
CS 725/825 & IT 725
Lecture 9
Application Layer
October 25, 2024

Issues…
‣ Typical HTTP transaction is too short for TCP
- (as you will see later in the course) TCP connection reaches full

throughput after several RTTs
- many HTTP request/responses are just a few packets
- solution: Persistent Connections

‣Shared fate: Head of Line (HoL) blocking
- (as you will see later in the course) packet loss leads to reduced

throughput
- solution: Parallel Connections

‣ These two approaches are in conflict with each other…

Server Architecture
‣ Infinite loop
- while True do

 Accept Connection
 Process the Connection
done

‣Concurrent request processing
- while True do

 Accept Connection,
 have someone else to Process the Connection
done

Concurrent Requests
‣ Full-blown processes
- costly in terms of resources
- independent

‣ Threads
- more lightweight
- shared address space between requests

‣ Event-driven approach
- do a quick bit of processing and schedule a callback when (typically) I/O

is done

‣ Virtual threads

Event-driven approach
Node.js

const http = require('http');

const requestListener = function (req, res) {
 res.writeHead(200);
 res.end('Hello, World!');
}

const server = http.createServer(requestListener);
server.listen(8080);

HTTP/2 design goals
‣ Improve utilization
‣Reduce latency
‣ Improve security
‣ Enable fine-grained control over resources

HTTP/2 approach (1)
‣Multiplexed connections
- limits Head Of Line (HOL) blocking and eliminates the need for

concurrent TCP connections

‣Resource push
- reduces latency of waiting for page rendering and subsequent resource

requests
- (met with resistance from service providers)

HTTP/2 approach (2)
‣Support for low-latency secure connection establishment
- utilizes low-latency methods to open secure connections
- while secure connection is not mandated, many current implementations

do not support insecure communication

‣ Explicit bandwidth allocation for streams within a connection
- information received concurrently on all streams with bandwidth shared

according to the set ratios
- (still needs some work, see RFC 9218 Extensible Prioritization Scheme

for HTTP from June 2022)

HTTP/2 steps
‣Secure connection is established
‣ Individual streams are set up
‣Requests dispatched
‣ Information received concurrently on all streams with bandwidth

shared according to the set ratios

QUIC motivation
‣HTTP/2 is trying to match the performance characteristics of the

underlying transport layer protocol (TCP) and the needs of the
application protocol (HTTP)
- for example, consider the interaction between TCP Slow Start and

typically short HTTP data.
- HTTP attempts to address this by various methods, such as persistent

“Keep-Alive:” connections, reducing the number of RTTs required to
open a secure connection, or opening multiple simultaneous
connections. While these solutions improve performance, they do not
address the core issues with TCP.

‣Better solution: design an alternative transport protocol

QUIC deployment
‣Changing a widely-used protocol is a complex task!
- Many lessons were learned from the transition to IPv6 that started more

than 20 years ago and is still far from being done.

‣At least, we do not have to worry about the network itself
(network layer), only the end points…
‣… and, it turns out that Google (at least in the US) controls the

most popular browser (Chrome) and provides some of the most
significant web applications (search, maps, video, email,
storage, web application infrastructure)

QUIC - a silent revolution
‣Requirement 1: a way to negotiate an alternative protocol that

will not break existing protocols and allows a clean fallback on
the traditional protocols.
- alt-svc: HTTP response header

‣Requirement 2: must be based on an existing transport layer
protocol so that no changes to the protocol stack of the
operating systems is required.
- standard UDP

‣ These allow seamless incremental deployment that improves
performance but does not disrupt

HTTP/3
‣A protocol formerly known as Hypertext Transfer Protocol

(HTTP) over QUIC
‣ The latest major revision of HTTP
- HTTP/1.1 → HTTP/2 → HTTP/3

‣Standardization:
- QUIC: RFC 9000 (May 2021)
- HTTP/3: RFC 9114 (June 2022)

HTTP/3 deployment
‣ First connection over TCP to port 443:

‣ Subsequent connections
- UDP packets sent to port 443

% curl -I https://google.com
HTTP/2 301
location: https://www.google.com/
content-type: text/html; charset=UTF-8
date: Tue, 16 Mar 2024 17:58:05 GMT
expires: Thu, 15 Apr 2024 17:58:05 GMT
cache-control: public, max-age=2592000
server: gws
content-length: 220
x-xss-protection: 0
x-frame-options: SAMEORIGIN
alt-svc: h3-29=":443"; ma=2592000,h3-T051=":443"; ma=2592000,h3-Q050=":443";
ma=2592000,h3-Q046=":443"; ma=2592000,h3-Q043=":443"; ma=2592000,quic=":443";
ma=2592000; v="46,43"

Moved Permanently

Electronic Mail - SMTP
‣Asynchronous message delivery
- delivers robustness and reliability

‣ Two types of agents:
- User Agent (UA)
- Message Transfer Agent (MTA)

‣ Two types of interactions (and protocols):
- MTA to MTA
- UA to MTA

sender system as MTAs and share ssstena
dhdfd.mn

mailqueue inbox

