
Performance Impact of Web Service Migration in Embedded Environments

Kevin J. Ma
Cisco Systems

Boxborough, MA 01719, USA
Email: kema@cisco.com

Radim Bartoš
Department of Computer Science

University of New Hampshire,
Durham, NH 03824, USA
Email: rbartos@cs.unh.edu

Abstract

The benefits provided by Web Service protocols are well
recognized. Deployments to date, however, have concen-
trated on new applications, and existing Web-based appli-
cations. A host of legacy applications and protocols con-
tinue to exist in their native forms, outdated, yet entrenched
due to large installed bases. This paper details our obser-
vations in integrating a Web Service infrastructure into the
Simple Network Management Protocol (SNMP). SNMP has
been in use for over a decade and a half, predominantly in
network equipment embedded systems. Our Web Service-
based approach allows us to enhance our existing appli-
cation with XML/SOAP interoperability, SSL/TLS security,
and the potential to migrate both application and protocol
layers to encompass future extensions and Web browser ac-
cessibility. The difficulty with SNMP, and many other legacy
networking protocols, is that much of the extensive installed
base is hosted on limited capability, legacy hardware. While
the benefits of our scheme are quite tangible, the perfor-
mance impact of adding these features is not well known.
We examine two approaches, an integrated solution using a
light-weight HTTP/SOAP stack, as well as a standard Java
Web server implementation. Our tests reveal unanticipated
performance results through both the integrated and proxy
methods. We discuss the impact of these anomalies on the
viability of our approach and address the broad issue of mi-
grating Web Services to legacy embedded architectures.

1 Introduction

Web Services are quickly gaining traction as the infras-
tructure of choice for new Web applications. The benefits
of XML encoding flexibility, SOAP interoperability, and
orchestrated BPEL transactions are enabling developers to
implement robust new applications and extend the capabil-
ities of existing Web-based infrastructures. However, the
benefits of Web Services are applicable in other environ-

ments as well. There is a body of legacy networking pro-
tocols which are lacking in flexibility, accessibility, and se-
curity, each aspect of which can be addressed through the
adoption of a Web Service-based paradigm. The follow-
ing sections describe our findings in implementing a Web
Service interface for the Simple Network Management Pro-
tocol (SNMP).

1.1 Web Services and Legacy Applications

The extensible and user definable nature of XML en-
ables migration flexibility from legacy protocols to new,
Web Service-based versions of those protocols and makes
future migration easier. Most legacy protocols are rooted
in proprietary data formats that are difficult to extend. Due
to large installed bases for existing applications, the impact
of changes must be minimized and backwards compatibil-
ity maintained. XML and SOAP may be defined to mimic
existing standards and mitigate risk in upgrading and ex-
tending. It does not alleviate the initial implementation hur-
dle, but does provide a future migration path, along with
the other benefits of Web Services. We must first, however,
understand the impact of choosing to adopt an XML/SOAP
representation. The processing overhead, messaging over-
head, and potential integration barriers must be examined.

The HTTP binding for SOAP allows new Web Service
implementations to take advantage of an underlying infras-
tructure, well known for its accessibility. Web browser-
based interfaces enable ubiquitous access to applications
and tools, however, it is not just the browser ubiquity that
makes HTTP appealing. The implications of ubiquity are
also interesting. HTTP is well deployed, well understood,
and well supported. Many protocols have adopted Web in-
terfaces. Consequently, HTTP access is a necessity in most
networks and is normally granted access through firewalls
and filters. Legacy network protocols have endured and
proliferated by providing stable and available foundation.
HTTP provides a similar stability and comparable availabil-
ity. As risk mitigation is critical to legacy protocol migra-

tion, an established protocol like HTTP is desirable. The
HTTP protocol binding also provides a host of security ben-
efits. The HTTPS and the SSL/TLS protocols strengthen
the Web Service position by including a respected suite
of cryptographic algorithms and a security protocol with
over a decade of refinement. While the Web Service se-
curity standards have yet to solidify or find broad-based de-
ployment, the message level, transaction-based security of
SSL/TLS provides a suitable migration option. SSL/TLS
offer fully capable data privacy with an extensive infras-
tructure for testing and maintenance. However, processing
overhead, differences in protocol interactions, and any po-
tential down-time which may be incurred must be quanti-
fied before a transition can occur. Upgrades must be swift,
seamless, and straightforward.

1.2 Simple Network Management Protocol

For our research, we chose the Simple Network Man-
agement Protocol (SNMP) and a candidate for migration
to a Web Service-based scheme. SNMP has been in exis-
tence for over 15 years. Originally standardized in 1990,
it was quickly adopted and became entrenched in the net-
work administration landscape. The intent was for SNMP
to be a short-term solution while a more robust framework,
the Open System Interconnection (OSI) Network Manage-
ment Model, was developed in parallel [1]. However, the
merger of SNMP’s simplicity with the rich features of the
OSI model, was never realized. Time to market and ease of
implementation played pivotal roles in the popularity and
mass adoption of SNMP and the inevitable reluctance to
migrate.

The SNMP PDU was originally specified to be trans-
mitted plain text [1]. There is no privacy, no authentica-
tion, and no access control. Management Information Base
(MIB) objects are available (read and write) to any and all
users with network access to the management interface. The
SNMP community string could be construed as a password
of sorts, however, community strings are transmitted clear
text and are generally well known. They provide little in
the way of security. SNMP is also specified to use UDP as
a default transport layer protocol, though the use of other
protocols, like TCP, is not prohibited. [1]. There are no ac-
knowledgments, no retransmissions, and no fault recovery.

Traditionally, network management security and relia-
bility has primarily involved: keeping network equipment
behind locked doors, using private networks for manage-
ment traffic and dedicated modems for remote access, and
maintaining on-site administrative staff. This type of brick
and mortar approach provides near adequate network secu-
rity and reliability, but lacks scalability. To employ these
measures in a global, multi-site topology is an extremely
inefficient and expensive paradigm.

New protocols and proprietary schemes [2] have the
same barrier to entry as the OSI model: backward compat-
ibility with legacy devices. Proxy schemes [3] and applica-
tion overlays [4] usually involve adding elaborate front end
interfaces to the existing infrastructure. These candidates
provide a good compromise between new protocols and
legacy devices and is a favorite of software vendors. Proto-
col extensions, e.g., SNMPv3 (standardized by the IETF in
December 2003) [5], provide the most integrated approach.
They attempt to address, rather than mask, the deficiencies
of the underlying protocol to provide a migration path for
new devices.

In the following sections we examine two approaches for
augmenting SNMPv2, seeking balance between the power
and promise of Web Services and the constraints of migrat-
ing a legacy protocol. We detail each approach and present
our observations on their performance and their ability to
address the security, reliability, scalability, and accessibil-
ity.

2 The Application

Our vision for a Web Service-based SNMP proposes a
non-intrusive extension to the existing protocol. Working
within the confines of the SNMP standard, we propose a
scheme for extending and improving the existing SNMPv2
infrastructure through the use of Web Services at the trans-
port level (using an XML encoded, SOAP message encap-
sulation, bound to HTTP, for SNMP PDU transport). We
investigated two options for implementing this extension:
one using standard Web server technologies and a Java tool
set, the other using a light weight HTTP/SOAP stack. Both
were integrated with an existing SNMP daemon and tool
set. The goal was to achieve interoperability between the
two approaches, as well as maintain interoperability with
legacy systems. Each scheme has unique performance and
feature characteristics, and both provide SNMP with the
benefits of the Web Services, i.e.,:

• a human readable XML alternative to binary ASN.1,

• data privacy provided through SSL/TLS,

• standardization on SOAP for interoperability,

• user authentication provided through HTTP,

• data compression provided through HTTP.

By addressing the security issues of SNMPv2, we enable
scalability beyond the physical security boundaries which
exist today and enable secure, in-band accessibility. By of-
fering a Web browser based interface, we extend accessi-
bility further through the use of a ubiquitously deployed in-
frastructure. By adding all of this at a very low layer, we

Net−SNMP
Server

Ethernet
Switch

Network
Stack

Network
Stack

Client
Net−SNMP

perfex

Linux HostLinux Host

Figure 1. Net-SNMP Test Configuration.

maintain compatibility with the existing application, which
is key for adoption and maintainability. Each of these fea-
tures, though, has an associated cost. Quantification of per-
formance impacts and increased resource utilization is nec-
essary.

2.1 Net-SNMP and gSOAP

The Net-SNMP 5.0.8 open-source software package was
chosen as the basis for the first phase of implementation.
Net-SNMP is a widely used and respected software pack-
age. It is the default SNMP software for the major Linux
distributions. Its pervasiveness makes it an ideal choice for
these experiments.

Net-SNMP supports a number of different transport
bindings, known as “Domains”. It currently supports UDP,
TCP, IPX, ATM-AAL5, UNIX Sockets, and a Callback do-
main. Supported domains are run time configurable. This
structure is quite accommodating to adding support for new
transport layer protocols, e.g., Web Service Domains.

For the purposes of this project, two additional do-
mains were implemented to support SOAP over HTTP and
SOAP over HTTP with SSL, “SOAP-HTTP” and “SOAP-
HTTPS”, respectively. The inherent abstraction of transport
domain details from MIB processing, in Net-SNMP, helps
promote clean integration of new domains.

The gSOAP 2.2.3 software package [11] was chosen as
the SOAP stack implementation. It provided excellent doc-
umentation, platform independence, and a compiler tool
which generates most of the necessary code for the low level
SOAP infrastructure. The gSOAP package includes HTTP
protocol support built in, as well as an OpenSSL extension
for HTTPS support and a Zlib extension for HTTP com-
pression support.

2.2 Apache Axis and Java Servlet

For the second phase of implementation, we set out to
create a Web browser based Web Service interface for Net-
SNMP. Given its wide following, Apache Web Server 2.0
and its accompanying toolset seemed a natural candidate

Ethernet
Hub

Ethereal

Windows Host
Linux Host

Axis

Net−SNMP
Client

Net−SNMPj

Tomcat
Jakarta

SSL
HTTP

Web
Server

Applet
Java

Net−SNMP
Server

Web
Browser

Linux Host

Figure 2. Apache Test Configuration.

for the server side. For the client side, Mozilla 1.3 was in-
stalled. Apache Axis 1.1 was chosen for SOAP protocol
stack implementation. Axis 1.1 relied upon Apache Xerces
2.5 for XML parsing support, and was implemented in Java
and built on top of the Apache Jakarta Tomcat 4.1.18 Java
servlet architecture. The Sun Java JDK 1.4.1 provided our
JVM support. A C++ version of Axis is currently available,
however, it was not at the time of our implementation. The
C++ is likely to have very different performance character-
istics and is a topic for future research.

While transparent proxy functionality for SNMP SOAP
transactions was the ultimate goal, native Net-SNMP in-
teractions were implemented through Net-SNMPj when we
encountered difficulties related to the creation of custom se-
rializers and deserializers in Apache Axis. We were unable
to achieve full interoperability between the Web browser
and integrated snmpd approaches. Net-SNMPj is an inde-
pendently implemented Java API for Net-SNMP. The Net-
SNMPj interface was incorporated into the Web Service
Java servlet to provide local proxy access capabilities.

3 Evaluation Methodology

The goal of this project was to evaluate the viability
of a Web Service-based approach for legacy applications.
We specifically targeted low-bandwidth, low-latency, unre-
liable, insecure network protocols. These types of protocols
are typically deployed in embedded systems as well as on
server grade hardware. The intent was to answer two key
questions:

• Would XML encoding have prohibitive performance
impact due to the increased message sizes and addi-
tional message parsing?

• Would HTTPS have significant negative performance
impact?

We believed that the former should be predictable and
reasonable. We expected processing time to be reason-
able with a custom, light-weight stack, and that link band-
width utilization should be predictable and inconsequential.
SNMP was designed over a decade ago. Available band-
width has increased by orders of magnitude since that time.
Increases in messaging overhead should be negligible rel-
ative to increases in bandwithd. For the latter, we inferred
from anecdotal evidence that the implementation should be
straightforward, with some performance impact. Given that
assumption, we believed that the security of a Web Service-
based approach warranted further investigation to quantify
what the actual performance impacts might be.

For the first question, we looked at both a custom C-
based implementation (gSOAP) and a standard Java-based
implementation (Axis) and observed vastly different results.
The two approaches are architecturally different and perfor-
mance parity was not anticipated. However, fundamentally,
the wide flexibility of Web Services, which enables both
approaches to coexist and interoperate makes each a viable
solution. From that standpoint, a comparison must be done
to establish the relative benefits of each approach.

For the second question, OpenSSL seems to hold a
monopoly on cryptographic implementations across all ap-
plications. SNMPv3, an alternative approach to adding se-
curity to SNMP, uses the OpenSSL library for cryptography,
as do gSOAP and the Apache Web Server. However, while
SSL/TLS cryptographic operations are abstracted from the
Web Service implementation, the OpenSSL library cannot
be overlooked in its feature role for Web Service transac-
tions. We found the performance impact of OpenSSL to be
non-insignificant.

3.1 Net-SNMP Evaluation

For the Net-SNMP implementation the following statis-
tics were gathered:

• packets transfered per transaction,

• bytes transfered per transaction,

• wall clock latency per transaction,

• x86 CPU instructions executed,

• x86 CPU clock cycles expended.

The transaction was defined as a single snmpget re-
quest and response. The sysContact information was
retrieved from a remote host, over a network with only our
client and the server attached. Packet count, byte count,
and latency data were gathered using the standard tcp-
dump utility included with Linux and parsed with simple
scripts to extract the desired statistics. The tcpdump utility

provides sniffer functionality at the network interface level
of the host (in our case client) system. Consequently, the
latency statistics include only the round trip network delay
and the server side processing time. The client side process-
ing is not included. While a full protocol analyzer offers
more decoding capability, tcpdump provides a more eas-
ily automated solution for parsing the data we required. An
in-line, or look-aside protocol analyzer ignores client side
processing as well, so there was no significant loss of visi-
bility from this decision. An Ethereal [7] sniffer was used
to validate functionality, but not to gather data. The CPU
statistics, on the other hand, do take into account the client
side processing impacts. The perfex utility [9] was used
to gather CPU statistics. The perfex utility is a freely
available Linux tool for accessing the performance moni-
toring registers available on IA32 processors. It is based on
the freely availableperfctr Linux kernel patch [10]. One
thousand samples were taken per run, to assess consistency
between transactions and ten runs were performed to ensure
reproducibility.

3.2 Apache Servlet Evaluation

To evaluate the relative performance of the Apache ap-
plet/servlet based approach, compared to Net-SNMP, a sub-
set of the same network statistics were gathered, includ-
ing: packets transfered per transaction, bytes transfered per
transaction, and wall clock latency per transaction.

The network statistics were gathered using an external
sniffer. A third host, running Ethereal sniffer software was
added to the Ethernet hub, as seen in Fig. 2. Given the
amount of network traffic we observed, per transaction, we
required a more intelligent tool to analyze our samples. Us-
ing a full protocol analyzer, over shared media, created
a much more cumbersome test setup, which inhibited our
ability to automate data acquisition. The logistic issues lim-
ited our results gathering capability to much smaller sample
sets, relative to the Net-SNMP results.

There was no suitable method for gathering comparable
CPU statistics for the Java applet that interacted with our
Java Web Service. The applet is not a self contained en-
tity which we could easily track, as it was running within
the context of Mozilla. The GUI poses additional compli-
cations, as we were unable to determine how cycles spent
on rendering would be counted. A similar issue arises in
the accounting for JVM interactions and other background
tasks.

4 Results

Using the test scenarios and methodologies described in
the preceding sections, we gathered data through each phase

of the project and present our findings below. Detailed in-
formation about test setups and hardware, as well as ad-
ditional graphs and data discussion may be found in tech-
nical report [6]. The tests involed two hosts running Red
Hat Linux 8.0 and an additional Windows NT workstation
for the Ethereal protocol analyser, in the Apache setup. A
dedicated 100 Mbps NetGear Ethernet Hub was used for
interconnect.

4.1 Net-SNMP Results

Table 1 contains a summary of the network statistics re-
sults from a single sample run of Net-SNMP. The table
shows the packet count, byte count, and latency numbers for
the four transport domains: UDP, TCP, HTTP (with SOAP),
and HTTPS (with encrypted SOAP).

Packet counts were static across all runs as can be seen
through the minimum and maximum values (and conse-
quently the average values as well) being equal. The values
were in-line with expectations: two packets for the simple
RPC case of UDP, ten packets for TCP, adding the three-
way handshake and teardown, ten packets for the HTTP
case, which is just a degenerate case of TCP, and eigh-
teen packets for HTTPS which includes TLS handshake and
cleanup.
We did notice that packet counts for HTTPS did vary
slightly. Analysis of the tcpdump data showed that this
was due to differences in the piggybacking of acknowledg-
ments by TCP. While not anticipated, this type of latitude,
taken by the TCP stack, is not uncommon.

Byte counts between domains increased expectedly, for
the UDP, TCP, and HTTP domains, due to handshake and
teardown overhead. From sample to sample, within a given
domain, byte counts varied only by the difference in en-
coded length of the randomly generated request-id
field. The packet count and byte count results were pre-
dictable and reproducible, as expected.

Table 1. Net-SNMP Statistics (tcpdump).
Domain Statistic min max avg

UDP packets 2 2 2
bytes 157 159 159

latency (ms) 0.255 10.649 0.505
TCP packets 10 10 10

bytes 637 639 639
latency (ms) 0.900 14.952 1.548

HTTP packets 10 10 10
bytes 2502 2508 2507

latency (ms) 2.770 27.576 3.132
HTTPS packets 16 19 18

bytes 4491 4635 4575
latency (ms) 80.722 585.253 183.965

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 100 200 300 400 500 600 700 800 900 1000

La
te

nc
y

pe
r

T
ra

ns
ac

tio
n

(s
ec

on
ds

)

snmpget Transaction

UDP
TCP

HTTP

Figure 3. Net-SNMP Network Transaction La-
tency.

The non-HTTPS domain latency values contained a cou-
ple of high data points, but overall, the times were consistent
across the samples. We can see this better in Fig. 3 which
shows a plot of the latencies for the UDP, TCP, and HTTP
transport domains. Aside from a few anomalous points, the
general trend is flat over the sample sets. The three dis-
tinct bands from bottom to top, represent the UDP, TCP, and
HTTP domains respectively. Each domain required slightly
more processing time than the previous one, as expected.
The TCP domain took four times as long as the UDP do-
main, strictly due to messaging overhead. The HTTP do-
main, in turn, took an additional four times as long, due to
message processing overhead, above and beyond TCP.

However, when we look at the latency for the HTTPS
domain we find that predictability and reproducibility are
no longer achievable once we add in cryptographic opera-
tions. We had anticipated an increase in latency due to the
addition of cryptographic operations, however the magni-
tude and variability of the results were quite unexpected.

Fig. 4 shows a field of seemingly unbounded data points
with no best fit line. While there is a concentration of points
near the bottom, the band is too wide to define a tight trend.
Overlaid on the scatter plot of sample data is a plot of the
data set sorted. It exhibits no flat spots to indicate a trend.
While somewhat more consistent, it still spans too wide a
range of times to suggest predictability. It looks more like
an even distribution over a very wide range of times. We
also should note the plot of the base HTTP domain along
the zero line. The multiple orders of magnitude difference
between the latency of HTTP and HTTPS becomes much
more apparent, when illustrated by this graph. The HTTP
domain is dwarfed in comparison to HTTPS.

Cryptographic operations are known to be computation-
ally intensive. For this reason, many applications rely on
hardware co-processors for accelerating these functions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500 600 700 800 900 1000

La
te

nc
y

pe
r

T
ra

ns
ac

tio
n

(s
ec

on
ds

)

snmpget Transaction

HTTP
HTTPS

HTTPS sorted

Figure 4. Net-SNMP HTTPS Transaction La-
tency.

Cryptographic support for our tests was provided through
OpenSSL 0.9.6b. We expected some performance degra-
dation due to the software-based cryptographic operations,
however we did not anticipate the wide variance in process-
ing time that we observed. Most SSL/TLS statistics are
averaged over seconds and do not display the granularity
which we attempted to achieve. We did verify that session
caching was not being used and that random number qual-
ity was not an issue (i.e., that /dev/urandom was being
used by OpenSSL). Root cause analysis of these anomalies
is also a topic for future research.

Table 2 shows instruction count and cycle count data for
the four Net-SNMP transport domains. Again, as with the
network statistics, the data for the UDP, TCP, and HTTP
domains were generally in line with expectations. The data
in Table 2 was taken over a set of one hundred samples.

The CPU instruction counts are extremely consistent
across the board, within domains, with the HTTP domain
exhibiting less than a one percent increase due to XML,

Table 2. Net-SNMP CPU Statistics (perfex).
Domain CPU Instructions (millions)

min max avg
UDP 81.545 81.545 81.545
TCP 81.536 81.536 81.536

HTTP 82.171 82.171 82.171
HTTPS 123.894 399.082 173.495

CPU Cycles (millions)
min max avg

UDP 93.939 105.399 95.218
TCP 94.066 102.455 95.505

HTTP 95.802 108.663 97.427
HTTPS 153.737 569.306 229.282

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 0 10 20 30 40 50 60 70 80 90 100

C
P

U
 C

yc
le

s
pe

r
T

ra
ns

ac
tio

n

snmpget Transaction

HTTP
HTTPS

HTTPS sorted

Figure 5. Net-SNMP HTTPS CPU Cycles.

SOAP, and HTTP processing. It is expected that the instruc-
tions required to process the same request over and over
again should exhibit reproducibility. The cycle count, how-
ever, is somewhat harder to quantify. Individual instruc-
tions have non-deterministic latencies associated with them
due to main memory and cache accesses and I/O device re-
sponse times. For the UDP, TCP, and HTTP domains, we
do see fairly flat trends for CPU cycles, though with more
variances than the CPU instructions counts. But again, the
addition of cryptographic operations introduced large vari-
ability into the results.

Fig. 4 again depicts the magnitude and variability phe-
nomena of the HTTPS domain. The network latency results
are reinforced by these CPU utilization statistics. Looking
at the plot of the CPU cycles, we again see a wide band of
data with no intelligible trend. The scatter plot in Fig. 5 has
again been overlaid with a plot of the data sorted. There are
no noticeable flat spots in the overlay, and no discernible
correlation to the HTTP domain plotted below it.

Finally, we also assessed the disk space requirements for
our Web Service interface. The impact of the former was
an increase in memory footprint of the Net-SNMP shared
library of 436,294 bytes (from 1,258,362 bytes to 1,694,656
bytes). The addition of the gSOAP support and two new
transport domains results in an increase in size of over a
third. This does not include the space required for OpenSSL
and/or Zlib.

4.2 Apache Results

Table 3 contains the network statistic results for the Web
server proxy implementation. The “Preloaded” statistics
were taken from a set of fifty sample runs with a web
browser running our Java applet connecting to our Java
servlet after the applet has been loaded and initialized.

The “Initial Load” statistics were taken from a set of ten
samples in which the applet is not pre-initialized, to deter-

mine the initial load characteristics. Initial load is defined
here as an applet load after restarting Mozilla (i.e., killing
and restarting the Mozilla process), negating the effects of
any information cached by Mozilla. Upon starting Mozilla,
no default homepage load was configured so that the ap-
plet load would be the first and only operation performed
by Mozilla. No library loads or setup should have tainted
the initial load results.

The disparity in magnitude between all the results in the
three data sets stands out immediately. The difference be-
tween the Net-SNMP HTTP domain statistics (Table 1) and
the Web browser Proxy is two orders of magnitude. There
is an additional two orders of magnitude difference between
the proxy statistics and the initial load statistics. Though
the number of data points is relatively small to be draw-
ing conclusions about consistency, such a large difference
in magnitude is unlikely to be reconcilable with more data
points. The existence of latency and bandwidth usage this
large is disturbing and can not be discounted. Performance
impacts from a Java applet/servlet based approach was ex-
pected, however, the magnitude of the impact was quite un-
foreseen. We anticipate that the inclusion of SSL/TLS will
only further compound this performance issue. We feel that
the investigation of these anomalies, without the added per-
formance degradation of HTTPS, is an important topic for
further research.

Fig. 6 shows a graph of the latency data from the applet
implementation. While there are quite a few stray cases of
higher latency, a noticeable trend line along the bottom can
clearly be seen. The other interesting piece of data to note
is the plot of the Net-SNMP HTTP domain hovering just
above or on the zero line. As was obvious from Table 3, it
can be seen that the Apache based approach cannot begin
to compete with the performance of the stripped down C
implementation of the gSOAP stack.

Even more alarming is the latency cost of the initial ap-
plet load. Fig. 7 shows the inordinate amount of extra wall
clock time that applet download takes. An applet is a self-
contained entity which can be dynamically loaded and exe-

Table 3. HTTP Proxy Statistics (Ethereal).
Preloaded Applet

Statistic min max avg
packets 420 594 452
bytes 75410 86894 77545

latency (ms) 445.467 3610.068 872.117
Initial Applet Load

Statistic min max avg
packets 993 1085 1013
bytes 173254 179870 174691

latency (ms) 11264.101 12079.382 11594.271

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40 45

La
te

nc
y

pe
r

T
ra

ns
ac

tio
n

(s
ec

on
ds

)

snmpget Transaction

Net-SNMP HTTP
HTTP Proxy

Figure 6. HTTP Proxy Transaction Latency.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10

La
te

nc
y

pe
r

T
ra

ns
ac

tio
n

(s
ec

on
ds

)

snmpget Transaction

Net-SNMP HTTP
HTTP Proxy

HTTP First

Figure 7. Initial HTTP Proxy Transaction La-
tency.

cuted by a web browser. If an applet needs to execute func-
tions in non-standard libraries (e.g., Apache Axis) it must
download all the necessary libraries it requires. This can
involve retrieval of hundreds of thousands of bytes of data.
In time critical applications, this can have a significant ef-
fect on first response time. This download on the fly fea-
ture does, however, make the application significantly more
portable than traditional applications. For applications that
require accessibility from anywhere, the applet provides a
handy option. It does not require any explicit installation
and it can be run from any web enabled, Java capable ma-
chine. This flexibility and accessibility comes at a cost,
however. What is interesting, and unclear, though, is that
the increase in latency does not correspond linearly with
the byte count increase. The number of bytes transferred
during the initial load is little more than twice that of the
standard proxy, however, the latency increases by more than
ten times. We infer from this that some large amount of
CPU processing overhead is also involved for each extra

byte of data being downloaded. Additionally, the penalty
is not completely contained in the initial load. The unex-
pectedly large values for the non-initial load, proxy cases
allude to this. An initial load penalty was expected, though
not one of this magnitude, and it was assumed that the ini-
tial load penalty would occur only once and not carry over
to each subsequent transaction. These phenomena have not
yet been investigated in detail to determine whether the bot-
tleneck exists on the server side, the client side, or both.
This phenomena, too, is a topic for future research.

On the server side, the memory footprint of this imple-
mentation is well over one hundred megabytes (10MB for
the Web Server, 50MB for Tomcat and Axis, 25MB for Ant,
and 75MB for the Java SDK). Full installations of all the
packages should not be required for our applet, however, if
approached as a black box installation, the footprint ends up
being around 160 MB, not including OpenSSL or Zlib.

5 Conclusions

This paper presents a look at the performance impacts
of augmenting the standard Net-SNMP implementation of
the legacy SNMPv2 protocol with a Web Service-based
transport infrastructure. Our first phase implementation
employed the gSOAP protocol stack, integrated into Net-
SNMP. Our second phase implementation used industry
standard infrastructure technologies including the Apache
Web server, and Java applet and servlet technologies to
provide a browser-based interface to Net-SNMP. The Web
browser accessible scheme provides a high level of user ac-
cessibility, but is apparently accompanied by severe per-
formance penalties. Custom implementations offer better
performance, but without the interface ubiquity. In either
case, both schemes offer access to the security features of
HTTPS.

The addition of an HTTP/SOAP infrastructure alone, us-
ing the gSOAP package, showed noticeable increases in all
the statistical areas, though the penalties were not crippling
and were quite predictable. When adding SSL/TLS encryp-
tion for data privacy, however, order of magnitude increases
in latency and processing, along with extreme jitter made
quantification difficult from a security feature performance
standpoint. It is unclear how HTTP compression might af-
fect the performance characteristics of SSL/TLS. Compres-
sion will add processing overhead, however, the decreased
amount of data being encrypted should have increasing re-
turns in cryptographic throughput. Compression integration
and analysis is an area of current research.

From the Apache implementation perspective, the pro-
cessing penalties and the memory requirements dwarfed
those of our Net-SNMP implementation by many orders of
magnitude, even without SSL. This approach would defi-
nitely be infeasible for most legacy systems. Custom server

installations and removal of the Java infrastructure might
make this solution more manageable, however, platform
limitations (e.g., proprietary operating systems, low-power
CPUs, and limited memory, lack of hard disk, etc.,) must be
taken into consideration in migratory environments.

We feel that the emerging Web Service technologies al-
low for powerful advancements beyond the simple frame-
work of legacy applications. However, for these schemes
to succeed, migratory concerns, such as those highlighted
herein, must be addressed. More granular performance
analysis is required with consideration given to embedded-
scale applications. Performance issues should not be a bar-
rier to entry to the tangible benefits of a Web Services based
approach. A focused effort to understand the limiting fac-
tors in implementation performance will ultimately result
in a broader scope for Web Service deployment and a more
robust general infrastructure.

References

[1] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A Simple
Network Management Protocol (SNMP). ftp://ftp.
rfc-editor.org/in-notes/std/std15.txt,
May 1990.

[2] M. Choi, H. Choi, and J. Hong. XML-Based Configuration
Management for IP Network Devices. IEEE Communica-
tions Magazine, 42(7), July 2004.

[3] L. Menten. Experiences in the Application of XML for De-
vice Management. IEEE Communications Magazine, 42(7),
July 2004.

[4] T. Klie and F. Strauss. Integrating SNMP Agents with XML-
Based Management Systems. IEEE Communications Mag-
azine, 42(7), July 2004.

[5] D. Harrington, R. Presuhn, and B. Wijnen. An Architecture
for Describing Simple Network Management Protocol
(SNMP) Management Frameworks. ftp://ftp.
rfc-editor.org/in-notes/std/std62.txt,
December 2002.

[6] K. Ma. Web Service-Based SNMP. Dept. of Computer Sci-
ence, University of New Hampshire, December 2004. Tech.
Rep. TR 04-02.

[7] The Ethereal website. http://www.ethereal.com.
[8] The Apache website. http://www.apache.org.
[9] A. Ertl. Linux Perfex. http://www.complang.

tuwien.ac.at/anton/linux-perfex.
[10] M. Pettersson. The Linux/x86 Performance Monitoring

Counters Driver. http://www.csd.uu.se/˜mikpe/
linux/perfctr/.

[11] R. A. van Engelen. The gSOAP Toolkit. http://www.
cs.fsu.edu/˜engelen/soap.html.

