certificates - Use
‣B authenticates A
- B requests a certificate from A together with a nonce
- A sends back the certificate together with the nonce encrypted with A’s

private key
- B decrypts the certificate with CA’s public key and verifies that it was

issued to A
- B decrypts the nonce using A’s public key and verifies that the value

matches the value sent

