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Principles of Reliable Transport
‣Goal: deliver despite unreliability of the network layer or detect 

that delivery is not possible 

‣Automatic Repeat reQuest (ARQ): 

- acknowledgment 

- timeout 

- retransmission 

- give up after k retransmissions 

- sequence numbers on data packets 

- cumulative acknowledgment numbers



Cumulative ACK numbers
‣Method 1 (obvious but not used): 

- ACK carries the sequence number of the packet it acknowledges 

‣Method 2 (Cumulative ACK, used by TCP) 

- ACK carries the lowest sequence number of the packets that were not 
yet received (sequence number of the next expected packet) 
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Filling the pipe…
‣Stop and Wait protocol 

- wait for acknowledgment before sending next packet 

‣Sliding Window protocols 

- send up to  (window size) packets/bytes before waiting for 
acknowledgment 

- when a packet is lost: 
• retransmit the packet (Selective-Reject ARQ) 
• retransmit all un-acknowledged packets (Go-Back-N ARQ) 

‣Measure: utilization (a.k.a. normalized throughput) 

- the ratio between goodput and maximum theoretical capacity

W



Flow & Congestion Control
‣Receiver Congestion 

- receiver is unable to keep up with incoming data 

- solved by explicit feedback from receiver to sender 

‣Network Congestion 

- nodes or links of the network are overloaded 

- explicit congestion notification (few technologies) 

- implicit congestion notification (Internet)



Congestion control
‣Goal: Make the most effective use of the network capacity 

- avoid congestion 

- maximize utilization 

- maintain fairness (or deliver promised service level) 

‣Method: Controlling the rate with which traffic is injected into the 
network by the transmitter
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Congestion control
‣Reasons why congestion control mechanisms are critical for the 

stable operation of the Internet [RFC 8085]: 

‣Prevention of congestion collapse 

- i.e., a state where an increase in network load results in a decrease in 
useful work done by the network 

‣ Establishment of a degree of fairness  

- i.e., allowing multiple flows to share the capacity of a path reasonably 
equitably.



Utilization vs fairness
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Utilization vs fairness
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Impact of Congestion
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TCP
‣ Transport Control Protocol 

‣Design parameters and objectives 

- used by most popular applications, majority of Internet traffic is 
transported over TCP 

- significant impact on congestion behavior of the Internet 

- must operate over networks with widely-varying characteristics 

- must be robust and (relatively) simple to implement



TCP Header

Another image appropriated from Wikipedia...



TCP buffering and data flow
Application
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(*) many APIs call the read() operation “receive” (eg: recv() ), read is used here to avoid confusion with receiving data on an interface



TCP Sliding Window
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TCP Sliding Window
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TCP session management

Another image appropriated from Wikipedia...

TCP Flags


