

Backward Real Time Heuristic Search

in Grid World Pathfinding

David M. Bond

Department of Computer Science

University of New Hampshire

Durham, NH 03824 USA

dmf5@unh.edu

Abstract

The A* algorithm works well for problems where the
solution can be computed offline. In the real time search
paradigm, an algorithm must compute the solution online:
computation time is not free. Real time heuristic search is
search in which the goal is to calculate a plan as close to an
optimal plan as possible with the constraint that the
algorithm executes an action after each tick of computation
time, so that the computation time does not inhibit the
optimality of the path taken. In this paper, a new algorithm
for real time heuristic search is proposed and examined in
the domain of grid world pathfinding. This algorithm named
Backward Real Time Search (BRTS) boasts similar
performance to modern algorithms such as TBA* and,
unlike many other modern algorithms, it does not require
pre-computation of the search space and complicated state
space abstractions. It beats TBA* by a small margin which
is more noticeable at low computation limit values. BRTS
also beats a classic variant of LRTA* by more than an order
of magnitude. BRTS is a general approach to real time
search that one can apply to many search algorithms from
A* to Weighted A*.

 Introduction

In search problems the A* algorithm [Hart, 1968] is
guaranteed to return the optimal solution if an admissible
heuristic is used. The A* algorithm assumes the planning
and execution stages are independent of one another. In
other words, if the planning stage takes a few minutes to
complete, this time spent does not affect the execution
stage: the computation time is not altering the optimality of
the solution. This is reasonable in many applications.
When a driver enters a destination address into a GPS unit,
the fact that the GPS takes a moment to compute the
optimal route has little affect on the total travel time. The

Copyright © 2009, David Bond

planning and execution stages are essentially independent,
with the planning stage being computed offline.
 However, most likely in this situation, the driver would
start moving down the driveway while entering the
destination into the GPS. This means that while the
complete route to the destination is still unknown, the
driver utilizes the limited information currently known to
begin the trip towards the destination. More specifically,
the driver knows the first move must be to go down the
driveway. In an example such as this, the final time gains
are insignificant, but consider two other domains where the
gains can be very significant, game path finding and robot
controls.
 If a player in a game gives a command to a unit and that
unit sits around for ten seconds while computing the path
to the destination, the player is certain to become irritated.
When the player gives the command for the unit to move,
the player expects the unit to begin executing the
command. Also, note that while the path computation may
not take ten seconds, games give very little processing time
to the pathfinding unit before the algorithm must return
control so other elements of the game can do their
computation. Some games give 1-3ms of computation
time. [Bj¨ornsson, 2009] This means the algorithm does not
have the required time to compute a full plan to take.
 Similarly, if a controller gives a robot a task and that
robot does not begin executing the task right away, the
time spent while stalled during the computation of the task
plan is in effect adding no-op actions to the start of the
plan. This makes an offline optimal plan potentially less
optimal then a plan an inadmissible real time algorithm
returns. A cleaning robot might have to sweep a floor and
clean up cobwebs. The sweeping of the floor might be easy
to plan and so there is no reason the robot should wait
around doing nothing while planning how to clean the
cobwebs. The robot can start sweeping and think about the
compete path while working.
 This is the definition of, and motivation for, real time
heuristic search: calculating a search plan as close to an
optimal plan as possible with the constraint that the

algorithm executes an action after each tick of computation
time so that the computation time does not inhibit the
optimality of the path taken. In this paper, a new algorithm
for real time heuristic search is proposed and examined in
the domain of grid world pathfinding. This algorithm
named Backward Real Time Search (BRTS) boasts similar
performance to modern algorithms such as TBA*
[Bj¨ornsson, 2009] and unlike many other modern
algorithms it does not require pre-computation of the
search space and complicated state space abstractions.
 With the definition of real time heuristic search
established, there are several important characteristics of
real time heuristic search to consider. Firstly, in this search
paradigm algorithm designers often forfeit completeness.
Consider a robot moving around a map in which the robot
can fall off a cliff. Given a limited search time, the robot
may chose to go over the cliff. After which no matter what
the robot learns and does the robot cannot reverse the
action. This may prevent the robot from reaching the
desired goal. An algorithm could compute a path offline by
not choosing actions but this would defeat the purpose of
real time search. Moreover, completeness is not an issue in
domains where all actions have a corresponding reverse
action. The cliff example is a problem since there is no
way for the robot to climb the cliff. The grid world domain
used in this paper has reversible actions. Every state in the
set of states reachable from the starting state can reach
every state in this set of states.
 Secondly, admissibility is impossible to guarantee in real
time search since it bases the actions taken upon local
information. If that information is incomplete, as it often is,
the solution may be suboptimal. This is a disadvantage of
real time search and therefore, if an optimal solution is
required and computation time is free, this is not the search
method to use. The goal of real time search is to minimize
this sub-optimality given the limits on local search and
therefore the time constraints. Real time search is a close
cousin of anytime search because of these considerations.

Domain: Grid World Single Agent Pathfinding

There are a plethora of domains in which real-time
heuristic search is applicable. This paper uses a simple
domain: four-way movement grid-world pathfinding with a
single agent using Manhattan distance as the base heuristic
estimator. This is domain is commonly found in video
games with the possible modification that many game
allow eight way movement. The four-way movement in
this example domain is along the four cardinal directions
with unit cost in every direction. All actions are reversible.
The grid itself consists of tiles that are either passable or
impassable. The start and end destination are randomly
selected and a path is guaranteed between the two points.
The two forms of maps used for empirical observations are
randomly generated gird worlds with certain obstacle
densities and grids attained from Warcraft maps.
Unobstructed tiles on the map represent states.

Backward Real Time Heuristic Search

LRTA* is a classic algorithm that solves real time search
by repeating breadth first depth limited searches from the
current state to the goal state throughout iterations of the
planning phase [Korf, 1990]. One of the major
disadvantages to LRTA* is how it must throw out all
search done after every planning phase. This means it must
redo expansions repeatedly through iterations of the
planning phase. Backward Real Time Search solves this
problem by persisting a single search throughout all
iterations of planning. Given an initial state and a goal state
BRTS begins searching from the goal state towards the
start state. In this paper, the A* algorithm is used to search
from the goal to the start state but in general any search
algorithm is acceptable.
 This search continues until the algorithm exceeds a
certain computation limit in the planning phase. At this
point, the algorithm expands the start (current) state once
so it can commit to an action. The algorithm decides which
action to commit to by taking all the generated children
and making a heuristic estimate from these to head of open
list of the search. The minimum estimate indicates this
node is the most promising node towards the head of the
open list. The head of the open list is along the most
promising path from the goal state to the current state the
agent is residing. Figure 1 shows a graphical example of
this.
 With this minimum node determined the algorithm now
commits to the action taken to get to this node. It yields to
execution stage with this action. Once the execution stage
has completed the algorithm continues its search. The state
the algorithm is now searching for is the new state in
which the agent resides. This planning and execution
process repeats until the search frontier passes the current
state of the agent.

Figu re 1

 Once the search frontier has passed the current state, the
algorithm knows a complete path to from the goal to the
current state. The algorithm reverses and returns this path
for execution.
 A number of subtleties have been over looked so far.
Firstly, each time the algorithm enters the execution phase
the agent’s current state changes. This in fact invalidates
the open list since the heuristic estimates from previous
current states are the metrics with which the algorithm
sorted the open list. In grid world path finding, we consider
the magnitude of this invalidation small. The algorithm
presented here therefore does not resort the list and simply
continues using the old open list. Since the nature of real
time search specifies that it cannot guarantee optimality,
this paper considers this an acceptable compromise to
increase the speed of the algorithm.
 Another subtlety overlooked is the possibility of loops
traversed repeatedly. To understand this, consider Real-
Time-A*. Korf points out how if LRTA* does not update
the heuristic of the agent’s previous state with the mini-
min rule LRTA* will often fall into infinite loops iterating
between a number of states. While BRTS will not fall into
infinite loops due to the search frontier finally reaching the
current state, and while BRTS will tend to fall into such
loops less due to the movement towards the head of the
open list, this is still an issue to consider. Agents will do
“obviously stupid” actions when an implementer does not
consider this issue.
 The problem with using a solution such as Korf’s mini-
min rule is this algorithm does not have a consistent
heuristic comparator between iterations. After every
planning phase, the head of the open list may have changed
quite significantly and therefore the stored heuristic values
are often incorrect. The solution to this used in this paper’s
implementation is not quite satisfactory and so this
problem is left for the reader to consider. In this paper’s
implementation of BRTS, each time the algorithm expands
the current state, if all of the generated children have
higher heuristic estimates then the current state, then the
algorithm adds that state to a “dead-end” list. When the
algorithm expands states, it generates a set of nodes. If any
nodes on this list are on the dead-end list, the algorithm
ignores them as if their actions did not exist. Doing this is
not complete and at times can mean the agent does not
have actions to take. To resolve this, the algorithm ignores
the dead-end list in this case and the implementation
operates as if the dead-end list did not exist. The rationale
behind this method is to find dead ends in the search space
and mark them as such. A potentially better solution for
readers to consider would be to update the memorized
heuristics after each planning phase to reflect the change in
the open lists size. This is not an O(1) operation
unfortunately.

Backward Real Time A* Pseudo Code

The column to the right contains the pseudo code for
Backward Real Time A* (BRTA*), BRTS implemented

with A*. This code does not deal with updating of the
visited node’s heuristic estimates. This function takes a
start state, a goal state, and an expansion limit as its
arguments. Lines 1-5 are mundane initialization code for
A*.
 The code then enters the main loop that does planning.
After each planning phase, the algorithm yields a partial
solution to the calling code so it can execute the potential
solution. The executing phase then returns control to the
algorithm and the planning continues. Skipping to the
bottom, lines 32 through 38 show an ordinary A*

BRTA* Pseudo Code

0 BRTA*(Start, Goal, ExpansionLimit)
1 OpenList  0
2 ClosedList  0
3 OpenList.Enqueue(0,Goal)
4 CurrentGoal  Start
5 IterationExpansions  0
6 loop
7 if OpenList.IsEmpty() do
8 return pathNotFound
9 end
10 Current  OpenList.Dequeue()
11 if CurrentGoal = Current do
12 return Current.Path().Reverse()
13 else if ++IterationExpansions
14 >=ExpansionLimit do
15 foreach State  CurrentGoal.Expand() do
16 if F(State,OpenList.Peak()) <
17 F(Min,OpenList.Peak() do
18 Min  State
19 end
20 end
21 Execute(Min.Path().FirstAction())
22 CurrentGoal = Min.Path().FirstState()
23 if OpenList.Contains(CurrentGoal) do
24 return OpenList.Get(CurrentGoal).
25 Path().Reverse()
26 else if ClosedList.Contains(CurrentGoal) do
27 return ClosedList.Get(CurrentGoal).
28 Path().Reverse()
29 end
30 IterationExpansions  0
31 else
32 foreach State  Current.Expand() do
33 if !ClosedList.Contains(State) &&
34 !OpenList.Contains(State) do
35 OpenList.Enqueue(
36 F(State, CurrentGoal), State))
37 end
38 end
39 end
40 end
41 end

expansion of the head of the open list with the heuristic
estimate from the child state expanded to the current state.
 Lines 11 and 12 show the case where the search frontier
passes the current state during the planning phase. At this
point, the algorithm returns the reverse path and the calling
code executes it.
 Lines 13-31 show when the expansion limit has expired
and the algorithm must yield an action to the execution
phase. Within this block lines 15-20 show where the
algorithm expands the current state and the algorithm finds
the most promising state. Line 21 shows where the
algorithm yields control to the execution phase. It yields so
the calling code can execute a single action. Line 22 shows
the algorithm updating the current state
 The next set of lines from 23 to 29 shows a special case
to handle. This case is when an expansion of the current
state pushed the agent past the search frontier. At this
point, the algorithm has found the solution and must return
the path or the algorithm will not find a path as the solution
is now inside the search frontier.

Backward Real Time Search Properties

Time Complexity. The time complexity of BRTS in
relation to a single planning phase follows the real time
search property: the algorithm returns actions within a
fixed computation limited time. BRTS limits its
computation by only allowing a certain number of
expansions per planning phase. One of these expansions
must be reserved for the final expansion around the current
state. The closed list should be implemented with a hash
table to ensure near to O(1) insertion and retrieval. The one
area in which BRTS fails to be real time in nature is with
its open list. The open list presumably will be implemented
as a heap which has O(1) retrieval but O(log n) insertion.
While this violates the real time property, the effect of
insertions should be minimal due to the log function.
 In terms of overall time complexity BRTS is directly
proportional to the number of planning phases until the
search frontier and current state intersect one another. This
is an improvement over LRTA* whose time complexity is
nearly the same as the final path length. This is a direct
consequence of BRTS saving search between iterations
and LRTA* not saving search. BRTS will therefore tend to
find a solution sooner when the search frontier intersects
the current state since it has had many more iterations to
expand this search frontier compared to LRTA* which
only has had one iteration to expand the search frontier.
 Admissibility. BRTS is not admissible since it must
make decisions based on limited information. BRTS,
however, does approach optimality in the limit as the
computation limit is increased, as LRTA* also does. In
fact, if the expansion limit is high enough to find the
solution in the first planning stage BRTS is admissible if
the search algorithm used is admissible. BRTA* is
identical to reverse A* in this case and therefore
admissible.
 Completeness. BRTS is complete if all states in the set
of states reachable from the start state can reach every state

in this set. In order words if the domain does not contain
irreversible operators, BRTS is complete. This also
assumes the algorithm BRTS uses is complete. BRTA* is
therefore complete in domains with reversible actions.
 Space Complexity. The space complexity of BRTS is
dependent on the algorithm used. BRTA* is therefore
exponential in the worst case. LRTA* boasts linear time
complexity. BRTS could guarantee this with a depth first
search such as IDA*[Russell, 2003]
 Domain Constraints. LRTA* works on any real time
search domain. One of the problems with BRTS is it has
limits on which domains it will work with. BRTS first
assumes the knowledge of the exact characteristics of the
goal state(s). If the algorithm can only specify a domain’s
goal as a goal predicate, the exact characterization is not
possible and so BRTS is not applicable to the domain.
Similarly, in domains such as vacuum world, the goal
states are enumerable, but there is not a single goal state. In
this case, the algorithm could add the enumerated goal
states to the open list and then the algorithm could use
some method to determine which state to expand first.
 Another problem with BRTS is that it does not work in
domains with a limited search horizon. Some video games
have fog of war that prevents a player from seeing portions
of the map until their units are near the fog. In other words
until that portion of the map has been explored. Likewise, a
robot might not know what is behind a door. In cases such
as this BRTS could choose the most optimistic point
towards the final goal along the search horizon limit as a
goal state for BRTS and then restart the algorithm as the
search horizon expands. LRTA* has a naïve advantage in
such a domain because presumable LRTA*’s search depth
limit will always be within the limited search horizon. This
means it will never perform any differently than if it knew
everything about the environment. Searches in general
require that they can hypothesize all reachable states and
so this limitation is not extraordinary for search algorithms
in any paradigm.

Empirical Evaluations

This section presents empirical evaluations of BRTS
compared to a classical algorithm and a state of the art
algorithm.
 Time Limited A*. Time Limited A*(TLA*) is a variant
of the classical real time search algorithm LRTA* [Korf,
1990] that utilizes an expansion limited A*, instead of a
depth limited breath-first search, during the planning
phase. A* is run from the current state to the goal state
until the expansion limit has been reached. The agent then
travels along the most promising path. This process repeats
updating the heuristic values of previously visited nodes
with the Korf mini-min rule.
 Time Bounded A*. Time Bounded A* (TBA*) is a state
of the art algorithm that, like BRTA*, runs A* preserving
the search between planning iterations [Bj¨ornsson, 2009].
TBA* runs this search from the start state to the goal state.
When the algorithm reaches the expansion limit, the agent

begins following the most promising path. This path may
change between iterations. If it does, the agent begins
backtracking until the agent is on the new most optimal
path. This in the worst case is back at the start state. TBA*
can be enhanced by implementing detection of shortcuts
between paths. The implementation of TBA* used in these
evaluations did not have this enhancement.

Evaluation Methodology

To evaluate BRTS in comparison to TLA* and TBA* each
of these three algorithms were run on the grid world path
finding domain. The grid worlds came from scaled up
maps from the popular game Warcraft. We randomly chose
the agents start and destination locations. To compute sub-
optimality A* was run offline and the optimal path length
was stored. If the optimal path length was less than 75 or
greater than 750 actions, the program ignored the map and
moved on to the next. If any algorithm path exceeded 100
times the optimal path length, the program cut the
algorithm off early. The computation limits used varied
from one to 491 in increments of ten inclusive. We ran
each algorithm crossed with each computation limit once
for four maps. We then graphed these with the sub-
optimality along the Y-axis and the computation limit
along the X-axis. We define sub-optimality as the number
of times the algorithms final path length was above the off-
line computed optimal path length

Results

The results of this research as seen in figures two and three
shows that BRTA* has comparable performance to TBA*.
While the confidence intervals are quite large the initial
results indicate BRTA* beats TBA* at very low expansion
limits by a small amount. Both of these algorithms are
vastly superior to TLA* as one can see the sub-optimality
of TLA* goes as high as 70 times and then approaches
optimality at the limit. Figure three shows a zoomed in
graph which shows that TBA* and BRTA* are near
optimal with an expansion limit of five, indicating that
these problems are not very complex A* computations.
 Two interesting notes to make about these graphs is now
TLA* consistently has a much lower sub-optimality at an
expansion limit of 1 then at 11. Another abnormality is
how BRTA* and TLA* do not have the same sub-
optimality for an expansion limit of one. While one would
expect BRTA* to diverge quickly at a computation limit of
two, at one BRTA* and TLA* should be equivalent.

Future Work

The results seen in this paper are preliminary and there are
a number of areas to look into in future research. Firstly, in
this paper we compared BRTS to two algorithms. There
are a number of other algorithms such as the vanilla flavor

0

20

40

60

80

100

120

0 10 20 30 40 50

S
u

b
-o

p
ti

m
a

li
ty

Expansion Limit

Figure 2

AVG BRTA*

AVG TBA*

AVG TLA*

of LRTA*, PR LRTA*, and D LRTA* which would be
useful for comparison purposes.
 There was also only one domain examined in this work.
Domains such as cooperative path finding and tile puzzles
would also be interesting to explore. Perhaps not re-sorting
the open list, after changing the current state, has a greater
detrimental effect in certain domains. We could also test
BRTS more extensively on randomly generated graphs.
While it we did test on these during the research, we did
not produce any formal graphs showing its performance.
These would be interesting to see.
 With the open list in mind the sorting of the open list is
another area of interest for its domain independent effect
on the algorithm. The algorithm could resort the open list
partially or fully, while ensuring the real time properties
and perhaps this would provide a boost to the algorithm.
 Next, the problem of learning updated heuristic values
for visited nodes is an area in dire need of attention. As
mentioned previously if BRTS does not learn these
updated heuristic values in some way the agent maybe
become stuck in loops. The current solution is
unsatisfactory, and while it does work, the payoff for a
solution in this area could be very interesting to see in high
obstacle density domains.
 One final area that is interesting to consider would be
hybrid algorithms between LRTA* and BRTA*. Consider
how LRTA* searches from the current node to the goal and
BRTA* search from the goal to the current node. If an
algorithm did a little of both of these perhaps it would have
better performance. Doing 9/10

th
 of the expansion limit on

as BRTS expands, with 1/10
th

 as LRTA* expands might

prevent the agent from going into many “obviously” stupid
dead ends. In a way, this is already what BRTS does by
expanding its current state once. Perhaps a larger local
search is in order.

Conclusion

In conclusion, Backward Real Time Search, or more
specifically Backward Real Time A* is a promising
algorithm. It boasts solutions similar to other start of the art
algorithms in its most naïve form. It beats TBA* by a small
margin which is more noticeable at low computation limit
values. BRTS also beats a classic variant of LRTA* by
more than an order of magnitude. BRTS also benefits from
simplicity of implementations and ease of understanding.
The most important aspects of future research include open
list sorting methods and ways to learn updated heuristics.
One should not think of Backward Real Time Search as a
single algorithm for solving the real time search paradigm,
but rather it is a general approach to real time search.
Algorithms from A* to Weighted A* [Pohl, 1970] could be
applied as the search method with each method providing a
slightly different flavor of search with different
characteristics.

Acknowledgments

Special thanks to Professor Wheeler Ruml from the
University of New Hampshire Department of Computer
Science Department who originally proposed the BRTS

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20

S
u

b
-o

p
ti

m
a

li
ty

Expansion Limit

Figure 3

AVG BRTA*

AVG TBA*

algorithm and to Dr. Nathan Sturtevant from the University
of Alberta for providing the Warcraft maps to run the
calculations over.

References

Bj¨ornsson, Y. Bulitko, V. and Sturtevant, N. 2009. TBA*: Time-

Bounded A*. IJCAI.

Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis

for the Heuristic Determination of Minimum Cost Paths". IEEE

Transactions on Systems Science and Cybernetics SSC4 4 (2):

100–107.

Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42:189–211.

Pohl, I., "Heuristic Search Viewed as Path Finding in a

Graph," Artificial Intelligence Journal, Vol. 1, No. 3, Fall 1970,

pp. 193--204.

Russell, Stuart J.; Norvig, Peter (2003), Artificial Intelligence: A

Modern Approach (2nd ed.), Upper Saddle River, NJ: Prentice

Hall, ISBN 0-13-790395-2

