Frontier Based Exploration for Map Building

Tianyi Gu, Zhuo Xu

Fig. 1: Turtlebot2

Abstract—In this project, we implement the frontier-based
exploration algorithm combined with the occupancy grid map-
ping technique that enables a Turtlebot robot to autonomously
build a map for an unknown environment. The theory of
Bayesian inference has been applied to update an occupancy
map and the frontier based exploration algorithm has been
applied to navigate robot to unknown areas in the map. The
experiment results show that the robot is able to map the
environment with fully autonomous both in simulation and real
world environments.

I. INTRODUCTION

In this project, we implement the frontier based explo-
ration algorithm[5] and the occupancy grid mapping[4] tech-
nique that allows a robot to efficiently explore an unknown
environment and build a map autonomously. We use a
Turtlebot2 robot (Figure 1) in this project.

More specifically, our implementation allows the robot to
scan the environment, build a map, identify the obstacles and
frontiers in the map, and continue explore those unknown
areas until all the areas are fully explored and mapped.
Several mapping tasks are tested in both simulation and real
world environments. The experiment results show that the
robot is able to map the environments with fully autonomous.
Discoveries, analysis and explanation will be discussed in
discussion section.

II. METHODOLOGY

In this project, we apply frontier exploration algorithm on
a Turtlebot robot to automatically make an occupancy map

Sensor node
.map node
Move base node

Turtlebot

Fig. 2: The ROS system architecture

of the environment. We implement the algorithms in ROS
system. There are two sub-modules, make map and frontier
exploration, in our project. Each of them is a ROS node
in the system. In this section, we first talk about our ROS
architecture then talk about the two modules.

A. Architecture

In this project, We used TurtleBot2 robot with Kobuki
base and Kinect camera. The system is running in the ROS
Indigo distribution within Ubuntu 14.04 OS. Figure 2 shows
the system architecture. The system would first bring up
the robot by the command specified in the turtlebot tutorial
document[1]:

> roslaunch turtlebot_bringup
minimal . launch

We then bring up 6 different ROS nodes: 3D sensor
node, gmapping node, move base node, make map node,and
frontier exploration node. The first three nodes would be
bring up by the gmapping launch file:

> roslaunch turtlebot_navigation
gmapping_demo . launch

Then we bring up the two algorithm nodes:

> rosrun tgu_project makeMap
> rosrun tgu_project frontierExploration

We finally run the rviz launch file that brings up the rviz
visualizer with our saved configuration.

> roslaunch tgu_project rviz.launch

B. Make Map

In the make map node, an occupancy grid map is updated
and published over time. Figure 3 shows an occupancy
map generated by the make map node. Figure 4 shows the
subscriber and publisher topics of the make map node. It



Fig. 3: An occupancy map generated by make map node

Subscriber
Publlsher
MakeMap /Frontier map

Fig. 4: The information flow of make map node

/Scan

/Odom

subscribes to the topic scan to get the laser scan information.
The scan here is translated from the depth camera data. The
3Dsensor node, which bring up by the gmapping launch file,
would handles that translation. In our project, we get the
robot pose information by subscribing to odom topic. The
gmapping node also provide a transformation that transform
robot pose into map frame. Although we can also get the
pose by reading the TF topic, we found that our result would
be a lot messed up because the robot pose is jumping a
lot. This is because the estimated robot pose is updated
overtime in gmapping. Thus we decided to use the odom
pose information. Make map node publish the occupancy
map to frontier_map topic.

Algorithm 1 UpdateMap

1: scanArray < UpdateScan()

2: pose < UpdatePose()

3: for each scan in scanArray do

4: cell «— GetCellOf(scan,pose)
5 UpdateObstacleCell(cell)

6: UpdateLineOfSight(scan,pose)

Algorithm 2 UpdateObstacleCell
1: Cell.Prob «+— BayesUpdate()

Algorithm 1- 3 are the pseudo code of make map algo-
rithm. In Algorithm 1, given a scan and the robot pose,
we can transform the scan into world coordinate system
and further get the related occupancy map grid cell. Then
we apply Bayesian update in Algorithm 2 to update the
occupancy probability of the obstacle cell. We use the 0.9 as
the true positive sensor model P(z|x) and 0.2 as the false

Algorithm 3 UpdateLineOfSight

1: Cells < GetLineOfSight(scan,pose)
2: for each cell in cells do
3: Cell.Prob < FreeCellProb

Fig. 5: The information flow of make map node

positive sensor model P(z|—z) in the Bayesian update. In
Algorithm 3, we apply the Bresenham’s line algorithm [2]
to determines the cells in line of sight in between the robot
and the obstacle cell. Then we update those free cell by a
low occupy probability. In our experiment below, we set the
number as 0.3.

P(z|z)P(x)
P(z]x)P(z) + P(z|~x)P(-x)

C. Frontier Exploration

P(x]z) =

Given the current updated map, the frontier exploration
node analysis the current frontiers on the map and navigate
the robot toward one of them. Figure 5 shows the frontiers
and their centroids found by the frontier exploration node.
Figure 6 shows the subscriber and publisher topics of the
frontier exploration node. It subscribes to the topic fron-
tier_map to get the latest occupancy map and to the topic
move_base/status to check the status of the move base node.
This node also subscribes to the odom topic to get the robot
pose for doing 360 degree rotation at the begin of each
iteration.

The frontier exploration node publish to 4 topics. After
getting the result of frontier analysis, the node publishes
the frontiers and their centroids to frontier_marker and cen-
troid_marker topic. The node also publishes the best centroid
to move_base_simple/goal to trigger the move_base node that

Fig. 6: The information flow of frontier exploration node

subscriber publisher

/move_base/status

Frontier
Exploration

L



Fig. 7: A map that was generated by make map node in the
simulation world

Fig. 8: A simulation world environment in Gazebo.

finds a plan and navigates the robot toward the selected
centroid.

Given the occupancy map, we use the connect component
labeling algorithm[3] to label the frontiers. We then calculate
the centroid of every frontier by averaging over their cell
coordinates of frontier cells. To select the best centroid, we
apply the following metric to trade off between the frontier
length and the distance of centroid from the robot.

) length
uttl = ————
distance

III. RESULTS

Figure 7 shows a result map generated by the make
map node in gazebo simulation world. Figure 8 shows the
world. Here we only run the make map node and use key
teleoperation to control the robot. As we can see, the built
map is a little bit lousy. This is because of the sensor noise
of odometry information.

Figure 9 shows the process of building the map in simu-
lation. We use the same simulation world shows in Figure 8.
As we can see, the robot is able to build a map from scratch

and autonomously navigate it self to the boundaries of built
map and unknown areas. The videos of this process can
be found here: https://youtu.be/TExIvkEH9z0 and
here: https://youtu.be/0SZgvkNAUGE.

Figure 10 shows one cycle of frontier-based exploration
algorithm. In panel (a), the Turtlebot completed a 360
degrees rotation and scanned the environment. In panel (b)
the frontiers and their centroids are detected and marked
as blue lines and cubes; the selected centroid is marked
as a red cube. To make the robot behave reliable, we
filter out those frontiers that contains less than 20 cells.
In panel (c), a trajectory that found by move base node is
marked by the green curve. In panel (d), the Turtlebot started
moving towards the goal along the trajectory. In panel (e),
the Turtlebot keep moving towards the target centroid(red
dot) while updating the map. In panel (f), the Turtlebot
reached the target centroid(red dot). The robot will repeatedly
continue this process until there is no valid frontier.

Figure 11 shows the process of building a map in a real
world environment. In this environment, we have an obstacle
in the center of the map. The robot is start at the left side
of the environment. It first took a 360 degree full scan of
the environment and detect two valid frontiers in the map.
The move base was able to navigate the robot toward the
frontier that is at the left side behind the obstacle. After it
arrived the centroid of the selected frontier, it take another
full scan of the world that successfully map the whole
environment and thus terminate the mapping process. A
video of this process can be found here: https://youtu.
be/ItDXtMRaAPwW.

IV. DISCUSSION

Overall, our system woks very well. It runs very stable
and can successfully generate maps in simulation. After
several fails on real robot testing, we realized that we have to
use different parameters in real world. For example, in the
simulation, we set the filter parameter as 20 to filer those
frontiers that has less then 20 cells. While, in the real world
this parameter does not work because no frontier has cells
larger than 20 since the world is so small. So we change it
to 10. After several tunings, the robot is able to successfully
mapping the world automatically.

In real world testing, we found that the task is more likely
to fail on day time and always success after sunset. We
suspect this is because the depth camera is sensitive to light,
and we have a large window in the world environment close
to robot. Another reason could be the traffic of network.
Because the ssh connections to the turbot heavily rely on the
wireless network in Kingsbury Hall, the network could be a
lot busy in day time and cause the delay in data transmission
thus further cause the robot update the frontiers based on the
obsolete data.

V. CONCLUSION

In this project, we implement an approach to enable a
Turtlebot robot to explore an unknown environment au-
tonomously. Our approach applies the Bayesian theory to



Fig. 9: The process of building a map in simulation world.

(d) (e) ()

Fig. 10: One cycle of frontier-based exploration algorithm. (a) The Turtlebot completed a 360 degrees rotation and scanned
the environment (b)Frontiers and their centroids are marked as blue lines and cubes; the selected centroid is marked as a
red cube (c) The trajectory that found by move base is marked by the green curve (d) The Turtlebot started moving towards
the goal along the trajectory (e) The Turtlebot continue moved towards the target centroid(red dot) while updating the map
(f) The Turtlebot reached the target centroid(red dot)



Fig. 11: The process of building a map in a real world environment.

sequentially update an occupancy grid map algorithm and
used the frontier based exploration algorithm to navigate the
robot toward the centroid of the most promising frontier.
The experiment results show that the robot is able to map
the environment with fully autonomous both in simulation
and real world environments.

REFERENCES

[1] ROS Wiki turtlebot/tutorials/indigo. — http://wiki.ros.org/
turtlebot/Tutorials/indigo. Accessed: 2018-05-10.

[2] Jack E Bresenham. Algorithm for computer control of a digital plotter.
IBM Systems journal, 4(1):25-30, 1965.

[3] Michael B Dillencourt, Hanan Samet, and Markku Tamminen. A
general approach to connected-component labeling for arbitrary image
representations. Journal of the ACM (JACM), 39(2):253-280, 1992.

[4] Hans P Moravec. Sensor fusion in certainty grids for mobile robots.
Al magazine, 9(2):61, 1988.

[5] Brian Yamauchi. A frontier-based approach for autonomous explo-
ration. In Computational Intelligence in Robotics and Automation,
1997. CIRA’97., Proceedings., 1997 IEEE International Symposium on,
pages 146-151. IEEE, 1997.



