
CS 725/825 & IT 725
Lecture 14
Transport Layer
October 16, 2024

Principles of Reliable Transport
‣Goal: deliver despite unreliability of the network layer or detect

that delivery is not possible

‣Automatic Repeat reQuest (ARQ):

- acknowledgment

- timeout

- retransmission

- give up after k retransmissions

- sequence numbers on data packets

- cumulative acknowledgment numbers

Cumulative ACK numbers
‣Method 1 (obvious but not used):

- ACK carries the sequence number of the packet it acknowledges

‣Method 2 (Cumulative ACK, used by TCP)

- ACK carries the lowest sequence number of the packets that were not
yet received (sequence number of the next expected packet)

6 7 9 11

Still expecting packet 8
(and 10, 12, etc.)

Received
packet 11Receive buffer:Data 11

Ack 8

CUMULATIVEACI
MOTIVATION BENEFITS EX

É
II
to

fi f nIfat
CONFIRMS 71915

tort

Filling the pipe…
‣Stop and Wait protocol

- wait for acknowledgment before sending next packet

‣Sliding Window protocols

- send up to (window size) packets/bytes before waiting for
acknowledgment

- when a packet is lost:
• retransmit the packet (Selective-Reject ARQ)
• retransmit all un-acknowledged packets (Go-Back-N ARQ)

‣Measure: utilization (a.k.a. normalized throughput)

- the ratio between goodput and maximum theoretical capacity

W

Flow & Congestion Control
‣Receiver Congestion

- receiver is unable to keep up with incoming data

- solved by explicit feedback from receiver to sender

‣Network Congestion

- nodes or links of the network are overloaded

- explicit congestion notification (few technologies)

- implicit congestion notification (Internet)

Congestion control
‣Goal: Make the most effective use of the network capacity

- avoid congestion

- maximize utilization

- maintain fairness (or deliver promised service level)

‣Method: Controlling the rate with which traffic is injected into the
network by the transmitter

ÉÑ I É

Éap

1000_
1000 70

SENDEN
s

1

1 1 8
FEE READ 1500

1000

a

Congestion control
‣Reasons why congestion control mechanisms are critical for the

stable operation of the Internet [RFC 8085]:

‣Prevention of congestion collapse

- i.e., a state where an increase in network load results in a decrease in
useful work done by the network

‣ Establishment of a degree of fairness

- i.e., allowing multiple flows to share the capacity of a path reasonably
equitably.

Utilization vs fairness

C DBA R - link rate

flow 1

flow 3

flow 2

R R R

Utilization vs fairness

C DBA

Max utilization Max fairness
0 R/3

R/2 R/3
R/2 R/3

R - link rate

flow 1

flow 1

flow 3

flow 3

flow 2

flow 2

R/2

R/2

0

R RR

starved

Utilization vs fairness

C DBA

Max utilization Max fairness
0 R/3

R/2 R/3
R/2 R/3

R - link rate

flow 1

flow 1

flow 3

flow 3

flow 2

flow 2

R/3

R/3

R/3

2/3 R 2/3 RR

underutilizedunderutilized

Impact of Congestion

Offered load

C
ar

rie
d

lo
ad

Capacity

off
ere

d l
oa

d =
 ca

rrie
d l

oa
d

45°

Offered vs carried load graph

Impact of Congestion

Offered load

C
ar

rie
d

lo
ad

Capacity

off
ere

d l
oa

d =
 ca

rrie
d l

oa
d

45°

Ideal

Impact of Congestion

Offered load

C
ar

rie
d

lo
ad

Capacity

off
ere

d l
oa

d =
 ca

rrie
d l

oa
d

45°

Ideal

Realistic - good

Impact of Congestion

Offered load

C
ar

rie
d

lo
ad

Capacity

off
ere

d l
oa

d =
 ca

rrie
d l

oa
d

45°

Ideal

Realistic - good

Realistic - bad

TCP
‣ Transport Control Protocol

‣Design parameters and objectives

- used by most popular applications, majority of Internet traffic is
transported over TCP

- significant impact on congestion behavior of the Internet

- must operate over networks with widely-varying characteristics

- must be robust and (relatively) simple to implement

TCP Header

Another image appropriated from Wikipedia...

TCP buffering and data flow
Application

OS (protocol stack)
Send buffer

send()

Application

OS (protocol stack)
Receive buffer

read()*

Data in flight

ACKs

send()ACK received

data rec’dread()

transmit

receive

(*) many APIs call the read() operation “receive” (eg: recv()), read is used here to avoid confusion with receiving data on an interface

TCP Sliding Window
232-1 0

Initial sequence #

Data delivered to the
application

Sent but not yet
received (in flight)

Received but not yet
ACK’d

Received and ACK’d but
not yet delivered to the

application

data transmitted

ACK sent

Receiver
buffer size

Data sent by the application
waiting to be transmitted

Sender’s
window

size

data received

data read by

application

data sent by application

TCP sequence #s

ACK received

data in
sender’s

buffer

data in
receiver’s

buffer

Events:

receiver
sender

TCP Sliding Window
232-1 0

Initial sequence #

Data delivered to the
application

Received but not yet
ACK’d

Received and ACK’d but
not yet delivered to the

application

ACK sentdata received

data read by

application

TCP sequence #s

data in
receiver’s

buffer

Events:

receiver

TCP Sliding Window
232-1 0

Initial sequence #

data transmitted

Data sent by the application
waiting to be transmitted

Sender’s
window

size

data read by

application

data sent by application

TCP sequence #s

data in
sender’s

buffer

Events:

receiver
sender

ACK received

Data delivered to the
application

Data in flight or received but
not yet delivered to the

application

Data in flight or received but
not yet delivered to the

application

Receiver
buffer size

TCP session management

Another image appropriated from Wikipedia...

TCP Flags

