Co 120/825 & 11 725

L ecture /
Link Layer Switching

September 18, 2024

Recall. ..

Routed networks Broadcast & select
Broadcast & select
medium
- topology driven by geography - everyone connected to everyone
- long distances (high latency) - short distances (low latency)
- need for scalability - lesser need for scalabillity
- location-related addresses - arbitrary addresses
- routing - address discovery

= Network Layer (L3) = Link Layer (L2)

—outing Alternative: Briaging

Motivation

L2 networks do not scale due to the broadcast nature of the underlying
medium

Routers are expensive and require configuration

Approach - extend the reach of L2
Solution - limit the scope of packet delivery (bridging)

\]otivation

John Green Hall, the former home
of the Department of
Mathematics and Computer
Science, University of Denver

personal

Image source: University of Denver

Historical evolution

[
Broadcast & select network

| INK Layer Bridging

Bridge “opens” for non-local traffic and broadcasts

Bridge learns node locations from passing traffic and stores
them in its Forwarding Database (FDB) (a.k.a. bridge, bridging,

or switching table)
Broadcast & select Broadcast & select
network network

[ransparent Briadging

Initially, the bridging table (FDB) is MAC Interface
empty

Sroadcast traffic Is let to pass, g 4
source address recorded in the FDB c o
Traffic to an unknown destination is d 2

let to pass through the bridge,
source address address Is recorded
N the FDB

Non-local traffic (to a known
destination that Is associated with
different interface, e.9., a to d) is let

to pass, “local” traffic (e.g., a to b) is e G G @
blocked

| 2 (Ethermet) Switching

MAC Interface MAC Interface
a 1 a
b 2 b
C 3 C
a 4 o 2
Switch 1 Switch 2

Jnicast packet from a to o

MAC Interface MAC Interface

1

O O O 9
O O O 9

=~ W N

2

Switch 1 Switch 2

Unicast

Jnicast packet from a to o

MAC Interface MAC Interface

1

O O O 9
O O O 9

=~ W N

2

Unicast

Sroadcast packet

MAC Interface MAC Interface

O O O Q©
O O O 9

B~ N =

Switch 1 Switch 2
Broadcast

Sroadcast packet

MAC Interface MAC Interface
a 1 a
b 2 b
C 3 C
a 4 o 2
Switch 1 Switch 2

01016 O

Standardization

SO - International Organization for Standardization

TU-1 - International Telecommunication Union -
Telecommunication Sector

IEEE - Institute of Electrical and Electronic Engineers
IETF - Internet Engineering Task Force

x Forum / x Alliance / x Group

Standardization

IEEE - Institute of Electrical and Electronic Engineers

802.3an: 10GBASE-T 10 Gbit/s (1,250 MB/s) Ethernet over unshielded
twisted pair (UTP)

802.11ad: (in works) gigabit “WiFI” in 60 GHz band

ETF - Internet Engineering lask Force

RFC791: Internet Protocol - DARPA Internet Program Protocol
Specification (1981)

Standardization Process

BOF - Birds of a Feather (... flock together)
|—->_ WG - Work Group

working documents / draft standards

Editor

standard documents

Application Layer

Application Layer

AssuMmptions:

each host (each network interface, actually) has a globally unigue id (IP
address)

each communication endpoint of an application has an id that is unigue
within the host (port number)

underlying network provides reliable connection-oriented or unreliable
connection-less service (TCP or UDP)

For a particular transport protocol, each “communication” Is
uniquely identified by a quadruple: src/dst IP addresses & src/
adst port numbers

Client and Server

Host 1
4 . , Ports —
Process _@
A
Process S
®
B8 *a
O
@)
S
O
ol
Process @'
WA
N

NIC - Network Interface Card

IP
address

NIC

IP
address

NIC

Host 2
—_— Ports . \\
\ _@ Process
F)
(;DU @_ Process
8 . Q J
@)
o)
28
Q
@)
Q
Process
SO
J

Client and Server

Client (caller) Server (callee)
actively opens connection to connects to a local port
a Server (typically a well-known one)
must know server's [P walts for clients to connect

address and port

may handle multiple
typically uses ephemeral simultaneous client
source (local) port number connections

Client and Server

Ephemeral port #

-

(

browser

Web

~

/rﬁ

(

~

@

Q
Q

~

132.177

Well-known port #

4.30 132.177.4.32

Protocol stack

)

\

-

_

Q Q

3OB]S [000]0.d

A process (web browser) connected to ephemeral port 1111 on a
host with IP address 132.177.4.36 opens connection to a process
that listens on well-known port 80 (web server) on a host with P

address 132.177.4.32

Command Line Utllity: nc

Server 1. starting server on port 54321

®@ O = rbarfs — ssh — 46x5
[rbartos@agate ~]$ nc -1 54321
Mesage to agate

Response from agate
[rbantos@agate ~1$ [

4. typing response to the client and breaking the connection by typing CTRL+D

C\ien’[2. connecting the client to a server on agate on port 54321

® O > rbartod— bash — 46x5
[rbartos@rb-mbp ~]1$ nc agate.cs.unh.edu 54321
Mesaje to agate

Response from agate
[kbartos@rb-mbp ~]1$

3. typing a message to the server

Seqguence Diagram

Client

Server
(agate)

n Server started

>

Client connects to port 54321 on the server”

Client started

Client sends “Message to agate”
message

“Message from agate” Server sends
message

: *
Close connection Server closes

connection

(*) this is a more complex interaction than show here

Socket AP

Berkeley socket API (4.2 BSD Unix, 1983)
POSIX socket API (reentrant)
Designed to support any protocol - not just TCP/UDP/IP

Defined in C, but adopted by essentially all programming
languages

\ain Operations

Address resolution (DNS)

Binding to a local port number

Client opening connection to a server

Server accepting connections from clients
Sending and receiving data

Getting and setting connection parameters
Closing connection

Server handling of simultaneous connections

Perspectives

Reliable, stream-oriented service (TCP)
Connection-oriented client-side

Connection-oriented server-side

Unreliable, datagram service (UDP)

N Python. ..

Address resolution (DNS)

Binding to a local port number

Client opening connection to a server
Server accepting connections from clients
Sending and receiving data

Getting and setting connection parameters
Closing connection

Server handling of simultaneous
connections

Server

import socket
BUFFER_SIZE = 100

s = socket.socket(socket.AF _INET, socket.SOCK_STREAM)
s.bind(('', 54321))

s.listen(5)

ss, remote_address = s.accept()

print(‘Received’, ss.recv(BUFFER_SIZE).decode())
ss.send(’Message from agate\n’.encode())

ss.close()

Client

import socket
BUFFER_SIZE = 100

s = socket.socket(socket.AF _INET, socket.SOCK STREAM)
s.connect(('agate.cs.unh.edu', 54321))
s.send('Message to agate\n’.encode())
print(‘Received’', s.recv(BUFFER_SIZE).decode())
s.close()

This is In no way an example of how to write networking code! Among other
Issues, the code does not even do the most trivial error checking

