
CS 725/825 & IT 725
Lecture 7
Link Layer Switching
September 18, 2024

H H

Recall…
‣ Routed networks

R
R

R

R
H

H

H

H

Broadcast & select
medium

- topology driven by geography
- long distances (high latency)
- need for scalability
- location-related addresses
- routing

➡ Network Layer (L3)

- everyone connected to everyone
- short distances (low latency)
- lesser need for scalability
- arbitrary addresses
- address discovery
➡ Link Layer (L2)

‣Broadcast & select

Routing Alternative: Bridging
‣ Motivation
- L2 networks do not scale due to the broadcast nature of the underlying

medium
- Routers are expensive and require configuration

‣ Approach - extend the reach of L2
‣ Solution - limit the scope of packet delivery (bridging)

Motivation (personal)

Image source: University of Denver

John Green Hall, the former home
of the Department of
Mathematics and Computer
Science, University of Denver

Historical Evolution
Broadcast & select network

Broadcast & select
network

Broadcast & select
network

?

✂

Link Layer Bridging
‣ Bridge “opens” for non-local traffic and broadcasts
‣ Bridge learns node locations from passing traffic and stores

them in its Forwarding Database (FDB) (a.k.a. bridge, bridging,
or switching table)

Broadcast & select
network

Broadcast & select
network

Bridge

Transparent Bridging
‣ Initially, the bridging table (FDB) is

empty
‣ Broadcast traffic is let to pass,

source address recorded in the FDB
‣ Traffic to an unknown destination is

let to pass through the bridge,
source address address is recorded
in the FDB

‣ Non-local traffic (to a known
destination that is associated with
different interface, e.g., a to d) is let
to pass, “local” traffic (e.g., a to b) is
blocked

MAC Interface

a
b
c
d

1
1
2
2

Bridge

a b c d

1 2

L2 (Ethernet) Switching

Switch 1

a

1 4

b

2

c

3

Switch 2

1

d

2

MAC Interface

a
b
c
d

1
2
3
4

MAC Interface

a
b
c
d

1
1
1
2

Unicast packet from a to d

Switch 1

a b c

Switch 2

d

MAC Interface

a
b
c
d

1
2
3
4

MAC Interface

a
b
c
d

1
1
1
2

Unicast

Unicast packet from a to d

Switch 1

a b c

Switch 2

d

MAC Interface

a
b
c
d

1
2
3
4

MAC Interface

a
b
c
d

1
1
1
2

Unicast

Broadcast packet

Switch 1

a b c

Switch 2

d

MAC Interface

a
b
c
d

1
2
3
4

MAC Interface

a
b
c
d

1
1
1
2

Broadcast

Broadcast packet

Switch 1

a b c

Switch 2

d

MAC Interface

a
b
c
d

1
2
3
4

MAC Interface

a
b
c
d

1
1
1
2

Broadcast

Standardization
‣ ISO - International Organization for Standardization
‣ ITU-T - International Telecommunication Union -

Telecommunication Sector
‣ IEEE - Institute of Electrical and Electronic Engineers
‣ IETF - Internet Engineering Task Force
‣ x Forum / x Alliance / x Group

Standardization
‣ IEEE - Institute of Electrical and Electronic Engineers
- 802.3an: 10GBASE-T 10 Gbit/s (1,250 MB/s) Ethernet over unshielded

twisted pair (UTP)
- 802.11ad: (in works) gigabit “WiFi” in 60 GHz band

‣ IETF - Internet Engineering Task Force
- RFC791: Internet Protocol - DARPA Internet Program Protocol

Specification (1981)

Standardization Process
‣ BOF - Birds of a Feather (... flock together)
‣ WG - Work Group
-working documents / draft standards

‣ Editor
-standard documents

Application Layer

Application Layer
‣Assumptions:
- each host (each network interface, actually) has a globally unique id (IP

address)
- each communication endpoint of an application has an id that is unique

within the host (port number)
- underlying network provides reliable connection-oriented or unreliable

connection-less service (TCP or UDP)

‣ For a particular transport protocol, each “communication” is
uniquely identified by a quadruple: src/dst IP addresses & src/
dst port numbers

Client and Server

Process
A

Pr
ot

oc
ol

 s
ta

ckProcess
B

Process
C

IP
address

Y

Z

X
Ports

Process
P

Protocol stack

Process
Q

Process
R

IP
address U

V

T
Ports

Host 1 Host 2

NIC NIC

NIC - Network Interface Card

Client and Server
‣ Client (caller)
- actively opens connection to

a server

- must know server’s IP
address and port #

- typically uses ephemeral
source (local) port number

‣ Server (callee)
- connects to a local port

(typically a well-known one)
- waits for clients to connect
- may handle multiple

simultaneous client
connections

Client and Server

Web
browser

Pr
ot

oc
ol

 s
ta

ck 132.177.4.36

Ephemeral port #

Protocol stack

Web
server

132.177.4.32

Well-known port #

A process (web browser) connected to ephemeral port 1111 on a
host with IP address 132.177.4.36 opens connection to a process
that listens on well-known port 80 (web server) on a host with IP

address 132.177.4.32

1111

80

Command Line Utility: nc
Server

Client

1. starting server on port 54321

2. connecting the client to a server on agate on port 54321

3. typing a message to the server

4. typing response to the client and breaking the connection by typing CTRL+D

Sequence Diagram
Client

Server
(agate)

Server started1
Client connects to port 54321 on the server*

Client started

“Message to agate”

“Message from agate”

Close connection*

Client sends
message

Server sends
message

Server closes
connection

2

3

4

(*) this is a more complex interaction than show here

Socket API
‣Berkeley socket API (4.2 BSD Unix, 1983)
‣POSIX socket API (reentrant)
‣Designed to support any protocol - not just TCP/UDP/IP
‣Defined in C, but adopted by essentially all programming

languages

Main Operations
‣Address resolution (DNS)
‣Binding to a local port number
‣Client opening connection to a server
‣Server accepting connections from clients
‣Sending and receiving data
‣Getting and setting connection parameters
‣Closing connection
‣Server handling of simultaneous connections

Perspectives
‣Reliable, stream-oriented service (TCP)
- Connection-oriented client-side
- Connection-oriented server-side

‣Unreliable, datagram service (UDP)

In Python…

import socket
BUFFER_SIZE = 100

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(('agate.cs.unh.edu', 54321))
s.send('Message to agate\n’.encode())
print(‘Received', s.recv(BUFFER_SIZE).decode())
s.close()

import socket
BUFFER_SIZE = 100

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(('', 54321))
s.listen(5)
ss, remote_address = s.accept()
print(‘Received’, ss.recv(BUFFER_SIZE).decode())
ss.send(’Message from agate\n’.encode())
ss.close()

Server

Client

This is in no way an example of how to write networking code! Among other
issues, the code does not even do the most trivial error checking

‣ Address resolution (DNS)
‣ Binding to a local port number
‣ Client opening connection to a server
‣ Server accepting connections from clients
‣ Sending and receiving data
‣ Getting and setting connection parameters
‣ Closing connection
‣ Server handling of simultaneous

connections

