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Abstract— Recent advances in sampling-based motion plan-
ning have exploited concepts similar to those used in the
heuristic graph search community, such as computing heuristic
cost-to-go estimates and using state-space abstractions to derive
them. Following this trend, we explore how the concept of
search effort can be exploited to find plans quickly. Most
previous work in motion planning attempts to find plans quickly
by preferring states with low cost-to-go. Recent work in graph
search suggests that following search effort-to-go estimates can
yield faster planning. In this paper, we demonstrate how this
idea can be adapted to the context of kinodynamic motion
planning. Our planner, BEAST, uses estimates of effort that are
learned on-line to guide the expansion of a motion tree toward
states through which a plan is estimated to be easy to find.
We present results with four different simulated vehicles (car,
hovercraft, blimp and quadrotor) in six different environments
indicating that BEAST is able to find solutions much more
quickly and has a higher success rate than previous methods.
We see this work as further strengthening the algorithmic
connections between motion planning and heuristic graph
search.

I. INTRODUCTION

We address the problem of single-query kinodynamic mo-

tion planning: given a start state, description of the obstacles

in the workspace, and a goal region, find a dynamically

feasible continuous trajectory (a sequence of piece-wise

constant controls) that takes the robot from the start state

to the goal region without intersecting obstacles [1], [2]. We

work within the framework of motion trees, popularized by

sampling-based motion planning, in which the planner grows

a tree of feasible motions from the start state, attempting

to reach the goal state. This approach is appealing because

it applies to any vehicle that can be forward simulated,

allowing the planner to respect realistic constraints such

as acceleration limits. Examples of algorithms taking this

approach include RRT [3], KPIECE [4], and P-PRM [5].

Although the figure of merit on which these algorithms

are usually compared is the time taken to find a (complete

and feasible) solution, close examination of these algorithms

reveals that their search strategies are not explicitly designed

to optimize that measure. For example, RRT uses sampling

with a Voronoi bias to encourage rapidly covering the

entire state space. KPIECE uses more sophisticated coverage

estimates to achieve the same end. Focusing on regions of

the state space with low motion tree coverage helps to grow

the tree outward, but is not focused on reaching the goal.

Coverage promotes probabilistic completeness but not nec-

essarily finding a solution quickly. Finding solutions quickly
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allows a robot to appear responsive in applications involving

human interaction, and is also a crucial first ingredient for

designing an anytime motion planner.

In artificial intelligence, a central principle for exploring

large state spaces is to exploit heuristic information to focus

problem-solving in promising regions. The A* heuristic

graph search algorithm [6] serves as the central paradigm.

In motion planning, the P-PRM algorithm exploits heuristic

cost-to-go information to guide growth of its motion tree,

with the aim of finding solutions faster than unguided meth-

ods. While focusing on low cost regions directs sampling

toward the goal, it ignores the effort that can be required for a

motion planner to thread a trajectory through a cluttered area.

In this way, cost-to-go estimates can encourage the search to

focus on challenging portions of the state space, slowing the

search. Fundamentally, optimizing solution cost is not the

same as optimizing planning effort.

Recent work in heuristic graph search has recognized the

separate roles of cost and effort estimates in guiding search,

particularly when solutions are desired quickly [7], [8]. In

this paper, we show how to exploit that idea in the context

of motion planning. We propose an algorithm, Bayesian

Effort-Aided Search Trees (BEAST), that biases tree growth

through regions in the state space believed to be easy to

traverse. If motion propagation does not go as anticipated,

effort estimates are updated online based on the planner’s

experience and used to redirect planning effort to more

fruitful parts of the state space. We implement this method in

the Open Motion Planning Library (OMPL) [9] and evaluate

it with four different simulated vehicles (car, hovercraft,

blimp and quadrotor) in six varied environments. The results

suggest that BEAST successfully uses effort estimates to

efficiently allocate planning effort: it finds solutions much

faster than RRT, KPIECE, and P-PRM. Although the method

ignores solution cost, we find that its trajectories still result

in competitive goal achievement times. We see this work as

a further demonstration of how ideas from heuristic graph

search can be useful in sampling-based motion planning.

II. PREVIOUS WORK

There has been much previous work on biases for

sampling-based motion planners. The two most prominent

types in the recent literature have been to bias toward less

explored portions of the state space or to bias exploration

toward regions of the state space believed to contain low

cost solutions. We focus on one leading algorithm of each

type.



A. KPIECE

Kinodynamic Planning by Interior-Exterior Cell Explo-

ration, or KPIECE [4], uses a multi-level projection of the

state space to estimate coverage in the state space. It then

uses these coverage estimates to reason about portions of the

state space to explore next. Expansive Space Trees (EST)

[10] and Path-Directed Subdivision Tree (PDST) [11] also

focus on less explored portions of the state space but have

been shown to be outperformed by KPIECE. The general all-

around good performance of KPIECE has led to its selection

as the default motion planner in OMPL.

KPIECE is focused on quickly covering as much of the

state space as possible. It always gives priority to less

covered areas of the state space. When an area of low

coverage is discovered, it attempts to extend the motion tree

into that area. It uses a coarse resolution initially to find

out roughly which area is less explored. Within this area,

finer resolutions can then be employed to more accurately

detect less explored areas. While RRT and KPIECE are

often the reliable workhorses of motion planning, the success

of heuristically-informed graph search algorithms such as

A* in artificial intelligence would suggest that brute-force

expansion into all unexplored regions of the state space (in a

manner analogous to Dijkstra’s algorithm) is not an optimal

strategy. Exploring unvisited areas of the state space may

not always be the fastest approach to finding the goal. For

example, targeting exploration toward the goal could help

improve performance.

B. P-PRM

P-PRM [5] is based on ideas from an earlier planner called

Synergistic Combination of Layers of Planning (SyCLoP)

[13]. They share the intuition that information from a discrete

abstraction of the workspace can be used to bias exploration

toward the goal. SyCLoP demonstrated significant speed-ups

over unguided planners, and now the more recent P-PRM

method has been shown to outperform SyCLoP.

P-PRM constructs its abstraction by using the geometric

subspace of the state space to build a Probabilistic Roadmap

(PRM) [14]. To distinguish between the concrete state space

and the abstraction, we will reserve the terms state and

motion for the concrete space and its motion tree, and vertex

and edge for the abstract space and its PRM graph. P-

PRM samples random vertices in the subspace, then connects

each vertex to its nearest neighbors via an edge, forming a

graph. The edges in the graph are collision checked (using

geometric information only, no dynamics) and removed if a

collision is found. The vertices implicitly induce a division

of the state space into abstract regions, by associating any

concrete state with the nearest abstract vertex. The edges

summarize the connectivity of the regions. P-PRM runs a

Dijkstra search [15] out from the vertex representing the

abstract region containing the concrete goal to compute

heuristic estimates of cost to the goal (h(v) values). It then

uses these heuristic values, and the associated shortest paths

from the goal to each abstract node, to bias sampling.

P-PRM organizes its sampling by maintaining a queue of

abstract vertices in the graph sorted by increasing scores

(initially their h values, see [5] for details). At each search

iteration the abstract vertex vs with the lowest score is

selected. An abstract vertex vt along the cheapest path to the

goal vertex rooted at vs is chosen. This vertex is then used

to create a random concrete state within some pre-specified

sampling radius from vt. This is now the ‘target’ state used

for growing the motion tree, similarly to when plain RRT

chooses a state uniformly at random. That means the nearest

concrete state in the region represented by abstract vertex

vs is chosen as the root for the new propagation which

is steered, if possible, toward the random state.1 Any new

abstract regions touched by the propagation attempt have

their vertices added to the queue if not previously enqueued.

P-PRM tries to pursue the completion of low cost paths by

following its heuristic estimates in the abstract space. It tries

to avoid getting stuck during planning by penalizing the score

of abstract vertices when they are examined.

C. Speedy Search

Among single-query motion planners that don’t require

analytical steering functions or boundary-value-problem

solvers, P-PRM has been shown to provide state of the art

performance by exploiting heuristic cost-to-go guidance. Yet

recent results in the heuristic graph search community show

that exploring the state space based on cost often does not

give the best speedup. In the context of discrete graphs,

Greedy search, which focuses on nodes with low heuristic

cost-to-goal, is often surpassed by ‘Speedy search,’ which

focuses on nodes with a low estimated number of hops (or

graphs edges) to the goal [7], [16]. In this paper, we present

an adaptation of this idea to motion planning, in which

the state and action spaces are continuous and there is no

predefined graph structure.

III. EXPLOITING EFFORT ESTIMATES

While there is not a direct translation of the ‘number of

graph edges to the goal’ concept in a continuous space, there

is still a notion of search effort. In heuristic graph search, the

fewer node expansions needed to find the goal, the quicker

a solution is found. In sampling-based motion planning, the

unit of measure is the number of samples, or propagation

attempts in the motion tree. Each forward propagation of

the system state requires simulation and collision checking,

which are computationally expensive. The fewer propagation

attempts made before finding the goal, the faster a solution

is found (assuming reasonable iteration overhead).

A. Overview

Bayesian Effort-Aided Search Trees (BEAST) is a novel

method that tries to find solutions as quickly as possible by

constructing solutions which it estimates require the least

1In our experiments, we choose the nearest state in the existing motion
tree, regardless of the abstract region, as the root for the new propagation.
This implementation performed better than the original in our preliminary
experiments.



Fig. 1. Sampling (green dots) and tree growth (red arcs) for P-PRM (left)
and BEAST (right) for a quadrotor vehicle in a 3D forest map.

effort to build. Building a motion tree will vary in difficulty

across different regions of the workspace. Recognizing this,

BEAST reasons about effort using a discrete abstraction of

the state space, in the form of a directed graph of regions.

As it grows the motion tree, it maintains for each edge in

the graph an estimate of the effort that would be required to

propagate concrete states from the region represented by the

source vertex into the region represented by the destination

vertex. At each iteration, it allocates its effort to grow the

tree through the region of the state space that is estimated

to require the least total effort (propagation attempts) before

the motion tree reaches the abstract goal region. Figure 1

illustrates the behavior of BEAST in a forest map. In the

left panel, P-PRM generates samples (green dots) along

low-cost abstract paths to the goal, but it is challenging

to grow the motion tree (red lines) toward them. In the

right panel, after the same number of propagation attempts,

BEAST has learned that it is difficult to propagate the motion

tree downward and has focused on areas of the state space

that it believes will be easy to traverse and hence it reaches

the goal much faster.

In the experiments reported below, BEAST used a PRM

workspace abstraction very similar to the one used by P-

PRM. We begin by identifying the geometric component of

the state space (such as position and orientation). We gen-

erate states uniformly at random in the abstract space (1000

in the experiments below). Neighboring abstract vertices (the

five nearest in the experiments below) are connected by edges

and collision checked, forming a directed graph. We check

if the abstract start and goal vertices are in the same graph

component, and generate additional samples until they are.

For each directed edge e, BEAST maintains an effort

estimate, ee(e), of how many propagation attempts would

be required on average to take a concrete state contained

in the abstract region represented by the source vertex of

the edge to a concrete state contained in the abstract region

represented by the end vertex. These estimates are initialized

by a geometric collision check along the abstract edge itself.

However, BEAST explicitly acknowledges that this quick

check in geometric space is only a rough approximation

of a robot’s ability to steer from one region to the other.

Fig. 2. An example of different types of edges reasoned about by BEAST.

Rather than discarding edges, we represent our uncertain

belief about each edge e in a Bayesian style: we regard a

propagation attempt as sampling a Bernoulli variable and

we maintain a beta distribution with parameters α(e), β(e)
over its success probability. The initial geometric collision

check provides some evidence about this probability, and

then each time we attempt to propagate from one region to

the other during planning, we acquire additional evidence. In

the experiments reported below, an edge e with a detected

collision is initialized to α(e) = 1, β(e) = 10, and all other

edges are initialized to α = 10, β = 1. Successful attempts

increase α by one and unsuccessful attempts increase β
by one. Based on our belief, we estimate the number of

propagation attempts that will be necessary in order to have

a successful one as ee(e) = (α(e) + β(e))/α(e).

BEAST uses the abstract graph as a metareasoning tool to

decide where it should spend its time growing the motion

tree. We consider propagating from abstract regions already

touched by the motion tree. Each edge from the corre-

sponding vertex in the abstract graph represents a possible

propagation attempt to a neighboring region. (This differs

from P-PRM, for example, in which target samples can be

far from the existing tree.) We compute, for each directed

edge e, the expected total effort te(e) required to reach

the abstract goal if we start propagating a state from its

start region through its end region and onward to the goal.

(This also differs from P-PRM, in which regions’ costs are

updated individually without recomputing total path costs.)

For ‘exterior’ edges, whose start region has not yet had a

successful propagation into its destination region, computing

te(e) is straightforward: the effort to cross that edge plus the

total effort-to-goal from the destination vertex. An illustra-

tion is given in Figure 2, in which a robot is planning a path

from the smiley face in region A to the star in region G (a

grid-based abstraction is used in this cartoon for simplicity).

The solid black rectangular shape is an obstacle. Exterior

edges are drawn in blue ( ~BC, ~BI, ~HI, ~HJ) and the current

motion tree is shown in black. For example, the te( ~BC) is

the estimated effort of ~BC plus the estimated efforts of the

green edges leading to the goal ( ~CD, ~DE, ~EF, ~FG). More

formally: if, for every vertex in the abstract graph, we let

te(v) be the minimum over its outgoing edges e of te(e),
then te(e) = ee(e) + te(e.dest).



‘Interior’ edges are more complex and are drawn in red

in the figure ( ~AB, ~AH). Unless the goal region has been

reached, any interior edge will lead to an exterior edge that

has a lower total effort estimate, so such edges may not

appear to be useful for propagation. If treated naively, the

algorithm would never create additional states in previously-

visited regions. However, recall that our state space abstrac-

tion might be very rough, and not all concrete states falling in

the same abstract region are necessarily equivalent. We may

well want to propagate along an interior edge in order to add

additional states to the destination region, in the hopes that

this will increase the probability of being able to propagate

onward from there. An example of this in Figure 2 is ~AH .

Propagating along that edge would likely benefit ~HJ , as

the motions currently in the tree lead into an obstacle and

may be hard to propagate further, yet there is additional

unexplored space at the left side of region H from which

further propagation could reach region J and hence the goal.

We model this in a principled way by assuming that adding

an additional state in the destination region will raise its α by

1/n, where n is the number of states already in the region.

(We want this bonus to depend inversely on the number

of existing states, to reflect the decreasing marginal utility

of each additional state.) So for an interior edge e with

a destination vertex d that contains n states in its abstract

region, where d.out represents the outgoing edges from d,

te(e) = ee(e) + min
e2∈d.out

e2.α+ 1/n+ e2.β

e2.α+ 1/n
+ te(e2.dest).

This explicitly takes into account the possible benefits ac-

crued by interior sampling: increasing the success of future

propagations.

B. Details

Pseudocode for BEAST is presented in Figure 3. The algo-

rithm is passed an abstraction of the workspace, a concrete

start state and a concrete goal state (or region). BEAST first

begins by propagating effort estimates through the abstract

graph outward from the region containing the concrete goal

state (line 3). For efficiency, the collision checking and beta

distribution initialization can be done lazily.

If effort estimates were static, a single pass of Dijkstra’s

algorithm would suffice to compute te values. In our case,

edge effort estimates change over time, so we use an incre-

mental best-first search inspired by D* Lite [17] to avoid

replanning from scratch. D* Lite updates cost values from a

vertex to vertices that appear relevant to an optimal path; in

our case we are using effort-to-go (te) values and considering

all vertices in the graph. (D*lite also handles a moving agent,

which is not relevant in our situation.) While propagating

effort at each vertex, we also store an effort estimate at each

edge (the ee values).

BEAST uses the abstract graph to prioritize regions of

state space for motion propagation. Specifically, it considers

which edge in the abstract graph represent the best way to

attempt to grow the motion tree. The edges represent work

that can be done, and BEAST maintains a binary min-heap

BEAST(Abstraction, Start,Goal)
1. AbstractStart = Abstraction.Map(Start)

2. AbstractGoal = Abstraction.Map(Goal)

3. Abstraction.PropagateEffortEstimates()

4. Open.Push(AbstractStart.GetOutgoingEdges())

5. While NotFoundGoal

6. Edge = Open.Top()

7. StartState = Edge.Start.Sample()

8. EndState = Edge.End.Sample()

9. ResultState = Steer(StartState, EndState)

// Or Propagate With Random Control

10. Success = Edge.End.Contains(ResultState)

11. If Success

12. Edge.UpdateWithSuccessfulPropagation()

13. Open.Push(Edge.End.GetOutgoingEdges())

14. If Edge.End == AbstractGoal

15. Open.Push(GoalEdge)

// Goal Region To Goal State

16. Else

17. Edge.UpdateWithFailedPropagation()

18. Abstraction.PropagateEffortEstimates()

Fig. 3. High-level pseudocode for the BEAST algorithm.

called Open , representing the edges whose source regions

have been touched by the motion tree. In this way, BEAST

differs from traditional discrete graph search algorithms in

that it does not consider vertices to explore, but rather edges.

Open is initialized with outgoing edges from the abstract

region containing the concrete start state (line 4), and is kept

sorted in increasing order of total estimated effort (te). In

each iteration, BEAST checks Open for the edge with the

lowest estimated effort (line 6). We then choose an existing

concrete state in the edge’s source region to propagate from

(line 7). In our implementation, the concrete state in the

edge’s start region that has been selected the fewest number

of times is chosen as the StartState. A new concrete target

end state is generated from the edge’s abstract end region

uniformly at random within some radius centered around

the region’s centroid (line 8). Finally, an attempt is made to

grow the tree from StartState to EndState using a steering

function (line 9). In our implementation, if no steering

function was available in OMPL, we instead generated 10

random controls, applied each to StartState and the resulting

motion that got closest to EndState was chosen.2

If the newly propagated motion at any point entered the

target abstract region (the selected edge’s end region), the

edge is updated with a successful trial (line 10-12). This

simply adds one to the α value of the beta distribution

associated with this edge. If the target region was not

reached, the β value is incremented (line 17). Each time we

attempt to propagate between adjacent regions, we update

our belief about the effort required to reach the goal by using

2This functionality was implemented at the control sampler level in
OMPL for each vehicle so any algorithm using ‘sampleTo’ provided by
the vehicle control sampler received equal benefit.



the corresponding abstract edge. This effectively changes the

edge cost in the abstract graph and we then incrementally

update the effort estimates throughout the graph based on

this local update (line 18). If the edge was successfully

propagated along, we also add its child edges (outgoing

edges from its end region) to the Open list, or update them

if they are already present (line 13).

The goal region is handled specially (line 14). When it

is reached, a special GoalEdge is added to Open (line 15)

that, when expanded, will return a StartState from the goal

region and an EndState focused around the actual concrete

goal state. This promotes reaching the goal, even when the

abstract goal region itself is large. One can view this edge

as representing the choice to take a goal-biased sample in a

traditional RRT.

C. Behavior of BEAST

BEAST is essentially a biasing technique for sampling-

based motion planning. By reserving a fixed percentage of

samples to be taken uniformly at random, BEAST can inherit

the probabilistic completeness guarantee of the motion plan-

ning framework it is embedded in. BEAST’s utility hinges on

its abstraction capturing useful generalizations about the state

space. For example, if the abstraction correctly approximates

the geometric subspace of obstacle-free configuration space

and dynamics are not important, one can expect BEAST

to grow the motion tree directly to the goal. However, if

the abstraction misses important aspects of the problem, for

example if certain dynamics are crucial to a solution, then

BEAST may not provide much speed-up. If the necessary

dynamics are anticorrelated with geometric distance to the

goal, and the abstraction is only based on geometry, then

abstraction-guided methods like P-PRM and BEAST may

even yield a slowdown. However, the on-line learning per-

formed by BEAST does give it a certain robustness: if a

given abstract edge is difficult to propagate along, it will

eventually try a different route. On very simple problems,

the overhead of forming and maintaining the abstraction may

not be worth the possible decrease in state propagations and

collision checking. And, of course, BEAST ignores solution

cost, focusing entirely on trying to construct a trajectory as

quickly as possible. In open spaces, minimizing the number

of propagations will have the side-effect of minimizing

trajectory length, but in cluttered spaces these metrics may

be antagonistic.

IV. EXPERIMENTS

Given that BEAST is fundamentally heuristic, it is cru-

cial to test its performance experimentally on a variety of

vehicles and environments. Note that we are focusing on

the kinodynamic motion planning problem, hence we focus

on comparing to OMPL’s control-based planners. We used

implementations of KPIECE and RRT from OMPL, and we

implemented P-PRM closely following the description and

pseudo-code in the paper. We used OMPL’s implementation

of car, blimp and quadrotor vehicles, as detailed below, and

we implemented a hovercraft in OMPL following [18]. We

also used the 3 ladder, single wall, 2D forest, 3D forest, and

fifthelement environments from OMPL (Figure 4). No path

smoothing or other post-processing was done.

A. Setup

A simple mesh (Figure 4 panel a) was used for both the car

and the hovercraft. The equations defining the car’s motion

and control inputs in OMPL are:

ẋ = v · cos(θ), v̇ = u0,

ẏ = v · sin(θ), φ̇ = u1,

θ̇ =
v ·M

L
· tan(φ)

where v is the speed, φ the steering angle, the controls

(u0, u1) control their rate of change, M is the mass of the

car (set to 1), and L is the distance between the front and

rear axle of the car (also set to 1)

The equations defining the hovercraft’s motion and control

inputs from [18] are:

ẋ =
F

M
cos(θ)−

Bt

M
x,

ẏ =
F

M
sin(θ)−

Bt

M
y,

θ̇ =
τ

0.5 ·M · R2
−

Br

M
· θ

where F is the force exerted by the thrusters and τ is

the torque exerted by the thrusters. Bt and Br are the

translational and rotational friction coefficients (both set to

0). M is the mass of the robot and R is the radius of the

robot (both set to 1).

The mesh used for the blimp vehicle is shown in Figure 4

panel (f). The equations defining the blimp’s motion and

control inputs in OMPL are:

ẍ = uf · cos(θ), z̈ = uz,

ÿ = uf · sin(θ), θ̈ = uθ

where (x, y, z) is the position, θ the heading, and the controls

(uf , uz, uθ) control their rate of change.

The mesh used for the Quadrotor vehicle is shown in

Figure 4 panel (g). The equations defining the quadrotor’s

motion and control inputs in OMPL are:

Mp̈ = −u0 · n− β · ṗ−M · g,

α = (u1, u2, u3)
T ,

where p is the position, n is the Z-axis of the body frame

in world coordinates, α is the angular acceleration, M is

the mass, and β is a damping coefficient. The system is

controlled through u = (u0, u1, u2, u3).
For the car, the goal radius was set to 0.1; the others

used a goal radius of 1. The goal distance of a state was

based only on the distance in the XY or XYZ dimensions.

Other parameters that were used included a propagation step

value of 0.05, min and max control durations of 1 and 100

respectively, and intermediate states were included during

planning. The workspace was bounded by −30 ≤ x ≤ 30,



(a) car and hovercraft (b) open area (c) 3 ladder (d) single wall (e) 2D forest

(f) blimp (g) quadrotor (h) 3D forest (i) fifthelement

Fig. 4. The benchmark vehicles and environments. Top row: ground vehicles and 2D worlds. Bottom row: flying vehicles and 3D worlds.

−30 ≤ y ≤ 30 and −5 ≤ z ≤ 5. KPIECE and RRT were run

using their default parameters. P-PRM was also run using its

suggested parameters described in the paper. The state radius

size for sampling was shared between P-PRM and BEAST.

This value was set to 6, which gave good visible coverage

over the abstract regions and the best performance in initial

experiments over those state radii tried (2,4,6).

The environment meshes used for the ground vehicle

experiments are presented in Figure 4 panels b–e and those

used for flying vehicles in panels h and i. The open area

(panel b) yields simple problems and was selected to test

whether the ability to grow the motion tree directly to-

ward the goal outweighs the overhead of maintaining an

abstraction. The 2D 3 ladder (panel c) and 3D fifthelement

environments (panel i) were selected to test the planner’s

ability to find complex paths, while the single wall (panel

d) was selected to test the planner’s ability to cope with

narrow passages. The 2D and 3D forests (panels e and h)

contain short hard-to-find solutions and longer easier-to-find

solutions, aiming to test the ability of the planners to deal

with clutter. The wide diversity of planning time/solution

cost trade-offs directly tests the ability of BEAST to estimate

planning effort and adjust its behavior accordingly.

All experiments were performed using a 3.16 GHz Intel

E8500 CPU with 8GB RAM. For each environment, five

start/goal pairs were used, and for each pair 50 different

random seed values were used, yielding 250 runs for each

vehicle/world combination. Start and goal states were chosen

to yield non-trivial problems. In Figure 4, a triangle marks

the approximate location of the start states and a star does

the same for the goal. For example, in the forest domain,

the start states were biased toward the upper center of the

workspace while the goals were biased toward the lower

center, generating problems in which the optimal solution

threads its way carefully between the obstacles, but it is

much easier to take a more costly route around the obstacles.

As our focus is on solving problems quickly, we stop each

experiment after the first solution is found.

map vehicle P-PRM KPIECE RRT

open area
car 1.1–1.9 18–35 3.2–5.8

hover. 0.7–1.1 3.2–6.9 5.9–10

single wall
car 4.9–6.3 6.2–9.1 6.2–8.1

hover. 9.2–11 2.1–3.7 11–13

3 ladder
car 2.9–3.4 2.4–4.6 5.0–6.3

hover. 8.7–10 1.3–1.7 9.1–10

2D forest
car 1.1–1.6 100–131 21–38

hover. 1.0–1.8 9.4–16 17–25

3D forest
quad. 1.0–1.3 0.5–0.8 7.1–10

blimp 2.5–3.3 60–75 28–43

fifthelement
quad. 1.0–1.2 3.8–4.9 4.6–6.1

blimp 1.2–1.7 32–44 5.1– 21

Fig. 6. 95% confidence intervals for the median planning time, as a factor
of BEAST’s. Gray background indicates a lower bound.

B. Results

The first metric we examine is the planners’ ability to

solve our benchmark problems in a timely way. Figure 5

shows the fraction of solved problems for each algorithm in

each vehicle/map combination. To give a sense of planner

behavior, the table shows results with both a 60 second and

300 second CPU time limit. BEAST solves most problems

within 60 seconds and still surpasses the other algorithms at

300 seconds, with the exception of the car in the 3 ladder

environment, where P-PRM solves 2% more instances. In

contrast, P-PRM, KPIECE, and RRT each have certain

vehicle/world combinations where they struggle to solve even

half of the problems.

To characterize the speed of BEAST, Figure 6 gives 95%

confidence intervals on the median slowdown of the other

planners relative to BEAST. In other words, a value of 1.9

means that the algorithm took 1.9 times as long as BEAST

to find a complete and feasible solution. For cases in which

a planner did not find a solution within 300 seconds, we

count the instance as solved at the time limit (300 seconds),

yielding a lower bound on the true slowdown. Table cells

where this approximation was used are shaded gray. The



map vehicle
60 secs 300 secs

BEAST P-PRM KPIECE RRT BEAST P-PRM KPIECE RRT

open area
car 1 1 0.708 0.980 1 1 1 1

hover. 1 1 0.880 0.872 1 1 1 1

single wall
car 0.996 0.544 0.448 0.416 1 1 0.908 0.908

hover. 0.844 0.032 0.420 0 0.984 0.404 0.964 0.136

3 ladder
car 0.980 0.780 0.568 0.432 0.980 1 0.928 0.976

hover. 0.920 0 0.636 0 1 0.164 0.960 0.012

2D forest
car 1 1 0.192 0.524 1 1 0.436 0.844

hover. 0.904 0.819 0.225 0.080 0.992 0.972 0.550 0.313

3D forest
quad. 1 1 0.996 0.924 1 1 1 0.996

blimp 0.992 0.864 0.032 0.160 1 0.992 0.088 0.676

fifthelement
quad. 1 1 1 0.976 1 1 1 1

blimp 0.996 0.920 0.156 0.480 1 1 0.276 0.592

Fig. 5. Fraction of instances solved in each environment (5 start/goal pairs and 50 seeds = 250 instances each).

map vehicle P-PRM KPIECE RRT

open area
car 1.0–1.1 1.8–2.3 1.0–1.2

hover. 1.0–1.1 1.6–1.9 1.4–1.8

single wall
car 1.0–1.1 1.2–1.4 1.0–1.1

hover. ∞–∞ 1.1–1.3 ∞–∞

3 ladder
car 1.0–1.1 1.2–1.3 1.1–1.2

hover. ∞–∞ 1.0–1.1 ∞–∞

2D forest
car 0.9–1.1 ∞–∞ 1.4–1.8

hover. 0.8–0.9 2.8–∞ ∞–∞

3D forest
quad. 0.9–1.0 1.0–1.2 1.1–1.4

blimp 1.0–1.1 ∞–∞ 1.9–2.4

fifthelement
quad. 0.8–1.0 0.9–1.0 1.3–1.6

blimp 0.9–0.9 ∞–∞ 1.0–1.3

Fig. 7. 95% confidence intervals for the median goal achievement time,
as a factor of BEAST’s.

mean slowdown factors ranging from 0.5–0.8 (KPIECE for

quadrotor in 3D forest) to at least 100–131 (KPIECE for

car in 2D forest). While the slowdowns vary by vehicle and

environment, it is clear that overall BEAST is significantly

faster than the other algorithms, often by large factors.

KPIECE for the quadrotor in the 3D forest has a low

median planning time, but its mean slowdown is 1.8–5.2,

indicating that for harder problems it is much slower than

BEAST. BEAST’s search guidance outweighs the overhead

of maintaining its abstraction, yielding high performance

in both simple problems (open area) and complex ones

(3 ladder, fifthelement). Interestingly, its advantage over its

nearest competitor (P-PRM) persists even in non-cluttered

environments such as open area and single wall.

While these results indicate that BEAST successfully meets

its design goal of fast solution generation, it is natural

to wonder about the quality of the generated trajectories,

since BEAST ignores trajectory cost. To assess this trade-

off, we calculated for each generated trajectory the ‘goal

achievement time,’ that is, the planning time plus the time

required to execute the trajectory. Figure 7 shows 95%

confidence intervals on the median goal achievement time,

relative to BEAST. For unsolved instances, we take the goal

achievement time as infinite. The table indicates that the goal

achievement time of BEAST is similar to P-PRM’s, and better

than KPIECE’s and RRT’s. This is encouraging, as BEAST

finds trajectories faster and thus allows increased system

responsiveness but apparently at no cost to the ultimate goal

achievement time.

Additional experimental results are available in [19].

V. DISCUSSION

One of the major benefits of BEAST is that it explicitly

focuses on areas of the state space that it believes will be

easy to traverse in order to reach the goal. KPIECE will

eventually explore the same regions of the state space but

does so without focusing on paths toward the goal. P-PRM

focuses on low-cost paths leading to the goal, which can be

difficult to find (as in Figure 1). Another feature of BEAST

that helps it construct its tree more efficiently is that it

focuses its tree growth either internal to the existing tree

or directly along the fringe of the existing tree. This focus

on the boundary of the motion tree is very similar to that

of KPIECE, yet the two methods allocate their exploration

effort very differently. P-PRM does not focus its sampling

near the existing tree and can generate samples arbitrarily far

away, which are less helpful when growing the tree through

tight spaces such as 3 ladder.

There are other motion planners besides P-PRM that lever-

age heuristic cost-to-go. Informed RRT* [20] uses ellipsoidal

pruning regions to ignore areas of the state space that are

guaranteed not to include a better solution than one already

found. This is irrelevant for our purposes here, in which

we aim to find a single solution quickly. BIT* [21] uses

heuristic cost estimates directly in its search strategy, but for

kinodynamic planning it requires a boundary value problem

solver to rewire trajectories between sampled states [22],

making it inapplicable to many problems.

Learning heuristic guidance during search has been pre-

viously proposed in both discrete graph search [23] and in

motion planning. RSPP [24] uses previous planning episodes

to learn heuristics. Adaptive RRT [25] chooses different

tree growth strategies based on gained information. SEHS



[26] builds a heuristic emphasizing clearance. STRIDE [27]

estimates the sampling density of the configuration space so

as to avoid growing the motion tree into unpromising areas.

In [28], productive controls to apply to grow the motion

tree are learned on-line. Resampl [29] learns characteristics

of the configuration space (for geometric planning) on-line

to speed up subsequent queries. In contrast to this previous

work, BEAST focuses on effort-to-go estimates, rather than

coverage or cost-to-go, and learns while solving a single

instance.

The idea of estimating probabilities over a graph to mini-

mize solving time also appears in POMP [30], although they

estimate collision probabilities along the edges of a PRM,

rather than propagation success between regions.

While BEAST was designed as a motion planner, it might

be useful for heuristically testing feasibility of motion plan-

ning problem instances [31]. In that scenario, solution cost

is not just secondary, but irrelevant.

Finding solutions quickly is an important feature in many

applications requiring responsiveness, but eventual conver-

gence to an optimal cost solution is also desirable. We believe

that BEAST can be an important starting step in an anytime

kinodynamic motion planner that quickly finds a feasible

solution and then spends its remaining planning time finding

improved solutions.

VI. CONCLUSION

We presented a new motion planning approach called

Bayesian Effort-Aided Search Trees. BEAST maintains and

exploits on-line estimates of propagation effort through the

state space to find solutions quickly. Results with a variety

of vehicles and environments showed that BEAST found

solutions much more quickly than other leading single-

query kinodynamic motion planners. We see this work as

reinforcing the current trend toward exploiting ideas from

AI graph search in the context of robot motion planning, and

providing further evidence that searching under time pressure

is a distinct activity from searching for low-cost solutions.
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