CS725/8258 [T725] Lecture 2 Basic Concepts

August 28, 2024

Assignment ()

- - gitlab.html)
 - commit changes, and push to CS GitLab

Objective: Get ready for programming assignment submissions setup your git repository (<u>https://www.cs.unh.edu/~cs725/assignments/</u>

- edit README.md files to include your name and email, tag as AO,

- no due date (best done well before the first real assignment is due)

Basic Concepts

Basic Terms

- Protocol
 - An agreement on how a communication is to proceed
- Packet (frame, message, datagram, cell,)
 - header, data (payload), trailer

- ?-cast
 - unicast, multicast, broadcast, anycast, ...
- Single hop vs. multihop

Header	Payload	Trailer

Communication medium types

- Point to point
 - between two participants
 - simplex, duplex, full duplex
 - no need for addressing
- Broadcast and select
 - multiple nodes attached to a shared medium
 - everyone hears every transmissions (broadcast)
 - addresses needed to select transmission intended for a node

Layered models

- Motivation
 - networks require many different types of expertise
 - need to mix-and-match
- Characteristics
 - black box functionality (abstraction)
 - simple, well defined interfaces (service of a layer)
 - vertically stacked

Protocol hierarchy Intent L_{n+1} protocol ••••• L_{n+1} L_{n+1} Uses services of L_n protocol • • • • • • • • • •

Ln

Conceptual view

Real protocol example

Ethernet header

IP header

Ln-1 Payload L_n Payload L_{n+1} header L_{n+1} Payload

Multiple layer implementations

Multiple lower layers

- Example: wired and wireless Ethernet

Multiple higher layers
Example: email and web

L(n+1) L(n+1) L(n)

OSI 7-Layer Model

- L7 Application
- L6 Presentation data representation
- L5 Session open/close/maintain session
- L4 Transport end-to-end error and flow control
- L3 Network end-to-end delivery (routing)
- L2 Link node-to-node delivery (single hop)
- L1 Physical send bits over a physical channel

"Internet" layers today

- L7 Application
- L6 Presentation
- L5 Session
- L4 Transport
- L3 Network
- L2 Link
- L1 Physical

L7 - Application

- L4 Transport
- L3 Network
- L1 & L2 Link & Physical

"Internet" layers today

- L7 Application
- L6 Presentation
- L5 Session
- L4 Transport
- L3 Network
- L2 Link
- L1 Physical

L7 - Application

"security layer"

- L4 Transport
- L3 Network
- L1 & L2 Link & Physical

Internet protocol examples

- Application layer
 - HTTP/HTTPS, SMTP (email), streaming, messaging, etc.
- Security layer: TLS (a.k.a. SSL)
- Transport layer
 - TCP, UDP
- Network layer
 - -IPv4, IPv6
- Link & Physical layer
 - Wired Ethernet, WiFi, etc.

Internet "Hourglass"

Protocols going forward

- QUIC and HTTP/3
 - Enhanced HTTP over TLS 1.3 over UDP over IP …
 - Developed by Google and becoming widely deployed
 - Design goal: reduction of transaction latency
 - Implemented in the user space (application)

Common Layer Functions

- Addressing
- Error control
 - error detection
 - error correction
- Flow control (traffic management, congestion control)
- Quality of Service (QoS)
- (new) Security