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Abstract 

The A* algorithm works well for problems where the 
solution can be computed offline. In the real time search 
paradigm, an algorithm must compute the solution online: 
computation time is not free. Real time heuristic search is 
search in which the goal is to calculate a plan as close to an 
optimal plan as possible with the constraint that the 
algorithm executes an action after each tick of computation 
time, so that the computation time does not inhibit the 
optimality of the path taken. In this paper, a new algorithm 
for real time heuristic search is proposed and examined in 
the domain of grid world pathfinding. This algorithm named 
Backward Real Time Search (BRTS) boasts similar 
performance to modern algorithms such as TBA* and, 
unlike many other modern algorithms, it does not require 
pre-computation of the search space and complicated state 
space abstractions. It beats TBA* by a small margin which 
is more noticeable at low computation limit values. BRTS 
also beats a classic variant of LRTA* by more than an order 
of magnitude. BRTS is a general approach to real time 
search that one can apply to many search algorithms from 
A* to Weighted A*. 

 Introduction   

In search problems the A* algorithm [Hart, 1968] is 
guaranteed to return the optimal solution if an admissible 
heuristic is used. The A* algorithm assumes the planning 
and execution stages are independent of one another. In 
other words, if the planning stage takes a few minutes to 
complete, this time spent does not affect the execution 
stage: the computation time is not altering the optimality of 
the solution. This is reasonable in many applications. 
When a driver enters a destination address into a GPS unit, 
the fact that the GPS takes a moment to compute the 
optimal route has little affect on the total travel time. The 
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planning and execution stages are essentially independent, 
with the planning stage being computed offline. 
 However, most likely in this situation, the driver would 
start moving down the driveway while entering the 
destination into the GPS. This means that while the 
complete route to the destination is still unknown, the 
driver utilizes the limited information currently known to 
begin the trip towards the destination. More specifically, 
the driver knows the first move must be to go down the 
driveway. In an example such as this, the final time gains 
are insignificant, but consider two other domains where the 
gains can be very significant, game path finding and robot 
controls. 
 If a player in a game gives a command to a unit and that 
unit sits around for ten seconds while computing the path 
to the destination, the player is certain to become irritated. 
When the player gives the command for the unit to move, 
the player expects the unit to begin executing the 
command. Also, note that while the path computation may 
not take ten seconds, games give very little processing time 
to the pathfinding unit before the algorithm must return 
control so other elements of the game can do their 
computation. Some games give 1-3ms of computation 
time. [Bj¨ornsson, 2009] This means the algorithm does not 
have the required time to compute a full plan to take. 
 Similarly, if a controller gives a robot a task and that 
robot does not begin executing the task right away, the 
time spent while stalled during the computation of the task 
plan is in effect adding no-op actions to the start of the 
plan. This makes an offline optimal plan potentially less 
optimal then a plan an inadmissible real time algorithm 
returns. A cleaning robot might have to sweep a floor and 
clean up cobwebs. The sweeping of the floor might be easy 
to plan and so there is no reason the robot should wait 
around doing nothing while planning how to clean the 
cobwebs. The robot can start sweeping and think about the 
compete path while working. 
 This is the definition of, and motivation for, real time 
heuristic search: calculating a search plan as close to an 
optimal plan as possible with the constraint that the 



algorithm executes an action after each tick of computation 
time so that the computation time does not inhibit the 
optimality of the path taken. In this paper, a new algorithm 
for real time heuristic search is proposed and examined in 
the domain of grid world pathfinding. This algorithm 
named Backward Real Time Search (BRTS) boasts similar 
performance to modern algorithms such as TBA* 
[Bj¨ornsson, 2009] and unlike many other modern 
algorithms it does not require pre-computation of the 
search space and complicated state space abstractions. 
 With the definition of real time heuristic search 
established, there are several important characteristics of 
real time heuristic search to consider. Firstly, in this search 
paradigm algorithm designers often forfeit completeness. 
Consider a robot moving around a map in which the robot 
can fall off a cliff. Given a limited search time, the robot 
may chose to go over the cliff. After which no matter what 
the robot learns and does the robot cannot reverse the 
action. This may prevent the robot from reaching the 
desired goal. An algorithm could compute a path offline by 
not choosing actions but this would defeat the purpose of 
real time search. Moreover, completeness is not an issue in 
domains where all actions have a corresponding reverse 
action. The cliff example is a problem since there is no 
way for the robot to climb the cliff. The grid world domain 
used in this paper has reversible actions. Every state in the 
set of states reachable from the starting state can reach 
every state in this set of states. 
 Secondly, admissibility is impossible to guarantee in real 
time search since it bases the actions taken upon local 
information. If that information is incomplete, as it often is, 
the solution may be suboptimal. This is a disadvantage of 
real time search and therefore, if an optimal solution is 
required and computation time is free, this is not the search 
method to use. The goal of real time search is to minimize 
this sub-optimality given the limits on local search and 
therefore the time constraints. Real time search is a close 
cousin of anytime search because of these considerations. 

Domain: Grid World Single Agent Pathfinding 

There are a plethora of domains in which real-time 
heuristic search is applicable. This paper uses a simple 
domain: four-way movement grid-world pathfinding with a 
single agent using Manhattan distance as the base heuristic 
estimator. This is domain is commonly found in video 
games with the possible modification that many game 
allow eight way movement. The four-way movement in 
this example domain is along the four cardinal directions 
with unit cost in every direction. All actions are reversible. 
The grid itself consists of tiles that are either passable or 
impassable. The start and end destination are randomly 
selected and a path is guaranteed between the two points. 
The two forms of maps used for empirical observations are 
randomly generated gird worlds with certain obstacle 
densities and grids attained from Warcraft maps. 
Unobstructed tiles on the map represent states. 

Backward Real Time Heuristic Search 

LRTA* is a classic algorithm that solves real time search 
by repeating breadth first depth limited searches from the 
current state to the goal state throughout iterations of the 
planning phase [Korf, 1990]. One of the major 
disadvantages to LRTA* is how it must throw out all 
search done after every planning phase. This means it must 
redo expansions repeatedly through iterations of the 
planning phase. Backward Real Time Search solves this 
problem by persisting a single search throughout all 
iterations of planning. Given an initial state and a goal state 
BRTS begins searching from the goal state towards the 
start state. In this paper, the A* algorithm is used to search 
from the goal to the start state but in general any search 
algorithm is acceptable. 
 This search continues until the algorithm exceeds a 
certain computation limit in the planning phase. At this 
point, the algorithm expands the start (current) state once 
so it can commit to an action. The algorithm decides which 
action to commit to by taking all the generated children 
and making a heuristic estimate from these to head of open 
list of the search. The minimum estimate indicates this 
node is the most promising node towards the head of the 
open list. The head of the open list is along the most 
promising path from the goal state to the current state the 
agent is residing. Figure 1 shows a graphical example of 
this. 
 With this minimum node determined the algorithm now 
commits to the action taken to get to this node. It yields to 
execution stage with this action. Once the execution stage 
has completed the algorithm continues its search. The state 
the algorithm is now searching for is the new state in 
which the agent resides. This planning and execution 
process repeats until the search frontier passes the current 
state of the agent. 

Figu re  1  



 Once the search frontier has passed the current state, the 
algorithm knows a complete path to from the goal to the 
current state. The algorithm reverses and returns this path 
for execution. 
 A number of subtleties have been over looked so far. 
Firstly, each time the algorithm enters the execution phase 
the agent’s current state changes. This in fact invalidates 
the open list since the heuristic estimates from previous 
current states are the metrics with which the algorithm 
sorted the open list. In grid world path finding, we consider 
the magnitude of this invalidation small. The algorithm 
presented here therefore does not resort the list and simply 
continues using the old open list. Since the nature of real 
time search specifies that it cannot guarantee optimality, 
this paper considers this an acceptable compromise to 
increase the speed of the algorithm. 
 Another subtlety overlooked is the possibility of loops 
traversed repeatedly. To understand this, consider Real-
Time-A*. Korf points out how if LRTA* does not update 
the heuristic of the agent’s previous state with the mini-
min rule LRTA* will often fall into infinite loops iterating 
between a number of states. While BRTS will not fall into 
infinite loops due to the search frontier finally reaching the 
current state, and while BRTS will tend to fall into such 
loops less due to the movement towards the head of the 
open list, this is still an issue to consider. Agents will do 
“obviously stupid” actions when an implementer does not 
consider this issue. 
 The problem with using a solution such as Korf’s mini-
min rule is this algorithm does not have a consistent 
heuristic comparator between iterations. After every 
planning phase, the head of the open list may have changed 
quite significantly and therefore the stored heuristic values 
are often incorrect. The solution to this used in this paper’s 
implementation is not quite satisfactory and so this 
problem is left for the reader to consider. In this paper’s 
implementation of BRTS, each time the algorithm expands 
the current state, if all of the generated children have 
higher heuristic estimates then the current state, then the 
algorithm adds that state to a “dead-end” list. When the 
algorithm expands states, it generates a set of nodes. If any 
nodes on this list are on the dead-end list, the algorithm 
ignores them as if their actions did not exist. Doing this is 
not complete and at times can mean the agent does not 
have actions to take. To resolve this, the algorithm ignores 
the dead-end list in this case and the implementation 
operates as if the dead-end list did not exist. The rationale 
behind this method is to find dead ends in the search space 
and mark them as such. A potentially better solution for 
readers to consider would be to update the memorized 
heuristics after each planning phase to reflect the change in 
the open lists size. This is not an O(1) operation 
unfortunately. 
 

Backward Real Time A* Pseudo Code 

The column to the right contains the pseudo code for 
Backward Real Time A* (BRTA*), BRTS implemented 

with A*. This code does not deal with updating of the 
visited node’s heuristic estimates. This function takes a 
start state, a goal state, and an expansion limit as its 
arguments. Lines 1-5 are mundane initialization code for 
A*. 
 The code then enters the main loop that does planning. 
After each planning phase, the algorithm yields a partial 
solution to the calling code so it can execute the potential 
solution. The executing phase then returns control to the 
algorithm and the planning continues. Skipping to the 
bottom, lines 32 through 38 show an ordinary A* 

BRTA* Pseudo Code 

0  BRTA*( Start, Goal, ExpansionLimit ) 
1   OpenList  0 
2   ClosedList  0 
3   OpenList.Enqueue(0,Goal) 
4   CurrentGoal  Start 
5   IterationExpansions  0 
6   loop 
7    if OpenList.IsEmpty() do 
8     return pathNotFound 
9    end 
10   Current  OpenList.Dequeue() 
11   if CurrentGoal = Current do 
12    return Current.Path().Reverse() 
13   else if ++IterationExpansions  
14     >=ExpansionLimit do 
15    foreach State  CurrentGoal.Expand() do 
16     if F(State,OpenList.Peak()) <  
17      F(Min,OpenList.Peak() do 
18      Min  State 
19     end 
20    end 
21    Execute( Min.Path().FirstAction() ) 
22    CurrentGoal = Min.Path().FirstState() 
23    if OpenList.Contains(CurrentGoal) do 
24     return OpenList.Get(CurrentGoal). 
25      Path().Reverse() 
26    else if ClosedList.Contains(CurrentGoal) do 
27     return ClosedList.Get(CurrentGoal). 
28      Path().Reverse() 
29    end 
30    IterationExpansions  0 
31   else 
32    foreach State  Current.Expand() do 
33     if !ClosedList.Contains(State) &&  
34      !OpenList.Contains(State) do 
35      OpenList.Enqueue( 
36       F(State, CurrentGoal), State)) 
37     end 
38    end 
39   end 
40  end 
41 end 



expansion of the head of the open list with the heuristic 
estimate from the child state expanded to the current state. 
 Lines 11 and 12 show the case where the search frontier 
passes the current state during the planning phase. At this 
point, the algorithm returns the reverse path and the calling 
code executes it. 
 Lines 13-31 show when the expansion limit has expired 
and the algorithm must yield an action to the execution 
phase. Within this block lines 15-20 show where the 
algorithm expands the current state and the algorithm finds 
the most promising state. Line 21 shows where the 
algorithm yields control to the execution phase. It yields so 
the calling code can execute a single action. Line 22 shows 
the algorithm updating the current state  
 The next set of lines from 23 to 29 shows a special case 
to handle. This case is when an expansion of the current 
state pushed the agent past the search frontier. At this 
point, the algorithm has found the solution and must return 
the path or the algorithm will not find a path as the solution 
is now inside the search frontier. 

Backward Real Time Search Properties 

Time Complexity. The time complexity of BRTS in 
relation to a single planning phase follows the real time 
search property: the algorithm returns actions within a 
fixed computation limited time. BRTS limits its 
computation by only allowing a certain number of 
expansions per planning phase. One of these expansions 
must be reserved for the final expansion around the current 
state. The closed list should be implemented with a hash 
table to ensure near to O(1) insertion and retrieval. The one 
area in which BRTS fails to be real time in nature is with 
its open list. The open list presumably will be implemented 
as a heap which has O(1) retrieval but O(log n) insertion. 
While this violates the real time property, the effect of 
insertions should be minimal due to the log function. 
 In terms of overall time complexity BRTS is directly 
proportional to the number of planning phases until the 
search frontier and current state intersect one another. This 
is an improvement over LRTA* whose time complexity is 
nearly the same as the final path length. This is a direct 
consequence of BRTS saving search between iterations 
and LRTA* not saving search. BRTS will therefore tend to 
find a solution sooner when the search frontier intersects 
the current state since it has had many more iterations to 
expand this search frontier compared to LRTA* which 
only has had one iteration to expand the search frontier. 
 Admissibility. BRTS is not admissible since it must 
make decisions based on limited information. BRTS, 
however, does approach optimality in the limit as the 
computation limit is increased, as LRTA* also does. In 
fact, if the expansion limit is high enough to find the 
solution in the first planning stage BRTS is admissible if 
the search algorithm used is admissible. BRTA* is 
identical to reverse A* in this case and therefore 
admissible. 
 Completeness. BRTS is complete if all states in the set 
of states reachable from the start state can reach every state 

in this set. In order words if the domain does not contain 
irreversible operators, BRTS is complete. This also 
assumes the algorithm BRTS uses is complete. BRTA* is 
therefore complete in domains with reversible actions. 
 Space Complexity. The space complexity of BRTS is 
dependent on the algorithm used. BRTA* is therefore 
exponential in the worst case. LRTA* boasts linear time 
complexity. BRTS could guarantee this with a depth first 
search such as IDA*[Russell, 2003] 
 Domain Constraints. LRTA* works on any real time 
search domain. One of the problems with BRTS is it has 
limits on which domains it will work with. BRTS first 
assumes the knowledge of the exact characteristics of the 
goal state(s). If the algorithm can only specify a domain’s 
goal as a goal predicate, the exact characterization is not 
possible and so BRTS is not applicable to the domain. 
Similarly, in domains such as vacuum world, the goal 
states are enumerable, but there is not a single goal state. In 
this case, the algorithm could add the enumerated goal 
states to the open list and then the algorithm could use 
some method to determine which state to expand first. 
 Another problem with BRTS is that it does not work in 
domains with a limited search horizon. Some video games 
have fog of war that prevents a player from seeing portions 
of the map until their units are near the fog. In other words 
until that portion of the map has been explored. Likewise, a 
robot might not know what is behind a door. In cases such 
as this BRTS could choose the most optimistic point 
towards the final goal along the search horizon limit as a 
goal state for BRTS and then restart the algorithm as the 
search horizon expands. LRTA* has a naïve advantage in 
such a domain because presumable LRTA*’s search depth 
limit will always be within the limited search horizon. This 
means it will never perform any differently than if it knew 
everything about the environment. Searches in general 
require that they can hypothesize all reachable states and 
so this limitation is not extraordinary for search algorithms 
in any paradigm. 

Empirical Evaluations 

This section presents empirical evaluations of BRTS 
compared to a classical algorithm and a state of the art 
algorithm. 
 Time Limited A*. Time Limited A*(TLA*) is a variant 
of the classical real time search algorithm LRTA* [Korf, 
1990] that utilizes an expansion limited A*, instead of a 
depth limited breath-first search, during the planning 
phase. A* is run from the current state to the goal state 
until the expansion limit has been reached. The agent then 
travels along the most promising path. This process repeats 
updating the heuristic values of previously visited nodes 
with the Korf mini-min rule. 
 Time Bounded A*. Time Bounded A* (TBA*) is a state 
of the art algorithm that, like BRTA*, runs A* preserving 
the search between planning iterations [Bj¨ornsson, 2009]. 
TBA* runs this search from the start state to the goal state. 
When the algorithm reaches the expansion limit, the agent 



begins following the most promising path. This path may 
change between iterations. If it does, the agent begins 
backtracking until the agent is on the new most optimal 
path. This in the worst case is back at the start state. TBA* 
can be enhanced by implementing detection of shortcuts 
between paths. The implementation of TBA* used in these 
evaluations did not have this enhancement. 

Evaluation Methodology 

To evaluate BRTS in comparison to TLA* and TBA* each 
of these three algorithms were run on the grid world path 
finding domain. The grid worlds came from scaled up 
maps from the popular game Warcraft. We randomly chose 
the agents start and destination locations. To compute sub-
optimality A* was run offline and the optimal path length 
was stored. If the optimal path length was less than 75 or 
greater than 750 actions, the program ignored the map and 
moved on to the next. If any algorithm path exceeded 100 
times the optimal path length, the program cut the 
algorithm off early. The computation limits used varied 
from one to 491 in increments of ten inclusive. We ran 
each algorithm crossed with each computation limit once 
for four maps. We then graphed these with the sub-
optimality along the Y-axis and the computation limit 
along the X-axis. We define sub-optimality as the number 
of times the algorithms final path length was above the off-
line computed optimal path length  

Results 

The results of this research as seen in figures two and three 
shows that BRTA* has comparable performance to TBA*. 
While the confidence intervals are quite large the initial 
results indicate BRTA* beats TBA* at very low expansion 
limits by a small amount. Both of these algorithms are 
vastly superior to TLA* as one can see the sub-optimality 
of TLA* goes as high as 70 times and then approaches 
optimality at the limit. Figure three shows a zoomed in 
graph which shows that TBA* and BRTA* are near 
optimal with an expansion limit of five, indicating that 
these problems are not very complex A* computations. 
 Two interesting notes to make about these graphs is now 
TLA* consistently has a much lower sub-optimality at an 
expansion limit of 1 then at 11. Another abnormality is 
how BRTA* and TLA* do not have the same sub-
optimality for an expansion limit of one. While one would 
expect BRTA* to diverge quickly at a computation limit of 
two, at one BRTA* and TLA* should be equivalent. 
 
 

Future Work 

The results seen in this paper are preliminary and there are 
a number of areas to look into in future research. Firstly, in 
this paper we compared BRTS to two algorithms. There 
are a number of other algorithms such as the vanilla flavor 
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of LRTA*, PR LRTA*, and D LRTA* which would be 
useful for comparison purposes. 
 There was also only one domain examined in this work. 
Domains such as cooperative path finding and tile puzzles 
would also be interesting to explore. Perhaps not re-sorting 
the open list, after changing the current state, has a greater 
detrimental effect in certain domains. We could also test 
BRTS more extensively on randomly generated graphs. 
While it we did test on these during the research, we did 
not produce any formal graphs showing its performance. 
These would be interesting to see. 
 With the open list in mind the sorting of the open list is 
another area of interest for its domain independent effect 
on the algorithm. The algorithm could resort the open list 
partially or fully, while ensuring the real time properties 
and perhaps this would provide a boost to the algorithm. 
 Next, the problem of learning updated heuristic values 
for visited nodes is an area in dire need of attention. As 
mentioned previously if BRTS does not learn these 
updated heuristic values in some way the agent maybe 
become stuck in loops. The current solution is 
unsatisfactory, and while it does work, the payoff for a 
solution in this area could be very interesting to see in high 
obstacle density domains. 
 One final area that is interesting to consider would be 
hybrid algorithms between LRTA* and BRTA*. Consider 
how LRTA* searches from the current node to the goal and 
BRTA* search from the goal to the current node. If an 
algorithm did a little of both of these perhaps it would have 
better performance. Doing 9/10

th
 of the expansion limit on 

as BRTS expands, with 1/10
th

 as LRTA* expands might 

prevent the agent from going into many “obviously” stupid 
dead ends. In a way, this is already what BRTS does by 
expanding its current state once. Perhaps a larger local 
search is in order. 

Conclusion 

In conclusion, Backward Real Time Search, or more 
specifically Backward Real Time A* is a promising 
algorithm. It boasts solutions similar to other start of the art 
algorithms in its most naïve form. It beats TBA* by a small 
margin which is more noticeable at low computation limit 
values. BRTS also beats a classic variant of LRTA* by 
more than an order of magnitude. BRTS also benefits from 
simplicity of implementations and ease of understanding. 
The most important aspects of future research include open 
list sorting methods and ways to learn updated heuristics. 
One should not think of Backward Real Time Search as a 
single algorithm for solving the real time search paradigm, 
but rather it is a general approach to real time search. 
Algorithms from A* to Weighted A* [Pohl, 1970] could be 
applied as the search method with each method providing a 
slightly different flavor of search with different 
characteristics. 
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