Online Anytime Planning
For Autonomous Vehicles

Tianyi Gu
December 8, 2018
The Autonomous Vehicle Project

- Online Real-time decision-making framework
- Baseline planner
Background - The Problem
Background - The Problem
Background - The Big Picture of the Solution

PERCEPTION
DETECTION
LANE DETECTION
TRAFFIC LIGHT DETECTION & CLASSIFICATION
TRAFFIC SIGN DETECTION & CLASSIFICATION
OBJECT DETECTION & TRACKING
FREE SPACE DETECTION
LOCALIZATION

PLANNING
ROUTE PLANNING
PREDICTION
BEHAVIOR PLANNING
TRAJECTORY PLANNING

CONTROL
PID
MPC
LQR
OTHERS

SENSORS
CAMERA
RADAR
LIDAR
GPS
OTHERS

MAP

Lanes
Static
Drivable Area

Dynamic Obstacle

Goal Regions
Background - Trajectory Planning
Online Real-time Framework

1. Executive
2. Obstacle tracker
3. Planner
4. Controller
Online Real-time Framework

- **High Level Plan**
 - Goal Region
 - Desired velocity...
 - Feedback

- **Executive**
 - Feedback
 - Perception results
 - Plan at t

- **Planner**
 - Plan at $t+1$
 - Data at $t+1$

- **Controller**
 - Feedback

- **Obstacle Tracker**
 - Feedback
 - Perception results

- **Robot**
 - Command
Online Real-time Framework

High Level Plan

Obstacle Tracker

Goal Region
Desired velocity...

Perception results

Feedback

Executive

Feedback

Plan at t+1

Data at t+1

Plan at t

Controller

command

Feedback

Planner

robot
Online Real-time Framework

Robot

execute a_t

execute a_{t+1}

Planner

send state: s_{t+1}

send action: a_{t+1}

send state: s_{t+2}

send action: a_{t+2}

t

$t + 1$

$t + 2$
Executive

Get all the data

Validate the plan

Publish plan

Send Plan request to Planner
Online Lattice Based Planner
Online Lattice Based Planner

State \((x, y, \theta, \text{speed}, \text{time})\)

Control \((\text{acceleration}, \text{steering})\)

Motion \((\text{start state}, \text{end state}, \text{control})\)
Online Lattice Based Planner

Motion

Start state

control

End state
Online Lattice Based Planner

Start state

control

End state
Online Lattice Based Planner

Astar search

\[f(n) = g(n) + h(n) \]
Online Lattice Based Planner

Astar search

- $f(n) = g(n) + h(n)$
- $g(n) = g(n-1) + \text{Cost}(n-1, n)$
- $\text{Cost}(n-1, n) = T(n-1,n) + w1 \times \text{CollisionCost}$
- $\text{CollisionCost} = \text{StaticCost} + \text{DynamicCost} \times \text{CollideProbability}$
- $h(n) = \text{heuristic cost to goal}$
Online Lattice Based Planner

- Compound Heuristic
- Collision Checker
- Goal Checker
Online Lattice Based Planner

- Compound Heuristic
 - Straight path term
 - Velocity term
 - Orientation term
 - $hc = \max(hp, hv) + ho$

- Collision Checker

- Goal Checker
Online Lattice Based Planner

- Compound Heuristic
- Collision Checker
- Goal Checker
Online Lattice Based Planner

● Compound Heuristic
● Collision Checker
 ○ Static obstacles
 ○ Dynamic obstacles
● Goal Checker
Online Lattice Based Planner

- Compound Heuristic
- Collision Checker
 - Static obstacles
 - Cost 1000
 - Dynamic obstacles
- Goal Checker
Online Lattice Based Planner

- Compound Heuristic
- Collision Checker
 - Static obstacles
 - Cost 1000
 - Dynamic obstacles
 - Cost 2000
 - Cost = Cost * P(col)
 - \(P(col) = 1 - P(\overline{col}) = 1 - \prod_{i=0}^{k} \prod_{j=0}^{n} (1 - P(col)_i) \)
- Goal Checker
Online Lattice Based Planner

- Compound Heuristic
- Collision Checker
- Goal Checker
Online Lattice Based Planner

- Compound Heuristic
- Collision Checker
- Goal Checker
 - Position is inside goal region
 - Velocity is equal desired velocity
Online Lattice Based Planner

Two Level Anytime Search with Fixed Horizon

- Goal Checker
- Time Heuristic
Online Lattice Based Planner

Two Level Anytime Search with Fixed Horizon

- **Goal Checker**
 - Reward 0, if not achieve time horizon
 - Reward 1, if achieve time horizon but does not satisfy goal condition
 - Reward 1000, if achieve time horizon and satisfy goal condition

- **Time Heuristic**
Online Lattice Based Planner

Two Level Anytime Search with Fixed Horizon

- Goal Checker
- Time Heuristic
 - $ht(n) = \text{time to goal} (= \text{hops to goal})$
 - $h = (1-w^2)ht + w^2 hc, 0 \leq w \leq 1$
Demo Video

- Wait

 https://www.youtube.com/watch?v=3bs2jMOW628

- Slow down

 https://www.youtube.com/watch?v=C6MRnaQc3cE

- Get around

 https://www.youtube.com/watch?v=BVBUR7rDsoo

- Traffic light & Turn (0:41)

 https://www.youtube.com/watch?v=I3NCW1qiXck

- Dangerous solution

 https://www.youtube.com/watch?v=n7mC_P9b11w
Challenges

- Did not work at first place, hard to locate the issue
 - Build a visualizer

- Slow collision checker limit the number of look ahead of the planner (50)
 - Parallel the expansion (100)
 - Optimize code and reduce poly vertices (200)
 - Parallel intermediate state check (does not work well)
 - Approximate collision check (haven’t try)
 - Hierarchical collision check (haven’t try)

- Dangerous plan
 - Add a time window to each obstacle slide

......
Precompute lattice (chip-based)

- 1000 HZ
- Multiple policy from dynamic obstacles could be take into account
- POMDP solution
Thank you!