
An Effort Bias and Cost Pruning for Anytime Sampling-based Motion Planning

Tianyi Gu

Department of Computer Science
University of New Hampshire

Durham, NH 03824 USA

Abstract

We present a new anytime motion planning approach
called B-SST. B-SST first runs BEAST, an effort-aided
planner, to find a first solution as quickly as possi-
ble, then switch to another motion tree growth process
called SST-with-cost-pruning, which adopt both idea
from SST and cost pruning algorithms. We first intro-
duce several related work that we build upon. Then B-
SST is described in detail. Results with a variety of ve-
hicles and environments showed that B-SST is compet-
itive compared to A-BEAST and other successful any-
time planners. We also discussed a more sophisticated
idea on how to create a better anytime motion planner
in the end.

Introduction
Given a robot with a description of its dynamics, a descrip-
tion of the obstacles in the workspace, motion planning is the
problem of taking that robot from a starting state to a goal
region without intersecting obstacles. Recent advances in
sampling-based optimal motion planning build on decades
of work in the topic of feasible motion planning, in which
costs are ignored. However, solutions from these methods
can be unnecessarily long due to the sampling process. As
robots become more mobile, it is important to find not only
a feasible plan but also improved ones when there is enough
computational time. The strategy most planners take in this
situation is to find a solution as quickly as possible and im-
prove that solution as time permits.

Recently, an algorithm called Bayesian Effort-Aided
Search Trees (BEAST) (Kiesel and Ruml 2016), is devel-
oped in UNH, which biases tree growth through regions in
the state space believed to be easy to traverse. Beast is shown
that it can find solutions fast than other planners. An any-
time beast algorithm A-BEAST (Kiesel 2016) is built upon
beast but it is really complicate and also performs not good
enough compared to existing anytime motion planning algo-
rithms. In this project, we simplify current A-BEAST algo-
rithm and invent a new algorithm called B-SST, which rely
on beast to find the first solution and then improve the cur-
rent solution by the idea of a general cost pruning algorithm
(Hauser and Zhou 2015) and SST (Li, Littlefield, and Bekris
2015). We will introduce these related algorithms in the next
section and present our work in section 3.

Experiments with 4 type of vehicles including kinematic
car, dynamic car, hovercraft, and quadrotor operating in 5
environments including 3-ladder, parking lot, intersection,
single wall, and forest demonstrate the efficiency of B-SST.
Results show that B-SST is competitive compared to A-
BEAST and other successful anytime planners.

Related Work
There has been much related work on sampling-based mo-
tion planning. Some of them are focusing on feasibility,
meaning trying to find a feasible solution, while other of
them are working on optimality, meaning trying to find a
optimal solution. Since our work is built on both of this two
type of algorithms, we introduce several leading algorithms
of each type.

RRT
Rapidly-exploring random tree (RRT)(LaValle and Kuffner
2001) is the ancestor for all sampling-based motion plan-
ning algorithms. It grows a motion tree rooted at the starting
point by using random samples from the whole work space.
When the tree touch the goal region, it then can reconstruct
the motion trajectory. With uniform sampling of the search
space, the tree may eventfully fill up the whole area which is
not a efficient strategy. So there are many researches work-
ing on helping RRT focus on useful exploration by increas-
ing the probability of sampling states from a specific area,
e.g., KPIECE(Şucan and Kavraki 2009) and P-PRM(Le and
Plaku 2014).

P-PRM
P-PRM(Le and Plaku 2014) combines sampling-based mo-
tion planning in the state space with discrete search over
a probabilistic roadmap abstraction. Probabilistic roadmap
abstraction is constructed over a low-dimensional configu-
ration space obtained by considering relaxed and simplified
representations of the robot model and its feasible motions.
The edges in abstract graph are collision-free. It then run a
Dijkstra algorithm to find the shortest path from the starting
point to goal region and use this path as a heuristic to bias
sampling.

It searches by maintaining a queue of abstract vertices in
the graph sorted by increasing scores. At each search itera-



tion a abstract vertex c is selected based on the correspond-
ing heuristic cost and the number of times it has been se-
lected for expansions in the past. An abstract vertex along
the cheapest precomputed path from c to abstract goal ver-
tex is chosen. This vertex is then used to create a random
concrete state p within some pre-specified state radius. This
is now the ”target” state used similarly to when plain RRT
chooses a state uniformly at random. The only difference is
that instead of choosing in the whole motion tree, it choose
the nearest state in the state group of c as the root for the new
propagation which is steered (if possible) toward the random
state. Any new abstract vertices touched by the propagation
attempt are added to the queue if not previously enqueued.

P-PRM tries to pursue the completion of low cost paths
by following its heuristic estimates in the abstract space. It
tries to avoid getting stuck during planning by penalizing the
score of abstract states after they are examined.

BEAST
Bayesian Effort-Aided Search Trees (BEAST) (Kiesel and
Ruml 2016) is a novel method that tries to find solutions as
quickly as possible by constructing solutions which it es-
timates require the least effort to build. Building a motion
tree will vary in difficulty across different regions of the
workspace. Recognizing this, BEAST reasons about effort
using a discrete abstraction of the state space, in the form
of a directed graph of regions. As it grows the motion tree,
it maintains for each edge in the graph an estimate of the
effort that would be required to grow the tree between the
corresponding abstract regions of the state space. At each
iteration, it allocates its effort to growing the tree through
the region of the state space that is estimated to allow the
least total effort (propagation attempts) before the motion
tree reaches the abstract goal region.

Cost Pruning
A general cost pruning method (Hauser and Zhou 2015) is a
simple anytime motion planning algorithm which can find a
optimal solution asymptotically. They use a new state-cost
space formulation to transform optimal motion planning
problems into feasible kinodynamic motion planning prob-
lems. Then a meta-algorithm, AO-x, is introduced to adapt
any feasible kinodynamic planner x into an asymptotically-
optimal motion planner by generating a series of feasible tra-
jectories in state-cost space with progressively lower costs.
Based on this idea, it is able to prune any extensions to the
motion tree that exceed the cost of current incumbent.

SST
Stable sparse RRT(SST) (Li, Littlefield, and Bekris 2015)
is another motion planning algorithm that find optimal so-
lution. It try to detect and remove duplicate in motion tree
as the tree growing. When a new tree branch enters a du-
plicate detection scope, it is checked against other previous
branches residing in that scope to determine dominance. The
dominant branch inside a scope is the only branch propa-
gated from during tree growth.

B-SST(Abstraction, Start,Goal, δs, δv)
1. Incumbent=INFINITY
2. MotionTree.Insert(Start)
3. IsFindFirst=FALSE
4. AbstractStart = Abstraction.Map(Start)
5. AbstractGoal = Abstraction.Map(Goal)
6. Abstraction.PropagateEffortEstimates()
7. Open.Push(AbstractStart.GetOutgoingEdges())
8. While Have More Time
9. If IsFindFirst = FALSE
10. BEAST(Open,MotionTree, IsF indF irst)
11. Else
12. SSTWithCostPruning(MotionTree,

Incumbent, δs, δv)
13. If Reach The Goal
14. Incumbent = Solution.Cost

Figure 1: Pseudocode for the B-SST algorithm.

A-BEAST
A-BEAST (Kiesel 2016) is the anytime version of BEAST.
The author add three additional components to BEAST. First
a cost pruning function (idea from (Hauser and Zhou 2015))
is used to ensure it will not add any state that exceed the
cost of current incumbent in to the motion tree. The second
modification is instead of growing a simple motion tree, it
maintain a spares motion tree by filtering duplicate states in
same region, using the idea of (Li, Littlefield, and Bekris
2015). By doing this, as the tree growing, it can continu-
ally reduce cost in the motion tree. Lastly, for each edge,
it not only consider an effort estimate but also a cost esti-
mate. Then the idea from Anytime EES (Thayer, Benton,
and Helmert 2012) is emulated to searching for the lowest
effort solution with a cost estimate lower than the current
incumbent. However, it is really complicate to understand
the way they reasoning about the cost and hard to imple-
ment and also performs not good enough compared to exist-
ing anytime motion planning algorithms. So our work here
is based on A-BEAST and to provide a much simpler algo-
rithm called B-SST which is still competitive compared to
A-BEAST.

B-SST
B-SST is a new algorithm that tries to combine the idea
of BEAST, SST and cost pruning. At beginning, We use
BEAST to propagate the motion tree, just like what A-
BEAST do. The difference is that after it find the first so-
lution, B-SST switch to another motion tree growth process
called SST-with-cost-pruning and try to keep improving the
solution.

The pseudocode for B-SST is present in Figure 1. The
algorithm begins by initializing a cost incumbent to infin-
ity (line 1), inserting the start state to motion tree (line 2),
and propagating effort estimates through the abstract graph
outward from the region containing the concrete goal state
(line 6). The algorithm then pass the edge open list and the
motion tree to BEAST algorithm in line 10 and do exactly



BEAST(Open,MotionTree, IsF indF irst)
15. Edge = Open.Pop()
16. StartState = Edge.Start.Sample()
17. EndState = Edge.End.Sample()
18. ResultState = Steer(StartState, EndState)
19. MotionTree.Insert(ResultState)
20. Success = Edge.End.Contains(ResultState)
21. If Success
22. Edge.UpdateWithSuccessfulPropagation()
23. If Edge.End == AbstractGoal
24. Open.Push(GoalEdge)
25. Else
26. Edge.UpdateWithFailedPropagation()
27. Abstraction.PropagateEffortEstimates()
28. Open.Push(Edge)
29. If Success
30. Open.Push(Edge.End.GetOutgoingEdges())
31. If Goal(ResultState)
32. IsFindFirst=TRUE

Figure 2: Pseudocode for the BEAST algorithm.

SSTWithCostPruning(MotionTree, Incumbent, δs, δv)
33. ResultState = SST(MotionTree, δs, δv)
34. If ResultState.Cost < Incumbent
35. MotionTree.Insert(ResultState)

Figure 3: Pseudocode for the SSTWithPruning algorithm.

what BEAST do. After BEAST find the first solution, it will
switch to another motion tree growth process called SST-
WithCostPruning (line 12). Every time it find a new solution,
the cost incumbent will be updated (line 14).

The pseudocode for BEAST is present in Figure 2. A
D* Lite (Koenig and Likhachev 2002) algorithm is used to
compute the effort-to-go value for each vertex. BEAST con-
siders which edge in the abstract graph represents the best
way to attempt to grow the motion tree. It maintains a open
list of edges whose source regions have been touched by the
motion tree and is kept sorted in increasing order of total es-
timated effort. In each iteration, BEAST pops the edge off
open with the lowest estimated effort. Then an existing con-
crete state in the edge’s source region is chosen to propagate
from. A new concrete target end state is generated from the
edge’s abstract end region. Finally, an attempt is made to
grow the tree from start sate to end state using a steering
function. In line 19, the result state is inserted into the mo-
tion tree. After the propagation, it update the effort estimate
for the edge by maintenance of a beta distribution. When
BEAST find a solution it will update the global IsFindFirst
boolean variable to TRUE (line 32).

The pseudocode for SSTWithCostPruning is present in
Figure 3. It first try to propagate by SST (Li, Littlefield, and
Bekris 2015) in line 33. After getting a new result state, it
check the state by current incumbent (line 34). If its cost is
exceed the current incumbent, we just throw it away, else it
will be inserted into the motion tree.

Experiments
We compared B-SST with BEAST, A-BEAST, Restarting-
RRT-with-Pruning, and SST.Implementation of A-BEAST,
Restarting-RRT-with-Pruning, and SST are from A-BEAST
paper (Kiesel 2016). Experiments also used OMPL’s imple-
mentation of a Kinematic Car, Dynamic Car, and Quadro-
tor vehicle, as detailed in A-BEAST paper. All the vehicle
meshes are presented in Figure 4 panels (a) and (b). The en-
vironment meshes used for the experiments are presented in
Figure 4 panels (c)-(g).

For each vehicle, 5 start and goal pairs were used, and for
each start and goal pair 25 different random number gener-
ator seed values were used. This provided 125 runs for each
of the domains. The start states were biased toward the cen-
ter of the workspace while the goal was biased toward the
lower center of the workspace. This set-up tends to gener-
ate problems in which the optimal solution threads its way
carefully between the obstacles, but it is much easier to take
a more costly route around the obstacles. This wide diver-
sity of planning time/solution cost trade-offs directly tests
the ability of anytime motion planner to estimate planning
effort and adjust its behavior accordingly. A motion planner
that explicitly tries to find plans quickly ought to exhibit su-
perior performance. A planning timeout of 300 seconds was
used.

Results
The first plot in each series is instance coverage as a function
of time. This is a very important metric to exemplify how
quickly algorithms are able to solve all instances within the
set.

The next plot is solution cost as a function of time. At a
given time point, if an algorithm has not solved an instance,
the solution cost for that instance is considered to be a large
finite constant: 100,000. Using a large finite constant rather
than infinity allows us to compute a finite average across
the x-axis. This leads to algorithms not being shown on the
plot until they have provided at least one solution for every
instance in the set.

The next plot is Goal Achievement Time (GAT) as a func-
tion of time (Kiesel, Burns, and Ruml 2015). This metric is
how quickly a goal is actually achieved after the instance
was issued. It is the sum of planning time and execution
time. This is a very practical metric when a solution will
actually be executed. Minimizing planning time can result
in very long solutions, while minimizing solution cost can
result in very long planning times. These plots are targeted
to reward a balance between these two quantities.

The last plot in the set is an anytime solution quality plot
which is the IPC Anytime Metric. These plots show solution
quality as a function of time. They attempt to reward cov-
erage and low solution cost by rolling these values together.
This type of plot is used by the International Planning Com-
petition and has become their traditional anytime plot.

Kinematic Car
Figure 5 through Figure 9 present the results of B-SST in the
kinematic car domain over each of workspace in Figure 4.



(a) cars and hovercraft (b) quadrotor (c) forest

(d) 3 ladder (e) parking lot (f) intersection (g) single wall

Figure 4: The vehicles and maps used in the experiments.
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Figure 5: Kinematic car results in the forest workspace.
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Figure 6: Kinematic car results in the single-wall workspace.
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Figure 7: Kinematic car results in the 3-ladder workspace.
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Figure 8: Kinematic car results in the parking-lot workspace.



Coverage

CPU Time
0 100 200 300

C
o
v
er

ag
e

0

0.3

0.6

0.9

BEAST{+}
B-SST{+}

A-BEAST{+}
Restarting RRT with Pruning{+}

SST{+}

Cost

CPU Time
0 100 200 300

S
o
lu

ti
o
n
 C

o
st

6

12

18

24

SST{+}
Restarting RRT with Pruning{+}

BEAST{+}
A-BEAST{+}

B-SST{+}

Goal Achievement Time

CPU Time
0 100 200 300

G
o
al

 A
ch

ie
v
em

en
t 

T
im

e

100

200

300

SST{+}
Restarting RRT with Pruning{+}

BEAST{+}
A-BEAST{+}

B-SST{+}

Anytime Solution Quality

CPU Time
0 100 200 300

S
o
lu

ti
o
n
 Q

u
al

it
y

0

0.3

0.6

0.9

B-SST{+}
SST{+}

A-BEAST{+}
BEAST{+}

Restarting RRT with Pruning{+}

Figure 9: Kinematic car results in the intersection workspace.



As shown in coverage plot, B-SST immediately solve all
instances within teeny time. BEAST and A-BEAST are also
able to achieve this. SST fail to solve all the instances in
forest environment.

As shown in the cost plot, B-SST is always able to find
cheapest solution very fast. While A-BEAST is as fast as
B-SST, its solutions are more expensive. Although SST is
also able to find cheap solution close to B-SST’s, but it need
significantly more time.

In terms of the average goal achievement time across the
planning duration, the B-SST as well as A-BEAST are the
two best performers.

In the Anytime Solution Quality plots, B-SST perform
best, followed by SST and A-BEAST. This is not too sur-
prising because the solution quality metric has to do with
factor of best solution found and B-SST eventually find the
cheapest solutions in the planning duration.

Dynamic Car
Figure 10 through Figure 14 present the results of B-SST in
the Dynamic car domain over each of workspace in Figure 4.

It is very embarrassed that all algorithm perform surpris-
ingly bad in both forest work space and 3-ladder workspace.
Our explanation to it is either the machines are interrupted
or we messed up some parameters in problem setting. We
will look into this in the future. In despite of this, we can
still look at rest of the workspaces.

As shown in all of the 4 plots, B-SST performs as well
as A-BEAST do. However in Dynamic car domains, SST is
able to find cheaper solution as we give it more time.

Hovercraft
Figure 15 through Figure 19 present the results of B-SST in
the Hovercraft domain over each of workspace in Figure 4.

It happened again that all the algorithm perform very bad
in forest workspace, let’s just skip it.

The rest of hovercraft results are very similar to the dy-
namic car results. B-SST performs as well as A-BEAST do.
However in Hovercraft domains, SST is able to find cheaper
solution as we give it more time.

Quadrotor
Figure 20 present the results of B-SST in the quadrotor with
forest environment.

A-BEAST performs best in this domain. B-SST is the sec-
ond best algorithm according to GAT plot. As we can see
from the plots, both Restarting RRT with Pruning and SST
performs bad. Since B-SST directly switch to SST-with-
cost-pruning, it is reasonable that it performs not good as
well.

Discussion
As you can see from the result plots, there still some per-
formance gap could be filled between B-SST and other mo-
tion planning algorithms in some problems, e.g., Figure 11,
Figure 20. So we are now keep working on a new anytime
motion planning algorithm, in which we try to combine ef-
fort and cost reasoning along each edge. The idea is that for

each edge, we can maintain a beta distrubution that reflect
the probabilty of both success in propagation and resulting
in a path cheaper than incumbent.

First, to estimate the cost of a solution path that an edge
will participate in, we introduce the following notations. For
every abstract edge, we maintain a cost coefficient εe to
record the ratio of the average cost of the motions across
the edge over the abstract edge cost. Then for those edges
containing motions, we can calculate the cost estimate ĉe by
averaging on its motions’ cost. For those edges without a
single successful propagation, we do this cost estimate by
computing the product of edge cost and a global average co-
efficient ε̄ which is just an average on all εe.

εe =

∑
s∈e cs/e.totalmotions

ce

ĉe =

{
εe · ce e ∈ edges with successful propagation
ε̄ · ce e ∈ edges without successful propagation

With a cost estimate for each edge, we can compute the total
cost estimate f̂e of a solution path that a particular edge will
participate in by summing up the estimated cost-to-come ĝe
and the estimated heuristic cost-to-go ĥeand the edge cost
estimate ĉe.

f̂e = ĝe + ĥe + ĉe

Recall we want to pop a best edge from open that some how
make a good trade off between effort estimate and cost esti-
mate. We can image that for each edge to the goal, there must
exist a trade off curve like a Pareto frontier that describe the
relation between these two quantities. Figure 21 shows an
example curve. By looking up this curve, we can find the
best effort estimate ebestwhich ensure its estimate cost less
then incumbent. Then we re-sort open by ebest and pop the
first edge to execute a new propagate trial. Afterword, we
update all trade off curves of all edges based on latest beta
distribution. We are now making this idea more practicable
by improving the details and will try to implement it in the
near future.

Conclusion
We present a new anytime motion planning approach called
B-SST. B-SST first runs BEAST to find a first solution
as quickly as possible, then switch to another motion tree
growth process called SST-with-cost-pruning, which adopt
both idea from SST and cost pruning algorithms. Results
with a variety of vehicles and environments showed that B-
SST is competitive compared to A-BEAST and other suc-
cessful anytime planners. We also discussed a more sophis-
ticated idea on how to create a better anytime motion plan-
ner.
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Figure 10: Dynamic car results in the forest workspace.
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Figure 11: Dynamic car results in the single-wall workspace.
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Figure 12: Dynamic car results in the 3-ladder workspace.
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Figure 13: Dynamic car results in the parking-lot workspace.
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Figure 14: Dynamic car results in the intersection workspace.
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Figure 15: Hovercraft results in the forest workspace.
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Figure 16: Hovercraft results in the single-wall workspace.
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Figure 17: Hovercraft results in the 3-ladder workspace.
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Figure 18: Hovercraft results in the parking-lot workspace.
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Figure 19: Hovercraft results in the intersection workspace.
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Figure 20: Quadrotor results in the forest workspace.
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Figure 21: An example effort-cost trade off curve.
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