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Summary

e Markov Decision Processes (MDPs)

provide a powertul framework for modeling se-
quential decision problems under uncertainty:.

e Exploration of poorly understood states
and actions is important for long-term plan-
ning and optimization.

e Optimism in the face of uncertainty
(OFU) is the main driving force of explo-
ration for many RL algorithms.

e \We propose optimism in the face of sen-
sible value functions (OFVF)- a novel
data-driven Bayesian algorithm to construct-
ing Plausibility sets for exploration in MDPs.

Contribution

e OFVFE Computes policies with tighter op-

timistic estimates for exploration by intro-
ducing two new ideas:

1) It is based on Bayesian posterior distri-

butions.

2) It uses the structure of the value func-
tion to optimize the location and shape of
the plausibility set.

e We showed that, OFU algorithms can be
useful and can be competitive to stochasti-

cally optimistic algorithms like PSRL.

Problem Statement

e Finite horizon Markov Decision Process M
with states S = {1,..., S} and actions A =

,... A

®Dsq S x A — A° for state s € S and action
ae A

o R?, is reward for taking action a € A from

state s € S and reaching state s’ € S.

o A policy m = (m,...,myg_1) is a set of func-

tions mapping a state s € S to an action

a € A.

o A value function for a poliey T as:

ZP Th—l-v )]

e Plausibility Set P: set of possible transi-
tion kernels p.
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Plausibility Sets

e [1-constrained (s,a)-rectangular am-
biguity set for state s € S and actiona € A
is defined as:

Ps.a = {p c A° Hp _ps,aul < wsva}'

Note: p, , is the nominal transition proba-
bility.
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Ambiguity sets with 1, = 0.5 (left), and
Vsq = 0.15 (right).

e [;-norm bounded plausibility set is con-
structed using Hoeflding’s inequality

N . 2 S A25
wsa: {Hpsa_psa‘ll < \/ 10?; }
s q 0

e Bayesian plausibility sets are optimized for the

smallest credible region around the mean tran-
sition

gﬁ{w P [||ps.a —

OFVF

e Optimistic algorithms solve an optimistic ver-
sion of Bellman update:

Vi (s,a) := max Zp;(,s) i, + V()]

e OFVF uses samples from a posterior distribu-

tion and computes an optimal plausibility set

for a singleton V as:

g = max {k - Pplk<o'pl] > 1— 5/(SA)}

efkor V = {v,vo,..., v}, OFVF solves the
following linear program:

¢S,a — min{zmax HQZ le : U;I_Qi — g;:

=1

,...7

e OFVE constructs the plausibility set to mini-

mize its radius while still intersecting the hy-
perplane for each v in V.
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Plausibility sets constructed with Bayesian

and OFVFE.
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Empirical Evaluation

e We evaluate the performance in terms of
worst-case cumulative regret incurred by the

agent upto time 1" for a policy 77"
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e We compare OFVE with BayeSUCRL and
OFVE.
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(a) Worst-case cumulative regret for Single state problem
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(b) Worst-case cumulative regret for RiverSwim Problem

Conclusion

Empirical results demonstrate that: OFVE

outperforms other OFU algorithms like UCRL
1|. Rectangularity assumption of OFVF leads

to over optimism and PSRL [2| can stand out
with the advantage of not having that.
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