
CS 725/825 & IT 725
Lecture 16
Transport Layer
October 23, 2024

Initialization:

RTO ←1 sec

After the first measurement:

SRTT ← R
RTTVAR ← R/2
RTO ← SRTT + max (G, K * RTTVAR)

After subsequent measurements:

RTTVAR ← (1 - beta) * RTTVAR + beta * |SRTT - R'|
SRTT ← (1 - alpha) * SRTT + alpha * R'
RTO ← SRTT + max (G, K * RTTVAR)

Retransmission Timeout
Where:
R - first RTT measurement
R' - subsequent RTT measurement
RTTVAR - RTT variance
SRTT - smoothed RTT estimate
RTO - retransmission timeout
G - clock granularity
Recommended values:

alpha=1/8, beta=1/4, K=4

RFC 6298

Exponential Back-off
RTO after a timeout:

RTO ←q * RTO

This a congestion control mechanism since retransmissions are
delayed after packet loss detected. The delay is increasing
exponentially with more packet losses.

 Recommended value: q = 2

Transmission Window
‣Network provides no explicit indication of congestion
‣Source observes RTT and packet loss and adjusts transmission

rate according to its estimate of the congestion state of the
network
‣ Transmission window size is proportional to the maximum

transmission rate
‣Additive Increase Multiplicative Decrease (AIMD)
- better safe than sorry

Network Congestion Control
‣Method:

TransWind = min(RecvWind, CongWind)
EffectiveWind = TransWind - (LastByteSent - LastByteAckd)

‣EffectiveWind - used in transmission
‣RecvWind - from Window Size field
‣CongWind - transmitter’s estimate of how many

unacknowledged packets can be pushed onto the network
without causing congestion

angu.ngapat

Wsttonwindoyl

ratel.i

I Iii
Itttti1

IIi

iifft tti
f

Ii

IIi

Congestion Window (original)
‣Components algorithms of TCP network congestion control

(RFC 2001):
- Slow Start - initial growth of CongWind
- Congestion Avoidance - AIMD-based “search” for optimal rate
- Fast Retransmit - quick recovery from isolated packet losses
- Fast Recovery - undoing congestion control steps under Fast Recovery

Variants of TCP (examples)
‣Original TCP (RFC1122)
‣ TCP Tahoe (adds Fast Retransmit)
‣ TCP Reno (adds Fast Recovery)
‣ TCP Vegas (RTT-based)
‣ TCP BIC and CUBIC (Linux up to kernel 3.2)
‣Compound TCP (Windows since Vista)
‣ TCP Proportional Rate Reduction (PRR) (Linux)
‣ TCP Bottleneck Bandwidth and Round-trip propagation time (BBR)

(RTT-based, developed by Google)

TCP Vegas
‣RTT observed
‣An increase in RTT indicates congestion
- reduce transmission rate

‣Steady RTT measurements indicate underutilization
- slowly increase transmission rate until RTT starts increasing

TCP CUBIC
‣An update of TCP BIC (Binary

Increase Congestion control)
‣ “modifies the linear window

growth function of existing TCP
standards to be a cubic
function in order to improve the
scalability of TCP over fast and
long distance networks”

From: Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC:
a new TCP-friendly high-speed TCP variant. SIGOPS Oper.
Syst. Rev. 42, 5 (July 2008), 64–74. DOI:https://doi.org/
10.1145/1400097.1400105

TCP BBR
‣Bottleneck Bandwidth and Round-trip propagation time
‣Designed by Google (~2016)
- with YouTube as the motivating use case
- available in Linux kernel 4.9+

‣As the protocol name suggests:
- “BBR congestion control computes the sending rate based on the

delivery rate (throughput) estimated from ACKs” (comment in tcp-bbr.c
in Linux kernel)

TCP BBR
‣One has to be careful when making claims:

From: https://cloud.google.com/blog/products/networking/tcp-bbr-congestion-control-comes-to-gcp-your-internet-just-got-
faster (interestingly, the link no longer works, a copy of the article is still available at https://www.googblogs.com/tcp-bbr-
congestion-control-comes-to-gcp-your-internet-just-got-faster/)

https://cloud.google.com/blog/products/networking/tcp-bbr-congestion-control-comes-to-gcp-your-internet-just-got-faster
https://cloud.google.com/blog/products/networking/tcp-bbr-congestion-control-comes-to-gcp-your-internet-just-got-faster
https://www.googblogs.com/tcp-bbr-congestion-control-comes-to-gcp-your-internet-just-got-faster/
https://www.googblogs.com/tcp-bbr-congestion-control-comes-to-gcp-your-internet-just-got-faster/

TCP Fairness
‣ Example: two TCP connections competing with each other on a

bottleneck link:

TCP 1 throughput

TC
P

2
th

ro
ug

hp
ut

bottleneck link

capacity

fair

sha
rin

g

Perfect sharing,
full utilization

Unfair but
full utilizationFair but

underutilized

‣ Transport Layer Security (TLS) - cryptographic protocols that to
provide privacy (encryption) and data integrity protection
‣… earlier versions known as SSL (Secure Socket Layer) is now

deprecated but the term is widely used as a synonym for TLS
‣Most used version TLS 1.2 (2008)
‣Current version: TLS 1.3

Transport Layer Security

Application layer

TLS layer

Transport layer

TLS connection latency
‣ TLS 1.2
- 3 RTTs required to establish a

secure connection

Client

SYN

SYN-ACK

Client Hello

Client Finished

Server Hello

Server Finished

HTTP GET

Server
TC

P

TL
S

HT
TP encrypted

RTT 1

RTT 2

RTT 3

TLS connection latency
‣ TLS False Start option
- 2 RTTs required to establish a

secure connection

Client

SYN

SYN-ACK

Client Hello

Client Finished

Server Hello

Server Finished

HTTP GET

Server
TC

P

TL
S

HT
TP

RTT 1

RTT 2

TLS connection latency
‣ TLS Fast Open option
- when client connects for the

first time, 2 RTTs are still
required to establish a secure
connection

- server provides Fast Open
Cookie to be used to speed-
up subsequent connections

Client

SYN + Cookie request

SYN-ACK +

Cookie
Client Hello

Client Finished

Server Hello

Server Finished

HTTP GET

Server
TC

P

TL
S

HT
TP

RTT 1

RTT 2

TLS connection latency
‣ TLS Fast Open option
- for subsequent connections,

only one RTTs required to
establish a secure connection

- client sends previously
received Fast Open Cookie

Client

SYN + Cookie

SYN-ACK

Client Hello

Client Finished

Server Hello

Server Finished

HTTP GET

Server
TC

P

TL
S

HT
TP

RTT 1

TLS connection latency
‣ 0-RTT with TLS 1.3
- for subsequent connections

(using Fast Open Cookie),
HTTP command is set before
the TLS connection is fully
established

- However, the initial data sent
to the server is susceptible
(e.g., replay attack)

Client

SYN + Cookie

SYN-ACK

Client Hello

Client Finished

Server Hello

Server

Finished

HTTP GET

Server
TC

P

TL
S

HT
TP

UDP
‣User Datagram Protocol (RFC 768)
- A wrapper protocol for IP to add port numbers
- 8 bytes

Source Port Destination Port

Length Checksum

