CS725/82581T725Lecture 19 Network Layer

November 4, 2024

Link State (recap)

- Exact neighbor information flooded to every node on the network
- Topology of the entire networks is discovered in each node Shortest paths calculated and used to populate the routing tables

D

Network topology as seen by A: Initially, A knows it is connected to B and C, this info is flooded to all nodes

D

Network topology as seen by A: B's links state received, A learns about the link between B and C

Scalability of Routing Protocols

- Internet is large...
- Need to introduce hierarchy

 - ... into something that naturally does not have one - divide and conquer, abandoning hope for optimality based on ownership - Autonomous System (AS)
- Different routing problems:
 - Intra AS routing interior gateway routing (IGP) Inter AS routing - exterior gateway routing (EGP)

Examples of Routing Protocols

* BGP-4 extends the concept of *Distance Vector* routing to include the path information and is typically referred to as a *Path Vector* routing protocol

- Routing Information Protocol
 - a distance vector routing protocol
 - hops used as a measure of distance
 - 30 second update interval
- Version history
 - RIPv1 1988
 - RIPv2 1993 (includes CIDR, authentication)
 - RIPng 1997 (IPv6 support)

OSPF

- Open Shortest Path First
 - link state routing protocol
 - two-level hierarchy
 - user-defined link weights
- Version history:
 - OSPF (1989)
 - OSPFv2 (1998)
 - OSPFv3 (2008, IPv6)

