1 Overview

The department offers both an M.S. in Computer Science and a Ph.D. in Computer Science. The M.S. program is designed to help students increase the breadth and depth of their computer science knowledge, strengthen their software development skills, and build their research skills. Professionally-oriented students often complete industry internships and the program has an outstanding job placement record for its graduates. Research-oriented students complete an M.S. thesis under the guidance of a faculty mentor, which usually leads to publication and provides clear evidence of the developed research skills useful for obtaining a leadership position in industry or to go on to do a Ph.D. Applications are welcomed from students whose undergraduate degree is not in computer science. In this case a well-defined set of undergraduate prerequisites must be completed as part of the M.S. program of study.

The Ph.D. program is designed to develop students’ ability to carry out advanced research, as well as ensure that they possess the breadth and depth of computer science knowledge required to obtain a faculty position in academia, or a research position in industry or at a national laboratory. Students obtain breadth knowledge through classwork and research seminars. Working with a faculty research mentor, they also carry out advanced work that results in original research publications and a doctoral dissertation.

2 Administration

The M.S. and Ph.D. programs are overseen by a committee of faculty, the Graduate Studies Committee. This committee is chaired by the Director of Graduate Studies. The Committee assists the Director in promoting the programs, making admission decisions, awarding financial aid, and managing the curricula of the two degrees.

Modifications to the curricula need the approval of the full-time graduate faculty of the department.

The department’s industry advisory board meets twice a year and regularly reviews the curricula and student outcomes for the department’s undergraduate and graduate programs. The advisory board is comprised of representatives from the leading technology companies in the region, as well as UNH Information Technology and the UNH InterOperability Laboratory.
3 Admissions

All applicants must submit official college transcripts, GRE General Test results, three letters of recommendation and a personal statement. (In some cases the requirement for the GRE is waived, if the student has already completed Computer Science courses at the University of New Hampshire.) Following university policy, international students are also asked to demonstrate proficiency in the English language, typically by taking the TOEFL exam. (Having completed a bachelor’s or advanced degree at a school where English is the primary language of instruction is also sufficient to demonstrate proficiency.)

We take a holistic approach to making admission decisions. We look at all components of the application to identify if there is clear evidence that the applicant will be capable of successfully completing their chosen program. For Ph.D. applicants it is important that the student’s research interests align with the existing research programs in the department.

Our M.S. program is designed for students with a B.S. in computer science. However, we welcome applications from students whose undergraduate degree is not in computer science. In this case a set of undergraduate prerequisites must be completed as part of the M.S. program of study. The prerequisites include an introduction to computer science, object-oriented programming, data structures, machine organization, operating systems, and computer science theory. These prerequisites can be satisfied at UNH by the following undergraduate courses:

- CS 415, Introduction to Computer Science I
- CS 415, Introduction to Computer Science II
- CS 515, Data Structures
- CS 520, Assembly Language Programming and Machine Organization
- CS 620, Operating System Fundamentals
- CS 659, Introduction to the Theory of Computation

Some students may need to take additional mathematics classes as well.

When students are admitted to the M.S. program who do not have an undergraduate degree in computer science, the admission letter will explicitly state which undergraduate courses must be completed as part of the student’s program of study. Students without a B.S. or M.S. in computer science are not normally admitted directly into the Ph.D. program, but it is possible to transfer from the M.S. to the Ph.D. program.

All students who have not previously taken computer science courses at UNH are required to take a programming skills assessment prior to starting classes at UNH. This assessment will include an assignment that is completed prior to arriving on campus, as well as a written test administered in person during the week before classes begin. The assessment is used to place students in the appropriate courses in their first semester. In some cases students will be required to take appropriate remedial coursework at the undergraduate level.

4 Academic Advising

The Director of Graduate Studies acts as the academic advisor for all M.S. and Ph.D. students. The Director helps each student create and maintain a formal plan of study that maps out how the
student will complete the requirements of their program and also tracks progress as requirements are completed. All plans must be updated by March 1 each year, will be reviewed by the Graduate Studies Committee, and will be an important component of decisions concerning the awarding or continuing of assistantships and scholarships.

Students doing M.S. theses, M.S. projects or Ph.D. dissertations, will need to obtain a research mentor. An important part of the plan of study is to develop a strategy for obtaining the research mentor, and to eventually document which faculty member has agreed to be the mentor. Once a research mentor is obtained, then the student should regularly review their plan of study with the mentor. The updated plan submitted each March 1 must first be approved by the research mentor.

5 Common Degree Requirements

The following requirements are common to the M.S. and Ph.D. programs:

- All students must take CS900, Graduate Seminar, usually during their first or second semester. The primary goal of the seminar is to introduce the new students to ongoing research projects in the department. All research-active faculty present at the seminar each year, as well as selected students. Speakers from outside UNH will also be recruited to report on recent research in the field. In addition, talks may be given to introduce services or opportunities available at UNH (e.g. the Career Center, the InterOperability Laboratory, etc.).

- All students must complete two programming-intensive courses chosen from this list: CS 812, CS 820, CS 830, CS 835 and CS 870.

- All students must take courses from either three or four breadth areas, depending on which program and option they pursue. The list below identifies the eight breadth areas and the introductory graduate courses in each area. It is also acceptable to satisfy a group requirement by taking an advanced course in the specified area. Note that there are courses in the curriculum that are not in any of the identified areas.

1. Theory: CS 845, CS 858
2. Operating Systems: CS 820, CS 821, CS 823
3. Compilers and Languages: CS 812, CS 835, CS 871
4. Database: CS 875
5. Artificial Intelligence: CS 830
6. Interactive Systems: CS 860, CS 867, CS 870
7. Software Engineering: CS 818, CS 819, CS 851, CS 852, CS 853, CS 854
8. Computer Networks: CS 825

6 M.S. Degree Requirements

The M.S. program has three options: thesis, project and exam. As described in Section 5, students in all three options must complete CS900 and two programming-intensive courses. The Graduate School requires that “all graduate work for any master’s degree must be completed within six years from the date of matriculation (enrollment following admission) in the program.”
6.1 M.S. Thesis Option Requirements

1. CS 900.

2. Eight Computer Science graduate courses of at least three credits each.

 (a) Two courses must be implementation-intensive.

 (b) Courses must be taken from three different breadth areas.

 (c) At least two courses must be numbered above 900.

3. Thesis (six credits). The student must complete a thesis under the supervision of a thesis advisor and a thesis committee of at least three members, with at least two of the committee members being members of the department’s graduate faculty. The committee is nominated by the Department Faculty (acting through the Director of Graduate Studies) and appointed by the Dean of the Graduate School. The committee is nominated by using the Masters Committee form. The student and mentor complete the form and give it to the Director of Graduate Studies for approval and transmission to the Graduate School. The form is available from the Graduate School website.

 A public presentation of the thesis proposal must first be performed, at which time the committee will be asked to approve the proposal. A document containing the thesis proposal should be circulated to the committee at least one week before the proposal presentation. The committee indicates approval of the proposal by signing the proposal document. Once the thesis document is ready, a public thesis defense is performed. The draft thesis document should be circulated to the committee at least one week before the defense. The committee indicates approval of the thesis by signing the thesis document. Students must follow the university’s requirements for formatting and submitting the thesis document, including having the formatting inspected and approved in advance by the Graduate School.

6.2 M.S. Project Option Requirements

1. CS 900.

2. Ten Computer Science graduate courses of at least three credits each.

 (a) Two courses must be implementation-intensive.

 (b) Courses must be taken from four different breadth areas.

 (c) At least three courses must be numbered above 900.

3. Project (three credits). The student must complete a project under the supervision of a faculty advisor. The student should submit to the department a short paper describing the project, and there should be a public viewing of the project, typically as a poster presentation at the annual UNH Graduate Research Conference or at a seminar in the department.

6.3 M.S. Exam Option Requirements

1. CS 900.

2. Ten Computer Science graduate courses of at least three credits each.
(a) Two courses must be implementation-intensive.
(b) Courses must be taken from four different breadth areas.
(c) At least three courses must be numbered above 900.

3. Comprehensive exam that includes four different topics, with at least one topic from the Theory area and the other three topics being selected from three different topic areas (which can include a second theory topic). The topic areas are:

(a) Theory: Formal Specification and Verification; Algorithms
(b) Operating Systems: Advanced Operating Systems
(c) Compilers and Languages: Compiler Design
(d) Artificial Intelligence: Artificial Intelligence
(e) Interactive Systems: Computer Graphics
(f) Computer Networks: Computer Networks

The department maintains a syllabus for each exam topic. Students should contact the Director of Graduate Studies to obtain access to the syllabi. To pass the exam a student must pass each of the selected topics. Normally, a student is allowed to sit for the exam twice—the first time attempting all four topics; the second time taking only those topics that were failed the first time.

7 Ph.D. Degree Requirements

1. CS 900.

2. Seven Computer Science graduate courses of at least three credits each beyond the M.S. or fifteen Computer Science graduate courses of at least three credits each beyond the B.S.

(a) Two courses must be implementation-intensive.
(b) All students must take CS 845.
(c) All students must take a research-oriented course before the end of their second year. This might be either a research seminar or an independent-study course. Courses from other universities can be used only by petition.

3. Breadth requirement. Courses must be taken from four breadth areas, with one of the areas being the Theory area. Students must obtain a 3.4 GPA in the four breadth courses. The student designates which four courses are used to compute the GPA. These four courses must be completed by the end of the student’s third year. Up to two courses to be counted can have been taken at most twice.

4. Research tool. A research tool represents knowledge and skills in another discipline that can help the student carry out his or her research plan. This is typically satisfied by taking a non-computer science graduate level course.

5. Depth requirement.
(a) By the end of their second year, all students must find a faculty member who agrees to serve as their research mentor.

(b) The student and his or her mentor must nominate a Guidance Committee, which consists of the mentor and at least three additional faculty members. The Guidance Committee is appointed by the Dean of the Graduate School upon recommendation of the Department Faculty (acting through the Director of Graduate Studies). The student and mentor complete the Doctoral Guidance Committee form and give it to the Director of Graduate Studies for approval and transmission to the Graduate School. The form is available from the Graduate School website.

(c) The mentor directs the student in writing a depth proposal that defines the student’s area of specialization and specifies:
 i. the scope of a review of literature;
 ii. the format of a research report;
 iii. a detailed syllabus, including a bibliography, of the topics for which the candidate will be held responsible in the oral exam; and
 iv. the research tool requirement.

The Guidance Committee should approve the depth proposal, and the approved proposal should be distributed to all faculty members at least two months prior to the oral examination.

(d) The components of the depth requirement are a Survey, a Research Report, and an Oral Examination. These three requirements must be approved by the guidance committee in the above order, only after approval of the depth proposal.

 i. Survey. A written survey that records the candidate’s review of the literature in the area of specialization as defined in the depth proposal. The format of the written survey, which may be combined with the research report, if appropriate, is to be proposed by the depth supervisor and approved by the Guidance Committee.

 ii. Research Report. A research report covering some specific topic in the area of specialization. The format of the report is proposed by the depth supervisor and approved by the Guidance Committee. Examples of appropriate formats include the following:
 A. Conference or journal article. (Note that the acceptance of such a paper by the conference or journal is neither a necessary nor sufficient condition for satisfying this part of the depth requirement.)
 B. In-depth analysis of a set of research papers (4–5) within a specified time (3–4 months).
 C. Report that identifies research problem(s) in the area of specialization and preliminary results that support pursuing further investigation.

 iii. Oral Examination. An oral examination is conducted by the student’s Guidance Committee. All faculty may attend, but only the committee members vote to determine if a student passes. The oral examination consists of an oral presentation followed by a question and answer period aimed at testing the students understanding and depth of knowledge in the area of specialization as defined by the depth
proposal. The oral examination cannot be taken until after the student has satisfied the breadth requirement, as well as the Guidance Committee’s approval of the written depth proposal, survey, and research components.

The satisfactory completion of the depth requirement is decided by the Guidance Committee on the basis of the depth proposal, written survey, the research report, and the oral examination. For each of the components, the outcome of the evaluation can be pass, fail, or a recommendation to submit revised written document(s), or take the exam again.

The depth requirement should be completed by the end of the student’s third year.

After the student has successfully completed the depth examination and has satisfied the research tool requirement, the student is advanced to candidacy. This is recorded with the Graduate School by filing the Doctoral Candidacy Form, which should be initiated by the student and approved by the Director of Graduate Studies. The form is available from the Graduate School website.

A doctoral committee is appointed for the purpose of supervising and approving the dissertation work and administering the final defense. This committee can be the same as the Guidance Committee, but does not need to be. It shall consist of a minimum of five members. The candidates research mentor is the chairperson of the Doctoral Committee. Normally, two members of the committee are members of departments other than computer science or qualified professionals from other universities, industry or government. The Dean of the Graduate School is an ex-officio member of all Doctoral Committees.

The Doctoral Committee is appointed by the Dean of the Graduate School upon recommendation of the Department Faculty (acting through the Director of Graduate Studies). The committee can be nominated on the Doctoral Candidacy Form or by using the Doctoral Dissertation Committee form. The form is available from the Graduate School website. The student and mentor complete the form and give it to the Director of Graduate Studies for approval and transmission to the Graduate School. The Director of Graduate Studies informs the Department Faculty of the members of each Doctoral Committee before sending the nomination of the committee to the Graduate School.

The candidate must make a formal presentation of the proposed dissertation research, at least six months prior to the awarding of the degree. A written proposal must be distributed to all committee members at least two weeks before the oral presentation and should be made available to other faculty members upon request. The oral presentation is open to the public and should be scheduled and announced at least two weeks in advance. Following the oral presentation, the committee meets privately and with the candidate to determine if, and under what conditions, the proposal is acceptable. Other faculty may attend, but only members of the committee may participate in the decision. The committee decision, including any conditions, must be stated in writing, signed by all committee members, and filed with the written proposal in the student’s file.

A minimum of two semesters of registration in CS 999, Doctoral Research, is required. However, doctoral students at candidacy must register for CS 999 each semester during the academic year, even if the minimum requirement has been met.
The candidate must make a formal oral presentation of the completed dissertation research in accordance with the requirements of the Graduate School. The written version of the thesis to be defended should be distributed to all committee members at least three weeks before the defense and should be made available to other faculty members upon request. The oral presentation is open to the public and should be scheduled and announced at least two weeks in advance. Following the oral presentation, the committee meets privately and with the candidate to determine if, and under what conditions, the thesis is acceptable. Other faculty may attend, but only members of the committee may participate in the decision. Following the Graduate School policy, the majority of the committee members must approve the final dissertation.

7. Time Limits.

The Graduate School requires that “the student must be advanced to candidacy within five years after matriculation or within four years if the student entered with a master’s in the same field.” In addition, “all graduate work for the doctorate must be completed within eight years of matriculation (enrollment after admission) or within seven years if the student entered with a master’s degree in the same field.”

8. Financial Aid

The department has assistantships and scholarships that are awarded on merit. Students must remain in good academic standing to keep these awards.

1. The department has a number of teaching assistantship positions, primarily to support the beginning programming courses and the department’s offerings in the university’s Discovery program (undergraduate general education curriculum). The teaching assistantship provides a stipend, a full-tuition waiver, health insurance and the waiver of some fees (but not all fees).

The appointments of all teaching assistants must be approved by the Department Chair, after recommendation by the Director of Graduate Studies with the assistance of the Graduate Studies Committee. The department considers many factors when making decisions concerning the appointment of teaching assistants, including the academic record and research interests of the candidates, their potential performance in the role, the need to continually recruit highly qualified students, and the balance of the number of M.S. and Ph.D. students.

The Department Chair determines the work assignments for the teaching assistants. Teaching assistants are expected to work 20 hours per week. All teaching assistants are expected to work in the Programming Assistance Center as part of their duties. (An exception is made for students teaching a class.) Teaching assistants are provided office space and a computer to support them in their duties.

The department will attempt, when possible, to give senior Ph.D. students the opportunity to teach courses on their own, with appropriate supervision and support. The department is also fully supportive of Ph.D. students who wish to add the twelve-credit Cognate in College Teaching to their graduate degree.

M.S. students can hold a teaching assistantship at most two years. Ph.D. students can hold a teaching assistantship at most four years. In both cases the student must be making
satisfactory progress in completing their degree. In particular, Ph.D. students must obtain a research mentor by the end of their second year and must pass the depth exam by the end of their third year.

One grade below B- will result in the student losing the assistantship.

2. The department has one full-tuition scholarship. The scholarship provides a full-tuition waiver. The student must pay the full fees.

The full-tuition scholarship is awarded for a fixed term.

One grade below B- will result in the student losing the scholarship.

3. The department has a number of partial-tuition scholarships. These scholarships cover the difference between in-state and out-of-state tuition, effectively meaning the holder of the scholarship will pay tuition at the in-state rate. The student must pay the full fees.

Normally a student holds the partial-tuition scholarship for the duration of their studies.

9 Academic Honesty

All members of the university are expected to conduct themselves with integrity. The university Academic Honesty policy can be found in the Student Rights, Rules, and Responsibilities handbook: http://www.unh.edu/student/rights/.

Claiming other people’s work as your own is a violation of the Academic Honesty policy. This is true in all situations, including examination responses, homework assignments, programming assignments and other out-of-class work. Students should be aware that department faculty use automated tools to detect the plagiarism of programming assignments.

Violation of the Academic Honesty policy in a course normally results in the student receiving a failing grade in the course. Students who violate the Academic Honesty policy will lose their department financial aid. Repeated violations will result in the student being dismissed from the program.

10 Acceptable Use of Information Technology Resources

Students need to understand the importance of the shared use of public resources such as the department computer clusters, printers, and the network uplink between the department subnet and the campus network. These resources are provided to help students complete their course assignments and thesis or project work. Student should not use these resources for recreation, such as music file sharing, streaming media, and games. The bandwidth consumed by a streaming media session often comes at the expense of other primary uses.

The department subscribes to the University System of New Hampshire policy for Acceptable Use of Information Technology Resources. This policy is viewable at http://usnholpm.unh.edu/UNH/VI.Prop/F.htm#5. All students should read this document.